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Confluence is a critical property of computational systenhictvis related with determinism and
non ambiguity and thus with other relevant computationaibaites of functional specifications and
rewriting system as termination and completion. Seveiitdria have been explored that guarantee
confluence and their formalisations provide further irgéng information. This work discusses top-
ics and presents personal positions and views related gtformalisation of confluence properties
in the Prototype Verification System PVS developed at owgarsh group.

1 Introduction

Syntactic criteria such as avoiding overlapping of rulesvall as linearity of rules have been used as a
discipline of functional programming which avoids ambiguiln the context of term rewriting systems
(TRSs for short), well-known results such as Newman'’s Lerf@heRosen’s Confluence of Orthogonal
term rewriting systems [11] as well as the famous Knut-BefaHiuet) Critical Pair Lemmeé [8,]7] are of
great theoretical and practical relevance. The first onaraqiees confluence of Noetherian and locally
confluent abstract reduction systems; the second one eassonfluence obrthogonalterm rewriting
systems, that are systems that avoid ambiguities gendmgtederlapping of their rules and whose rules
do not allow repetitions of variables in their left-handeside., left-linear); and, the third one provides
local confluence of term rewriting systems whose criticalgoare joinable.

Formalisations in PVS of these confluence criteria provalaable and precise data about the theory
of rewriting (cf. [6], [5], [10]). All mentioned specificatns and formalisations are available either
at the local sitehttp://trs.cic.unb.br or, as part of the NASA PVS libraries, in the theories for
abstract reduction systemass and term rewriting systemsrs that belong to the TRS development, at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

2 Background

It is assumed the reader is familiar with rewriting notati@md notions as given inl[3] and [4].

2.1 Abstract reduction systems

In the PVS development for TRSs, specifically in the thearg, an abstract reduction system (for
short, ARS) is specified as a binary relatiBrover an uninterpreted typg, R VAR : PRED[[T,TI].
This choice facilitates the definition of associated nesmgsselations through the use of PVS operations
for relations such as reversal, subset, union, composiiahan operator for iterative applications of
compositions. For instance,

e the inverse of the relation is specified@siverse (R);
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the symmetric closure§C(R), asunion(R, converse(R);

the reflexive closureBC(R), asunion(R, =);

the reflexive transitive closur8TC(R), asIUnion(LAMBDA n: iterate(R, n));

the equivalence closurg¢ (R), asRTC(SC(R)) etc.

Properties of ARSs are then specified in a very natural mafroer these relational basis. For
instance, using PVS properties for relations such as welhdedness, the property of noetherianity,
noetherian?(R) is specified as the predicate1l founded? (converse(R)). Also, the property of
confluenceconfluence? (R), is specified as

FORALL x, y, z: RTC(R)(x,y) & RTC(R) (x,z) => joinable?(R) (y,z)

where the predicatg¢oinable? is specified as

joinable?(R) (x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z).

More synthetic specifications might be possible; for instarithe elegarget-theoreticallefinition of
confluence, written in the usual rewriting notation(as- o —*) C (—* o *«—) can be specified straight-
forwardly assubset?(RTC(converse(R)) o RTC(R), RTC(R) o RTC(converse(R))), using re-
lation compositionp, and the subset predicataibset?.

ARS results were formalised using standard proof techsigsenoetherian induction. Among other
results on confluence of ARSs, a description of the formitiseof Newman Lemma, specified below,
is available in[[5]

Newman: LEMMA noetherian?(R) => (confluent?(R) <=> locally_confluent?(R))

2.2 Term Rewriting Systems

Terms are specified as a data type built from variables ovenampty uninterpreted type and a signature
of function symbols with their respective arities. The angunts of a functional term, headed by a
function symbol of the signature, are specified as a finiteiesecg of terms, of length equal to the arity
of the function symbol. Positions of a tertnwrittenpos0F (t), are finite sequences of naturals specified
recursively as in the standard way in the theory of rewritifigus, the necessary operations on positions
as their concatenation resumes to concatenation of firgieesees of naturals and so, predicates such as
disjunct or parallel positions, given by the predicaterallel? or for short]| |, are specified a§NOT

p <= @ & (NOT q <= p), where<= is the sequence prefix relation built as(p, gq): bool =
(EXISTS (pl: position): q = p o pl).

