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We prove théextended Church-Turing ThesBvery effective algorithm can be efficiently simulated
by a Turing machine. This is accomplished by emulating agctiffe algorithm via an abstract state
machine, and simulating such an abstract state machine &ydmm access machine, representing
data as a minimal term graph.

Introduction

The Church-Turing Thesis asserts that all effectively cotabple numeric functions are recursive and,
likewise, they can be computed by a Turing machine, or—muogeigpely—can be simulated under some
representation by a Turing machine. This claim has recdi@fn axiomatized and proven [3, 6]. The
“extended” thesis adds the belief that the overhead in ssitmalation is polynomial. One formulation
of this extended thesis is as follows:

The Extended Church-Turing Thesis states . .. that timeldrealsonable” machine models
is related by a polynomial. (lan Parberry [9])

We demonstrate the validity of this thesis for all (sequenteterministic, non-interactive) effective
models over arbitrary constructive domains in the follagvmanner:

1.

We adopt the axiomatic characterization of (sequerdigprithmsover arbitrary domains due to
Gurevich [8] (Sectiohl2, Definitio] 1).

. We adopt the formalization adffectivealgorithms over arbitrary domains frorl [3] (Sectidn 2,

Definition[4).

3. We adopt the definition gimulationof algorithms in different models of computation given(if.[2

We consideimplementationswhich are algorithms operating over a specific domain {Sef,
Definition[2).

. We represent domain elements by their minimal constrizzieed graph (dag) representation;

cf. [11] (SectiorB).

. We measure the size of input as the number of vertices instrumtor-based representation (Sec-

tion[3, Definitior[6).

*This work was carried out in partial fulfillment of the reqeinents for the Ph.D. degree of the second author.
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7. We emulate effective algorithms step-by-step by abissiate machines [8] in the precise manner
of [1] (Sectior4, Sectiohl4).

8. Each basic implementation step can be simulated in arlim&aber of random-access machine
(RAM) steps (Sectiohl5, Theordml15).

9. Input states to the simulation can be encoded in lineaagynRAM steps (Sectidd 5, Theorén 14).
10. As multitape Turing machines simulate RAMs in quadrttine [4], the thesis follows (Sectidn 6).

2 Algorithms

First of all, an algorithm, in its classic sense, is a timgesntial state-transition system, whose transi-
tions are partial functions on its states. This ensuresdhah state is self-contained and that the next
state, if any, is determined. The necessary informationtdtes can be captured using logical struc-
tures, and an algorithm is expected to be independent ofhibiee of representation and to produce no
unexpected elements. Furthermore, an algorithm shoulskges finite description.

Definition 1 (Algorithm [8]). A classical algorithmis a (deterministic) state-transition system, satisfying
the following three postulates:

I. Itis comprised of a sBisof states a subsefy C Sof initial states, and a partigdansitionfunction
1:S— Sfrom states to states. States for which there is no transitieterminal

Il. All states inSare (first-order) structures over the same finite vocabudfagndX andt(X) share
the same domain for any € S. For convenience, we treat relations as truth-valued fonstand
refer to structures as algebras, andyletlenote the value of terinas interpreted in stat¢d The
sets of states, initial states, and terminal states are @dashd under isomorphism. Moreover,
transitions respect isomorphisms. SpecificallyXiandY are isomorphic, then either both are
terminal or elser(X) and1(Y) are also isomorphic via the same isomorphism.

lll. There exists a fixed finite sel of critical terms overF that fully determines the behavior of
the algorithm. Viewing any statX over F with domainD as a set of location-value pairs
f(ay,...,an) — ag, wheref € F andap,ay,...,a, € D, this means that whenever statésand
Y agreeonT, in the sense thag =ty for every critical ternt € T, either both are terminal states
orelser(X)\X=1(Y)\Y.

For detailed support for this characterization of alganish see [g,16]. Clearly, we are only interested
here in deterministic algorithms. We use the adjectivessilzal” to clarify that, in the current study, we
are leaving aside new-fangled forms of algorithm, such alsgtilistic, parallel or interactive algorithms.

