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In this paper we present a variant of the Calculus of Looping Sequences (CLS for short) with global
and local rewrite rules. While global rules, as in CLS, are applied anywhere in a given term, local
rules can only be applied in the compartment on which they aredefined. Local rules are dynamic:
they can be added, moved and erased. We enrich the new calculus with a parallel semantics where
a reduction step is lead by any number of global and local rules that could be performed in parallel.
A type system is developed to enforce the property that a compartment must contain only local rules
with specific features. As a running example we model some interactions happening in a cell starting
from its nucleus and moving towards its mitochondria.

1 Introduction

The Calculus of Looping Sequences (CLS for short) [5, 4, 15, 6], is a formalism for describing biological
systems and their evolution. CLS is based on term rewriting with a set of predefined rules modelling the
activities one would like to describe. CLS terms are constructed by starting from a set of basic con-
stituent elements which are composed with operators of sequencing, looping, containment and parallel
composition. Sequences may represent DNA fragments and proteins, looping sequences may represent
membranes, parallel composition may represent juxtaposition of elements and populations of chemical
species.

The model has been extended with several features such as bisimulations [4, 7], combining the sim-
plicity of notation of rewrite systems with the advantage ofa form of compositionality. In [1, 2] a type
system was defined to ensure the well-formedness of links between protein sites within the Linked Cal-
culus of Looping Sequences (see [3]). In [13] we defined a typesystem to guarantee the soundness of
reduction rules with respect to the requirement of certain elements, and the repellency of others.

In this paper we present a variant of CLS with global and localrewrite rules (CLSLR, for short).
Global rules are applied anywhere in a given term wherever their patterns match the portion of the
system under investigation, local rules can only be appliedin the compartment in which they are defined.
Terms written in CLSLR are thus syntactically extended to contain explicit local rules within the term, on
different compartments. Local rules can be created, moved between different compartments and deleted.
We feel that having a calculus in which we can model the dynamic evolution of the rules describing the
system results in a more natural and direct way to study emerging properties of complex systems. As it
happens in nature, wheredataandprogramsare encoded in the same kind of molecular structures, we
insert rewrite rules within the terms modelling the system under investigation.

In CLSLR we also enrich CLS with a parallel semantics in whichwe define a reduction step lead by
any number of global and local rules that could be performed in parallel.

∗This research is founded by the BioBITs Project (Converging Technologies2007, area: Biotechnology-ICT), Regione
Piemonte.
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Figure 1: From the cell nucleus to mitochondria.

Since in this framework the focus is put on local rules, we define a set offeaturesthat can be asso-
ciated to each local rule. Features may define general properties of rewrite rules or properties which are
strictly related to the model under investigation. We definea membrane typefor the compartments of
our model and develop a type systems enforcing the property that a compartment must contain only local
rules with specific features.

Thus, the main features of CLSLR are:

• different compartments can evolve according to differentlocal rules;

• the set ofglobal rules is fixed;

• local rules aredynamic: they can be added, moved and erased according to both globaland local
rules;

• aparallel reduction step permits the application of several global and local rules;

• compartments are enforced to contain only rules with specific features.

As a running case study, emphasising the peculiarities of the calculus, we consider some mitochon-
drial activity underlining the form of symbiosis between a cell and its mitochondria (see [14]). Mitochon-
dria are membrane-enclosed organelle found in eukaryotic cells that generate most of the cell’s energy
supply in the form of adenosine triphosphate (ATP). A mitochondrion is formed by two membranes, the
outer and the inner membrane, having different properties and proteins on their surfaces. Both mem-
branes have receptors to mediate the entrance of molecules.In Figure 1 we show the expression of a
gene (encoded in the DNA within the nucleus of the cell) destined to be translated into a protein that will
be catch by mitochondria and will then catalyse the production of ATP. In particular, we will model the
following steps: (1) genes within the nucleus’ DNA are transcribed into mRNA, (2) mRNA moves from
the nucleus to the cell’s cytoplasm, (3) where it is translated into the protein.

The vast majority of proteins destined for the mitochondriaare encoded in the nucleus of the cell and
synthesised in the cytoplasm. These are tagged by a signal sequence, which is recognised by a receptor
protein in the Transporter Outer Membrane complex (TOM). The signal sequence and adjacent portions
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of the polypeptide chain are inserted in the intermembranous space through the TOM complex, then in
the mitochondrion internal space through a Transporter Inner Membrane complex (TIM). According to
this description, we model the following final steps: (4) protein is detected by TOM and brought within
the intermembranous space, (5) then, through TIM, in the mitochondrion’s inside, (6) where it catalyses
the production of ATP, (7) that exits the inner, (8) and the outer mitochondrial membranes towards the
cell’s cytoplasm.