Using these types for terms and positions, it is possibleuitd lthe required algebraic properties
for terms, positions, subterms and replacement of termsndia the subterm of a term at a valid
positionp, usually written agp, is specified recursively navigating through the structofr¢he term
according to the naturals in the position sequence and therents of the functional terms inside
t: stOF(t: term, (p: positions?(t)). Also, the replacement of the subterm at a valid posi-
tion p of a terms by another ternt is built recursively:replaceTerm(s: term, t: term, (p:
positions?(s))), that will be abbreviated as[t] p. These design decisions give rise to algebraic
properties that are easily formalised by inductive proofthese data structures. Among other properties,
one has formalisations for:

e Preservation of positions after replacement of subterthgmepositions of replacement:
posOF (8) (p) => posOF(s[t]_p) (p)
or parallel positions to the position of replacement:
posOF (s) (p) & posOF(s)(q) & pllq => posOF(s[t]_p)(q)
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e Extension of possible new valid positions at the positiorepfacement after a replacement (where
belowo stands for the concatenation of sequences):

posOF (t) (q) & posOF(s) (p) => posOF(s[t]lp)(p o q)
e Preservation of replaced terms:
posOF (s) (p) & posOF(t) (q) => stOF(s[t]lp,p o @ = stOF(t, @
e Associativity of replacement:
posOF (s) (p) & posOF(t) (q) => (s[tlp)[rl_(p o q) = sltlrlqlp
e Commutativity of replacement at parallel positions:
posOF (s) (p) & posOF(s)(q) & pllq => (s[tlp)lrlq = (slrl_q@)[tlp

Rewriting rules are specified as pairs of terths) satisfying the usual conditions on rules, that is
the left-hand side (Ihs) cannot be a variable and the vasadtcurring in the right-hand side (rhs) should
belong to the Ihs of the rule:

rewrite_rule?(l,r): bool = (NOT vars?(l)) & subset?(Vars(r), Vars(l))

After that, it is possible to define the type of rewriting ks

rewrite_rule : TYPE rewrite_rule?

and then, a TRS is given as a set of rewriting rdes[rewrite rule].

Substitutions are built as objects of tyfé -> term], whereV is a countably infinite set of vari-
ables and such that their domain is finite, thais? (sig) : bool = is_finite(Dom(sig)),where
Dom(sig): set[(W)] = {x: (V) | sig(x) /= x} . The type of substitutions is given 88b:
TYPE = (Sub?). From this point, renaming, variants, composition of sinsbns and homomaorphic
extensions of substitutiongxt (sigma), are easily built as well as a series of necessary subetituti
properties formalised.

With these elements of formal design it is possible to defireereduction relation from a set of
rewriting rules say.:

reduction?(E) (s,t): bool =
EXISTS ( (e | member(e, E)), sigma, (p: positions?(s)))
stOF(s, p) = ext(sigma)(lhs(e)) &
t = s[ext(sigma) (rhs(e))]_p

Immediately, it is possible to prove that this relatiorciessed under substitutiorsnd compatible
with contexts

After that, a predicate for critical pairs of a TRESs built, CP? (E), and then the most famous result
on confluence of TRSs, that is the Critical Pair Lemma is fdised as described in|[6].

CP: THEOREM FORALL E: locally_confluent?(reduction?(E)) <=>
(FORALL s, t) : CP?(E)(s, t) => joinable?(reduction?(E)) (s,t)

Since the reduction relation built from a set of rewritindeslinherits by parameterisation, all prop-
erties of ARSs in therrs development, it is possible to apply Newman’s Lemma in otdeformally
infer confluence of a terminating TRS all whose critical paire joinable.

The design decisions taken in the specification of ARSs anfisTiRere satisfactory to accomplish
one of our main objectives in this formalisation, that iseaad maintaining formal proofs as close as
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possible to the analytical proofs presented in textboakgadt, diagrammatic didactical artefacts (used
in papers and textbook) representing rewriting propetissd in the proofs as commutation diagrams
for confluence, local-confluence etc, and those ones usekfoesenting peaks valleys and overlap
situations in the analysis of the Critical Pair criteriomdse also conducted when reasoning about our
formalisations.