A classical algorithm may be thought of as a classmgilementationseach computing some (partial)
function over its state space. An implementation is deteechiby the choice of representation for the
values over which the algorithm operates, which is reflectedchoice of domain.

Definition 2 (Implementation) An implementatioris an algorithm(t,S ) restricted to a specific do-
mainD. Its states are those state$ D with domainD; its input states § C & are those initial states
whose domain i®; its transition functiornr is likewise restricted.

10r class—it doesn't matter.
2All “terms” in this paper are ground (i.e. variable-free).



74 Extended Church-Turing Thesis

So we may view implementations as computing a function dgetomain.

In the following, we will always assume a predefined subisefz} of the critical terms, called
inputsandoutput respectively. Input states may differ only on input valaed input values must cover
the whole domain. Then we may speak of an algoritwwith terminating runXg ~»a --- ~a Xy as
computingA(y>1<o,...,y§o) = Zx,. The presumption that an implementation accepts any vatm fts
domain as a valid input is not a limitation, because the out®f an implementation on undesired
inputs is of no consequence.

The postulates in Definitiol 1 limit transitions to be effeet in the sense of being programmable,
as we just saw, but they place no constraints on the contéimgial states. In particular, initial states
may contain infinite, uncomputable data. To preclude thatwill need an additional assumption.

Definition 3 (Basic) We call an algebriX over vocabulary and with domairD basicif F = KwJ, D
is isomorphic to the Herbrand universe (free term algebvaj ¥, theconstructorsof X, andty = sx #
UNDEF for at most a finite number of term@ndsoverK w J, for some pervasive constant valugDEF.
An implementation ibasicif all its initial states are basic with respect to the samestaictors.

Constructors are the usual way of thinking of the domaineshf computational models. For exam-
ple, strings over an alphabgd,b,. . .} are constructed from a nullary constructaand unary constructors
a(+), b(-), etc. The positive integers in binary notation may be coestd out of the nullarg and unary
0 and 1, with the constructed string understood as the bimamber obtained by prepending the digit 1.

Definition 4 (Effectiveness[[3]) Let X be an algebra over vocabulaFy and domainD. We call X
effectiveoverF = KwC if K construct® and each of the operations@tan be computed by an effective
implementation oveK. In other wordsC is a set of effective oracles, obtained by bootstrappingifro
basic implementations. Agifective implementatios a classical algorithm restricted to initial states that
are all effective. over the same partitioned vocabukaet K & C.

Clearly, the properties of being basic or effective areedbander the transition of algorithm (this
follows from Postulate 1ll). Hence, any reachable stateasid (effective) implementation is also basic
(effective, respectively).

3 Complexity

Complexity of an algorithm is classically measured as a remolb single steps required by execution,
relative to the size of the initial data. This requires aeliptetation of the notions “initial data size” and

“single step”. By a “step”, we usually mean a single step ansavell-defined theoretical computational

model, like a Turing machine or RAM, implementing an aldurit over a chosen representation of the
domain.

An effective implementation may simulate an effective alfpon over a chosen representation of
domain, but it still cannot count for a faithful measure ofimgte step, since its states are allowed to
contain infinite non-trivial information as an oracle; lelia basic implementation.

Basic implementations provide an underlying model forafe ones (and thus are a faithful mea-
sure of a single step):

Proposition 5. Let P= (1,S ) be an effective implementation overtkC. Then there exists a basic
implementation simulating P over some vocabulary K

The proof uses the notion simulationdefined in[2] and standard programming techniques of iatern
izing operations by bootstrapping.
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For example, if an effective implementation includes dedimultiplication among its bootstrapped
operations, then we do not want to count multiplication asngls operation (which would give a
“pseudo-complexity” measure), but, rather, the numberasiddecimal-digit operations, as would be
counted in the basic simulation of the effective implemgoia

With a notion of single step in hand, we are only left to defirmudiable notion of input size. Let
P=(1,S%) be an effective implementation with constructéts Recall from Definitior B that the
domain of eaclX € & is identified with the Herbrand universe oyér Thus, domain elements may
be represented as terms over the construdtordNow, we need to measure the size of input values
y, represented as constructor terms. The standard way toislevttuld be to count the number of
symbols|y| in the constructor term foy. The more conservative way is to count the minimal number of
constructors required to access it, which we propose to doefample, we want the size 6fc,c) to
be 2, not 3.

