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Confluence is a critical property of computational systems which is related with determinism and
non ambiguity and thus with other relevant computational attributes of functional specifications and
rewriting system as termination and completion. Several criteria have been explored that guarantee
confluence and their formalisations provide further interesting information. This work discusses top-
ics and presents personal positions and views related with the formalisation of confluence properties
in the Prototype Verification System PVS developed at our research group.

1 Introduction

Syntactic criteria such as avoiding overlapping of rules aswell as linearity of rules have been used as a
discipline of functional programming which avoids ambiguity. In the context of term rewriting systems
(TRSs for short), well-known results such as Newman’s Lemma[9], Rosen’s Confluence of Orthogonal
term rewriting systems [11] as well as the famous Knut-Bendix(-Huet) Critical Pair Lemma [8, 7] are of
great theoretical and practical relevance. The first one, guarantees confluence of Noetherian and locally
confluent abstract reduction systems; the second one, assures confluence oforthogonalterm rewriting
systems, that are systems that avoid ambiguities generatedby overlapping of their rules and whose rules
do not allow repetitions of variables in their left-hand side (i.e., left-linear); and, the third one provides
local confluence of term rewriting systems whose critical pairs are joinable.

Formalisations in PVS of these confluence criteria provide valuable and precise data about the theory
of rewriting (cf. [6], [5], [10]). All mentioned specifications and formalisations are available either
at the local sitehttp://trs.cic.unb.br or, as part of the NASA PVS libraries, in the theories for
abstract reduction systemsars and term rewriting systemstrs that belong to the TRS development, at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

2 Background

It is assumed the reader is familiar with rewriting notations and notions as given in [3] and [4].

2.1 Abstract reduction systems

In the PVS development for TRSs, specifically in the theoryars, an abstract reduction system (for
short, ARS) is specified as a binary relationR over an uninterpreted typeT, R VAR : PRED[[T,T]].
This choice facilitates the definition of associated necessary relations through the use of PVS operations
for relations such as reversal, subset, union, compositionand an operator for iterative applications of
compositions. For instance,

• the inverse of the relation is specified asconverse(R);
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• the symmetric closure,SC(R), asunion(R, converse(R);

• the reflexive closure,RC(R), asunion(R, =);

• the reflexive transitive closure,RTC(R), asIUnion(LAMBDA n: iterate(R, n));

• the equivalence closure,EC(R), asRTC(SC(R)) etc.

Properties of ARSs are then specified in a very natural mannerfrom these relational basis. For
instance, using PVS properties for relations such as well-foundedness, the property of noetherianity,
noetherian?(R) is specified as the predicatewell founded?(converse(R)). Also, the property of
confluence,confluence?(R), is specified as

FORALL x, y, z: RTC(R)(x,y) & RTC(R)(x,z) => joinable?(R)(y,z)

where the predicatejoinable? is specified as
joinable?(R)(x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z).
More synthetic specifications might be possible; for instance, the elegantset-theoreticaldefinition of

confluence, written in the usual rewriting notation as(∗←◦→∗)⊆ (→∗ ◦ ∗←) can be specified straight-
forwardly assubset?(RTC(converse(R)) o RTC(R), RTC(R) o RTC(converse(R))), using re-
lation composition,o, and the subset predicate,subset?.

ARS results were formalised using standard proof techniques as noetherian induction. Among other
results on confluence of ARSs, a description of the formalisation of Newman Lemma, specified below,
is available in [5]

Newman: LEMMA noetherian?(R) => (confluent?(R) <=> locally confluent?(R))

2.2 Term Rewriting Systems

Terms are specified as a data type built from variables over a nonempty uninterpreted type and a signature
of function symbols with their respective arities. The arguments of a functional term, headed by a
function symbol of the signature, are specified as a finite sequence of terms, of length equal to the arity
of the function symbol. Positions of a termt, writtenposOF(t), are finite sequences of naturals specified
recursively as in the standard way in the theory of rewriting. Thus, the necessary operations on positions
as their concatenation resumes to concatenation of finite sequences of naturals and so, predicates such as
disjunct or parallel positions, given by the predicateparallel? or for short||, are specified as(NOT
p <= q) & (NOT q <= p), where<= is the sequence prefix relation built as<=(p, q): bool =