In particular, the formalisation of the Critical Pair Lemrmdlows the textbook proof organisation
which is based on the analysis of the possible peaks whemgttgiobtain local confluence. These peaks
can be originated from simultaneous reductions at panadisitions, which are trivially joinable, or from
reductions at nested positions, which give rise to eithigical or non-critical overlaps

A peak, from a critical overlap can be easily verified to jdiy, proving that it corresponds to an
instance of a critical pair and using the assumption th#tatipairs are joinable.

The non-critical overlaps are the interesting ones. A suwakps originated by application of rules
| — r andg — d with substitutiono, assuming these rules have not common variables which siljpes
by renaming of rules. Suppositg occurs in the dominating position of the overlap, one cam$omn
the analysis of thginability of the peak g <— |0 — |g[d0]p.q, Wherep is a variable position i, say
Ip = X, andq the position inxo in which go occurs.

Thus, all that is solved by the careful construction of a nelsstution, o’ such that it modifies
o mappingx — xo[dolq and maintains the images of all other variables in the dorohion as those
mapped byo.

In the sequel, by a likeuniform reduction sequencedne has thato —* ra’ andl o[do]p.q —* 107;
the former is done aso — ro[do]qeq — -+ — r0[d0]g0q- - - [dO]g,0q = F0’, where{qu,...,an} is the
set of positions of in whichx occurs, and the latter is donelagdo]p.q — | 0[d0] pog[dO] poq — -+ —
10[d0]peq[d0] proq- - - [dO]proq = 107, where{p} U{p1,...,pn} is the set of positions df in which x
occurs.

So joinability is concluded by the application of riles r with substitutiono’. See for instance the
proof in Chapters 6 or 2 of respectively [3] of [4].

The formalisation, under the design choices previouslytioeed, requires the construction of el-
ements that guarantee specialised properties, such assaatiation of a critical pair, built from the
rewriting rules, that corresponds to a critical overlap a#l as the substitutioo’ for a non-critical over-
lap. For the latter, it is necessary an inductive proof @snoxiliary lemmas) on the cardinality of the
sets of positiondqy,...,qn} and{ps,..., pm} for concluding thato andro rewrite intolo’ andra’,
respectively.

3 Formalising the algebra of parallel rewriting and orthogonality

Rosen’s confluence of orthogonal TRSs|[11] is a challengimgnélisation. The classical proof is based
on the Parallel Moves lemma: essentially, what is necedsatty prove that under the hypothesis of
orthogonality, the associated parallel reduction refatiolds the diamond property.

Intuitively, the analytical proof requires only the compeasion of properties for the notion of the
parallel reduction relation, but the intuition of paraltelwriting is usually explained through the like
“uniform reduction” as in the analysis of the Critical Paiiterion, which in fact refers to sequential
rewriting. So, any formalisation following the classicgdpaoach would require an explicit construc-
tion of such that parallel relation as well as the specidldescription and formalisation of its specific
algebraic properties.

The notion of parallel reduction depends on sets of trigiétslid positions, rules and substitutions,
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positions in which sequential replacements are simultasigoapplied according to the instantiation
of the rules with the associated substitutions. Becaushisfdependence, two design approaches are
possible: either using sets of triplets of positions, raled substitutions or sets of (finite) and coordinated
sequences of positiont$, rulesl” and substitution&. We opted by the last design alternative since we
believe it is closer to implementations in programming lzamges and also because PVS offers libraries
with translations (and their necessary formalised prog@ribetween data structures such as sets, lists
and finite sequences.

The parallel rewriting reduction relation built from a sétewriting rulesk, that in classical notation
is written ass = t, is specified as the relatiggarallel reduction?(E) (s,t) below, using a parallel
replacement operatareplace par_pos, that is recursively specified from the sequentiglaceTerm
operator, and through an auxiliary relatiparallel reduction fix?(E).

parallel_reduction_£fix7(E) (s,t, (fsp: SPP(s))): bool =
EXISTS ((fse | member(fse, E)), fss)
fsp‘length = fse‘length AND fsp‘length = fss‘length
AND subtermsOF (s,fsp) = sigma_lhs(fss, fse)
AND t = replace_par_pos(s, fsp, sigma_rhs(fss, fse))

parallel_reduction?(E) (s,t): bool =
EXISTS (fsp: SPP(s)): parallel_reduction_fix?(E) (s,t,fsp)