Definition 6 (Size) The(compact) sizef a termt over vocabulanK is ||t|| := |{s: sis a subterm of}.

Still another issue to consider is this: a domain may be coctible by infinitely many different
finite sets of constructors, which affects the measuremesize. We are accustomed to say that the
size ofn € N is Ign, relying on the binary representation of natural numbetss,Tdespite the fact that
the implementation itself may use tally (unary) notatiorany other representation. Consider now that
somebody states that she has an effective implementatienNywvorking under the supposition that
the size o ought to be measured by loglog Should this be legal? We neither allow nor reject such
statements with blind eyes, but require justification.

Switching representations of the domain, one actually gbarthe vocabulary and thus the whole
description of the implementation. Still, we want to reciagrthe result as being the “same” implemen-
tation, doing the same job, even over the different vocatada

Definition 7 (Valid Size) Let A be an effective implementation over dom&n A function f : D — N
is avalid sizefor elements oD if there is an effective implementatid® over D such thatA andB are
computationally equivalent (each simulating the othes)some bijectiorp, such thatf (x) = |p(x)| for
all xe D.

4 Abstract State Machines

Abstract state machines (ASMs) [7,(8, 5] provide a perfeoglege for descriptions of algorithmic
transition functions. They consist of generalized assigminstatements (s',...,s¢) := u, conditional
testsif C then P or if C then P elseQ, whereC is a Boolean combination of equations between terms,
and parallel composition. A program as such defines a singesition; it is executed repeatedly, as a
unit, until no assignments have their conditions are emabifeno assignments are enabled, then there is
no next state.

Atriplet (#,S ) is calledabstract state machine (ASM)S, are initial states an8are states of an
ASM program.Z, such that.# ,S, &) satisfy the conditions for being an algorithm given in Defom
. Every algorithm is emulated step-by step, state-byedtatan ASM.

Theorem 8([8])). Let(1,S ) be an algorithm over vocabulary F. Then there exists an AS¥S, &)
over the same vocabulary, such that .# |s, with the terms (and subterms) appearing in the ASM
program serving as critical terms.

Definition 9 (ESM). An effective state machine (ESM)an effective implementation of an ASM/ .
Constructors are part and parcel of the states, though ey mot appear in an ESM program.
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5 Simulation

We know from [3, Theorem 3] that for any effective model thisra string-representation of its domain
under which each effective implementation has a Turing fimecthat simulates it, and—by the same
token—there are RAM simulations. Our goal is to prove thaiaih be done at polynomial cost. We
describe a RAM algorithm satisfying these conditions. Tésult will then follow from the standard
poly-time (cubic) connection between TMs and RAMs. First, meed to choose an appropriate RAM
representation for our domain of terms.

For termt, we denote the minimal graph representing ittbgnd the quantity of RAM memory
required to store it byt|]. These memory cells will each contain a small constantcatiig a vertex
label or a pointer, corresponding to an edge in the graphe Mait sinceé is minimal, it does not contain
repeated factors. To prevent repeated factors not justertenm, but in the whole state, we merge the
individual term graphs into one big graph and call the rasgltjungle” atangle(see[10]). The tangle
will maintain the constructor-term values of all the crtiterms of the algorithm. Consider, for example,
the natural way to merge terrhs- f(c,c) ands= g(c,c), wherec is a constant. The resulting d&has
three vertices, labelel, g,c. Two edges point fronf to ¢ and the other two frong to c. Our two terms
may be represented as pointers to the appropriate vedigxrefers to thef vertex ands(s) to g, where
we are using the notatioB(t) to refer to the vertex i that represents the terim
Proposition 10. For any tangle G of terms over a finite vocabulary, we higg5)| = O(|V (G))).