(EXISTS (p1: position): q = p o p1).
Using these types for terms and positions, it is possible to build the required algebraic properties

for terms, positions, subterms and replacement of terms. Namely, the subterm of a termt at a valid
position p, usually written astp, is specified recursively navigating through the structureof the term
according to the naturals in the position sequence and the arguments of the functional terms inside
t: stOF(t: term, (p: positions?(t)). Also, the replacement of the subterm at a valid posi-
tion p of a terms by another termt is built recursively:replaceTerm(s: term, t: term, (p:

positions?(s))), that will be abbreviated ass[t] p. These design decisions give rise to algebraic
properties that are easily formalised by inductive proofs on these data structures. Among other properties,
one has formalisations for:

• Preservation of positions after replacement of subterms either positions of replacement:

posOF(s)(p) => posOF(s[t] p)(p)

or parallel positions to the position of replacement:

posOF(s)(p) & posOF(s)(q) & p||q => posOF(s[t] p)(q)
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• Extension of possible new valid positions at the position ofreplacement after a replacement (where
belowo stands for the concatenation of sequences):

posOF(t)(q) & posOF(s)(p) => posOF(s[t] p)(p o q)

• Preservation of replaced terms:

posOF(s)(p) & posOF(t)(q) => stOF(s[t] p,p o q) = stOF(t, q)

• Associativity of replacement:

posOF(s)(p) & posOF(t)(q) => (s[t] p)[r] (p o q) = s[t[r] q] p

• Commutativity of replacement at parallel positions:

posOF(s)(p) & posOF(s)(q) & p||q => (s[t] p)[r] q = (s[r] q)[t] p

Rewriting rules are specified as pairs of terms(l , r) satisfying the usual conditions on rules, that is
the left-hand side (lhs) cannot be a variable and the variables occurring in the right-hand side (rhs) should
belong to the lhs of the rule:

rewrite rule?(l,r): bool = (NOT vars?(l)) & subset?(Vars(r), Vars(l))

After that, it is possible to define the type of rewriting rules as

rewrite rule : TYPE rewrite rule?

and then, a TRS is given as a set of rewriting rulesset[rewrite rule].
Substitutions are built as objects of type[V -> term], whereV is a countably infinite set of vari-

ables and such that their domain is finite, that isSub?(sig): bool = is finite(Dom(sig)), where
Dom(sig): set[(V)] = {x: (V) | sig(x) /= x} . The type of substitutions is given asSub:
TYPE = (Sub?). From this point, renaming, variants, composition of substitutions and homomorphic
extensions of substitutions,ext(sigma), are easily built as well as a series of necessary substitution
properties formalised.

With these elements of formal design it is possible to define the reduction relation from a set of
rewriting rules sayE:

reduction?(E)(s,t): bool =

EXISTS ( (e | member(e, E)), sigma, (p: positions?(s))) :

stOF(s, p) = ext(sigma)(lhs(e)) &

t = s[ext(sigma)(rhs(e))]_p

Immediately, it is possible to prove that this relation isclosed under substitutionsandcompatible
with contexts.

After that, a predicate for critical pairs of a TRSE is built, CP?(E), and then the most famous result
on confluence of TRSs, that is the Critical Pair Lemma is formalised as described in [6].

CP: THEOREM FORALL E: locally_confluent?(reduction?(E)) <=>

(FORALL s, t) : CP?(E)(s, t) => joinable?(reduction?(E))(s,t)

Since the reduction relation built from a set of rewriting rules inherits by parameterisation, all prop-
erties of ARSs in thears development, it is possible to apply Newman’s Lemma in orderto formally
infer confluence of a terminating TRS all whose critical pairs are joinable.

The design decisions taken in the specification of ARSs and TRSs were satisfactory to accomplish
one of our main objectives in this formalisation, that is indeed maintaining formal proofs as close as
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possible to the analytical proofs presented in textbooks. In fact, diagrammatic didactical artefacts (used
in papers and textbook) representing rewriting propertiesused in the proofs as commutation diagrams
for confluence, local-confluence etc, and those ones used forrepresenting peaks valleys and overlap
situations in the analysis of the Critical Pair criterion can be also conducted when reasoning about our
formalisations.

In particular, the formalisation of the Critical Pair Lemmafollows the textbook proof organisation
which is based on the analysis of the possible peaks when trying to obtain local confluence. These peaks
can be originated from simultaneous reductions at parallelpositions, which are trivially joinable, or from
reductions at nested positions, which give rise to eithercritical or non-critical overlaps.

A peak, from a critical overlap can be easily verified to join,by proving that it corresponds to an
instance of a critical pair and using the assumption that critical pairs are joinable.