fsp, fse andfss correspond to the sequendds= [p1,...,pn), I = [(I1,r1),...,(In,rn)] and X =
[01,...,0n Of positions, rewriting rules and substitutions used in plaeallel rewriting. £sp is a se-
guence of parallel positions afobtained by its type dependency, thaS&P(s). fse is a sequence
of equations in the rewriting system given hgmber (fse, E), andfss is a sequence of substitu-
tions. The required coordination of triplets of associgbeditions, rules and substitutions is directly
obtained by using the corresponding indexation in the i@g8@esequences, that is the same index. The
conditionsubtermsOF (s,fsp) = sigma_lhs(fss, fse) equals the condition that for all valid index
i of these sequences, = |;g; and the conditiort= replace_par_pos(s, fsp, sigma_rhs(fss,
fse)) equald to the desired parallel contractum, thasieplacing thd;g;’s by ther;g;’s.

In a parallel peak, say s = u, using positions, equations and substitutions @ay, Ik, %) for
k= 1,2, as in the case of the Critical Pair Lemma, the interestasgs are those of non-critical overlaps.
Without loss of generality, at some positigre M, one has all positiongs, ..., pn in M2 belowg. On
the one sidesy = |o andty = ro, where(l,r) is the rewriting rule in; and o the substitution iy
associated with the positianin ;. On the other side, one hag= uq by parallel reduction at positions
p1,. .. Pn below g accordingly to the same equations and substitutions inrtplett (M, M2, 2,). Let
(M’,1’,%’) denote the triplet of this last parallel reduction stepnttiee parallel peako &= 1o = uq is
an instance of the Parallel Moves Lemma. See details in @4 of [4] or 6.4 of([3], for instance.

Since in such a parallel peakr =10 =t all overlaps are non critical, one should prove that pdralle
reducing eaclo-instance of a variable ih sayx at positionp one had o, = xo = xa’ =t,,, where the
substitutiong’ is built by reducing in parallel all occurrences@finstantiated variables i uniformly,
which is possible by left-linearity assumption. Thus,= ro’ andt = | ¢, that allows concluding the
joinability of the peak.

Despite in the theory the adaptation of sequential progeftr parallel replacement might be intu-
itively clear, in the PVS development the necessary spaseiblgebraic properties should be formalised.
Lets[T]_ denote the parallel replacement of terms in the sequeneer$T at valid parallel positions
M. A few of those properties are included below.



16 Formalising Confluence in PVS

e Preservation of positions after replacement of subtertherepositions of replacement:
posOF (s) (I') => pos0OF (s [T]1_M) (I
or parallel positions to the position of replacement:
posOF (s) (M) & posOF(s) (M) & M’||M => posOF(s[t]_p) (M)
¢ Invariance under composition of parallel replacement edlfgd sequences of positions:
posOF (s) (IM1) & posOF(s) (My) & Mq||M2 =>
(s[T_11_Mp[T21_MNp = (s[T.1 o T2]1_M10Tl,

e Commutativity of parallel replacement at parallel seqesnaf positions:
posOF (s) (NM1) & posOF(s) (My) & My||My =>
(s[T11.Mp [T21My = (s[T21_My) [T_11_IM4

The formalisation of confluence of orthogonal TRS procegdsmbuctive proof techniques taking
care of the specificities of the algebra of parallel pos#jaeplacement and rewriting.

4 Conclusions and future work

The development of these formalisations on confluence ofsltiR@ught out several lessons.

From the theoretical point of view, the main observatiorhet despite the intuitive notion of "uni-
form reduction”, that is used to provide intuition about fireof of the Parallel Moves Lemma, induces
to believe that the extension is obvious, a specialisedldereent of the theory of parallel reduction
and its algebraic properties is necessary. And extendiqgesdial to parallel rewriting formalisations is
not trivial. A preliminary thoughtful analysis would be aws necessary in order to estimate accurately
the real complexity and the necessary effort of formaligetiin any context, mostly when the proposed
development appears to be a simple extension of those yidldea The second lesson has to do with
the investment of enough time for fine tuning design decsgince they influence the effort required in
proofs.

The main lesson is that through this kind of exercise, ourpremension of the theory becomes more
refined, providing a better support for the formal analysgifucther related developments, as well as a
more realistic insight about the possible adaptation oseaf previous specifications and proofs. De-
velopments in progress include use of such techniques @r otintexts as the nominal syntax approach
of rewriting (cf. [1] [2]).
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