Let (.#,S S) be a basic ESM over vocabulaFy= K & J, with input termd C J, and critical terms
T = {t1,...,tM}, including all their subterms, ordered frasmall to big Also, letXg~» 4 Xy~ 4 -
be some run of#, for which we letT; denote the tangle of the domain valygs : t € T} of the critical
terms in the-th stateX;. Fort, a finite sequence or set of terms, we use the abbrevitjpa ¥ oS

One transition of ESM involves a bounded number of compasisaf the values of critical terms.
The cost for each is constant:

Proposition 11. LetT be a critical tangle and let s and t be critical terms in T. Téfere, the question
whethert = 8, is decidable in constant number of RAM-operations ofritiyaic word size.

One transition of an ESM involves a bounded number of asségisn The cost of each assignment
is linear:

Proposition 12. Let t = f(t) be a term over vocabulary K. Thércan be constructed using({]|)
RAM-operations of logarithmic word size.

Combining the previous propositions together, we may catel
Proposition 13. The critical tangles grow by a constant amount in each step|T§ = O(|To| +i).
Theorem 14( Initial States) Given term-graphg for the inputs | in an initial state ¥ Algorithm[d
constructs the initial critical tangl& in O(||1||) steps.

Algorithm 1
e fori=1...,m
— lett' = f(s!,...,d)
— ifall sl are defined, then

« if f €K, createf(st,...,s"), as described in Propositién]12
x if f ¢ K, then
~iffound rt,...rf,r € T such that? =& for all j andr = f(r1,... r’) is defined,
then copy the content oftot'
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Theorem 15(Transitions) Algorithm2 computes the successor tanlg from T; in time linear in|T; .

Algorithm 2
e for each critical termt € T create a new pointef to point to its new value

e for each possible assignment in the ESM, do the following:

— if all guards evaluate toRUE, then
— for the enabled assignments',...,s’) ;= sdo

x if sis UN_DEFthenf’(Sl,...,Sé) iS alSOUNDEF
* if somes is UNDEF thenf/(st,...,s") is alsSOUNDEF
+ otherwise, iff € K then

- setf’(st,...,s) to point to the graph constructed as described in Propo&izo

« whereas, iff ¢ K, then if foundr®,...r’,r € T such thatfi =& for all j andr =
f(ri,...,r") is defined, then
- if f/(st,...,8") is notUNDEF, setf/(st,...,s") to point to a copy of

The result we set out to achieve now follows.

Theorem 16(Simulating ESMs) Any effective implementation with complexitynY, with respect to a
valid size measure, can be simulated by a RAM in ordemi (n) + T (n)? steps, with a word size that
grows to orderogT (n).

6 Summary

We have shown—as has been conjectured—that every efféctplementation, regardless of what data
structures it uses, can be simulated by a Turing machindy atitmost polynomial overhead in time
complexity. Specifically, we have shown that any algoritunning on an effective sequential model
can be simulated, independent of the problem, by a singke-Taring machine with a quintic overhead:
guadratic for the RAM simulation and another cubic for a Tisiation of the RAM[4].

To summarize the argument in a nutshell: Any effective algor is behaviorally identical to an
abstract state machine operating over a domain that is iggmoao some Herbrand universe, and whose
term interpretation provides a valid measure of input sizet machine is also behaviorally identical to
one whose domain consists of maximally compact dags, ldimsieonstructors. Each basic step of such
a machine, counting also the individual steps of any subresy increases the size of a fixed number
of such compact dags by no more than a constant number of.etlgstly, each machine step can be
simulated by a RAM that manipulates those dags in time tHatesr in the size of the stored dags.

It remains to be seen whether it may be possible to improveah®plexity of the simulation.
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