The non-critical overlaps are the interesting ones. A such peak is originated by application of rules
l → r andg→ d with substitutionσ , assuming these rules have not common variables which is possible
by renaming of rules. Supposinglσ occurs in the dominating position of the overlap, one can focus on
the analysis of thejoinability of the peakrσ ← lσ → lσ [dσ ]p◦q, wherep is a variable position inl , say
lp = x, andq the position inxσ in which gσ occurs.

Thus, all that is solved by the careful construction of a new substitution,σ ′ such that it modifies
σ mappingx 7→ xσ [dσ ]q and maintains the images of all other variables in the domainof σ as those
mapped byσ .

In the sequel, by a like“uniform reduction sequence”one has thatrσ→∗ rσ ′ andlσ [dσ ]p◦q→
∗ lσ ′;

the former is done asrσ → rσ [dσ ]q1◦q→ ··· → rσ [dσ ]q1◦q · · · [dσ ]qn◦q = rσ ′, where{q1, . . . ,qn} is the
set of positions ofr in whichx occurs, and the latter is done aslσ [dσ ]p◦q→ lσ [dσ ]p◦q[dσ ]p1◦q→ ··· →
lσ [dσ ]p◦q[dσ ]p1◦q · · · [dσ ]pm◦q = lσ ′, where{p} ∪ {p1, . . . , pn} is the set of positions ofl in which x
occurs.

So joinability is concluded by the application of rulel → r with substitutionσ ′. See for instance the
proof in Chapters 6 or 2 of respectively [3] or [4].

The formalisation, under the design choices previously mentioned, requires the construction of el-
ements that guarantee specialised properties, such as the instantiation of a critical pair, built from the
rewriting rules, that corresponds to a critical overlap as well as the substitutionσ ′ for a non-critical over-
lap. For the latter, it is necessary an inductive proof (using auxiliary lemmas) on the cardinality of the
sets of positions{q1, . . . ,qn} and{p1, . . . , pm} for concluding thatlσ andrσ rewrite into lσ ′ and rσ ′,
respectively.

3 Formalising the algebra of parallel rewriting and orthogonality

Rosen’s confluence of orthogonal TRSs [11] is a challenging formalisation. The classical proof is based
on the Parallel Moves lemma: essentially, what is necessaryis to prove that under the hypothesis of
orthogonality, the associated parallel reduction relation holds the diamond property.

Intuitively, the analytical proof requires only the comprehension of properties for the notion of the
parallel reduction relation, but the intuition of parallelrewriting is usually explained through the like
“uniform reduction” as in the analysis of the Critical Pair criterion, which in fact refers to sequential
rewriting. So, any formalisation following the classical approach would require an explicit construc-
tion of such that parallel relation as well as the specialised description and formalisation of its specific
algebraic properties.

The notion of parallel reduction depends on sets of tripletsof valid positions, rules and substitutions,
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positions in which sequential replacements are simultaneously applied according to the instantiation
of the rules with the associated substitutions. Because of this dependence, two design approaches are
possible: either using sets of triplets of positions, rulesand substitutions or sets of (finite) and coordinated
sequences of positionsΠ, rulesΓ and substitutionsΣ. We opted by the last design alternative since we
believe it is closer to implementations in programming languages and also because PVS offers libraries
with translations (and their necessary formalised properties) between data structures such as sets, lists
and finite sequences.

The parallel rewriting reduction relation built from a set of rewriting rulesE, that in classical notation
is written ass⇒ t, is specified as the relationparallel reduction?(E)(s,t) below, using a parallel
replacement operator,replace par pos, that is recursively specified from the sequentialreplaceTerm

operator, and through an auxiliary relationparallel reduction fix?(E).

parallel_reduction_fix?(E)(s,t, (fsp: SPP(s))): bool =

EXISTS ((fse | member(fse, E)), fss) :

fsp‘length = fse‘length AND fsp‘length = fss‘length

AND subtermsOF(s,fsp) = sigma_lhs(fss, fse)

AND t = replace_par_pos(s, fsp, sigma_rhs(fss, fse))

parallel_reduction?(E)(s,t): bool =

EXISTS (fsp: SPP(s)): parallel_reduction_fix?(E)(s,t,fsp)

fsp, fse andfss correspond to the sequencesΠ = [p1, . . . , pn], Γ = [(l1, r1), . . . ,(ln, rn)] andΣ =
[σ1, . . . ,σn] of positions, rewriting rules and substitutions used in theparallel rewriting. fsp is a se-
quence of parallel positions ofs obtained by its type dependency, that isSSP(s). fse is a sequence
of equations in the rewriting system given bymember(fse, E), andfss is a sequence of substitu-
tions. The required coordination of triplets of associatedpositions, rules and substitutions is directly
obtained by using the corresponding indexation in the respective sequences, that is the same index. The
conditionsubtermsOF(s,fsp) = sigma lhs(fss, fse) equals the condition that for all valid index
i of these sequences,spi = l iσi and the conditiont= replace par pos(s, fsp, sigma rhs(fss,

fse)) equalst to the desired parallel contractum, that iss replacing thel iσi ’s by ther iσi ’s.
In a parallel peak, sayt ⇔ s⇒ u, using positions, equations and substitutions say(Πk,Γk,Σk) for

k= 1,2, as in the case of the Critical Pair Lemma, the interesting cases are those of non-critical overlaps.
Without loss of generality, at some positionq∈ Π1 one has all positionsp1, ..., pn in Π2 below q. On
the one side,sq = lσ andtq = rσ , where(l , r) is the rewriting rule inΓ1 andσ the substitution inΓ1

associated with the positionq in Π1. On the other side, one hassq ⇒ uq by parallel reduction at positions
p1, . . . pn below q accordingly to the same equations and substitutions in the triplet (Π2,Γ2,Σ2). Let
(Π′,Γ′,Σ′) denote the triplet of this last parallel reduction step, then the parallel peakrσ ⇔ lσ ⇒ uq is
an instance of the Parallel Moves Lemma. See details in Chapter 4.3 of [4] or 6.4 of [3], for instance.

Since in such a parallel peakrσ ⇔ lσ ⇒ t all overlaps are non critical, one should prove that parallel
reducing eachσ -instance of a variable inl , sayx at positionp one haslσp = xσ ⇒ xσ ′ = tp, where the
substitutionσ ′ is built by reducing in parallel all occurrences ofσ -instantiated variables inlσ uniformly,
which is possible by left-linearity assumption. Thus,rσ ⇒ rσ ′ andt ⇒ lσ ′, that allows concluding the
joinability of the peak.

Despite in the theory the adaptation of sequential properties for parallel replacement might be intu-
itively clear, in the PVS development the necessary specialised algebraic properties should be formalised.
Lets[T] Π denote the parallel replacement of terms in the sequence of termsT at valid parallel positions
Π. A few of those properties are included below.
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• Preservation of positions after replacement of subterms either positions of replacement:

posOF(s)(Π) => posOF(s[T] Π)(Π)

or parallel positions to the position of replacement:

posOF(s)(Π) & posOF(s)(Π′) & Π′||Π => posOF(s[t] p)(Π′)

• Invariance under composition of parallel replacement at parallel sequences of positions:

posOF(s)(Π1) & posOF(s)(Π2) & Π1||Π2 =>

(s[T 1] Π1)[T 2] Π2 = (s[T 1 o T 2] Π1◦Π2

• Commutativity of parallel replacement at parallel sequences of positions:

posOF(s)(Π1) & posOF(s)(Π2) & Π1||Π2 =>

(s[T 1] Π1)[T 2] Π2 = (s[T 2] Π2)[T 1] Π1

The formalisation of confluence of orthogonal TRS proceeds by inductive proof techniques taking
care of the specificities of the algebra of parallel positions, replacement and rewriting.

4 Conclusions and future work

The development of these formalisations on confluence of TRSs brought out several lessons.
From the theoretical point of view, the main observation is that despite the intuitive notion of ”uni-

form reduction”, that is used to provide intuition about theproof of the Parallel Moves Lemma, induces
to believe that the extension is obvious, a specialised development of the theory of parallel reduction
and its algebraic properties is necessary. And extending sequential to parallel rewriting formalisations is
not trivial. A preliminary thoughtful analysis would be always necessary in order to estimate accurately
the real complexity and the necessary effort of formalisations in any context, mostly when the proposed
development appears to be a simple extension of those yet available. The second lesson has to do with
the investment of enough time for fine tuning design decisions since they influence the effort required in
proofs.

The main lesson is that through this kind of exercise, our comprehension of the theory becomes more
refined, providing a better support for the formal analysis of further related developments, as well as a
more realistic insight about the possible adaptation or reuse of previous specifications and proofs. De-
velopments in progress include use of such techniques in other contexts as the nominal syntax approach
of rewriting (cf. [1] [2]).
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