2 The calculus

In this Section we present the Calculus of Looping Sequenceswith Local Rules (CLSLR).

2.1 Syntax of CLSLR

We assume a possibly infinite alphabetE of symbols ranged over bya,b,c, . . ., a set of element variables
X ranged over byx,y,z, . . ., a set of sequence variablesS V ranged over bỹx, ỹ, z̃, . . ., and a set of term
variablesT V ranged over byX,Y,Z, . . .. All these sets are possibly infinite and pairwise disjoint.We
denote byV the set of all variables,V = X ∪S V ∪T V , and withχ a generic variable ofV . Hence,
a pattern is a term that may include variables.

Definition 2.1. [Patterns] PatternsP, sequence patternsSP andlocal rulesR of CLS are given by the
following grammar:

P ::= (SP)	 ⌋P
∣∣ P | P

∣∣ L
SP ::= ε

∣∣ a
∣∣ x

∣∣ SP·SP
∣∣ x̃

L ::= X
∣∣ SP

∣∣ L | L
∣∣ R

R ::= L 7→L
∣∣ L↑SP7→L↑SP

∣∣ L↓SP7→L↓SP

where a is a generic element ofE , and X, x̃ and x are generic elements ofT V ,S V and X , respec-
tively. Sequence patterns SP defines patterns for sequencesof elements,(SP)	 denotes a closed (looping)
sequence which may contain other patterns through the⌋ operator, | is used to denote the parallel com-
position (juxtaposition) of patterns, and R denotes the syntax of local rules that may either exit (L↑SP) or
enter (L↓SP) a closed sequence SP. We denote withP the infinite set of patterns.
A local rule L1 7→L2 is well formedif L1 6≡ ε and Var(L2)⊆Var(L1), where Var(P) denotes set of vari-
ables appearing in P.
A local rule L↑SP1

1 7→L↑SP2
2 or L↓SP1

1 7→L↓SP2
2 is well formedif L1 6≡ ε , Var(L2)⊆Var(L1) and Var(SP2)⊆

Var(SP1).

Terms are patterns containing variables only inside local rules. Sequences are closed sequence pat-
terns. We denote withT the infinite set of terms, ranged over byT, and withS the infinite set of
sequences, ranged over byS.

An instantiation is a partial functionσ : (T V → T )∪ (S V → S )∪ (X → E ). GivenP ∈ P,
with Pσ we denote the term obtained by replacing each occurrence of each variableχ ∈ V appearing in
P with the corresponding termσ(χ), but for local rules, which are left unchanged by instantiations, i.e.,
Rσ = R for all Randσ . With Σ we denote the set of all the possible instantiations.

Definition 2.2 (Structural Congruence). The structural congruence relations≡S and≡R and≡P are the
least congruence relations on sequence patterns, local rules and on patterns, respectively, satisfying the
rules shown in Figure 2.
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SP1 · (SP2 ·SP3)≡S (SP1 ·SP2) ·SP3 SP· ε ≡S ε ·SP≡S SP
SP1 ≡S SP2 implies SP1 ≡P SP2 and (SP1)

	 ⌋P≡P (SP2)
	 ⌋P

L1 ≡P L′
1 andL2 ≡P L′

2 imply L1 7→L2 ≡R L′
1 7→L′

2
L1 ≡P L′

1 andL2 ≡P L′
2 and SP1 ≡P SP′1 and SP2 ≡P SP′2

imply L↑SP1
1 7→L↑SP2

2 ≡R L′↑SP′1
1 7→L′↑SP′2

2 and L↓SP1
1 7→L↓SP2

2 ≡R L′↓SP′1
1 7→L′↓SP′2

2
R1 ≡R R2 implies R1 ≡P R2

P1 | P2 ≡P P2 | P1 P1 | (P2 | P3)≡P (P1 | P2) | P3 P | ε ≡P P
(ε)	 ⌋ε ≡P ε (SP1 ·SP2)

	 ⌋P≡P (SP2 ·SP1)
	 ⌋P

Figure 2: Structural Congruence

Structural congruence rules the state the associativity of· and | , the commutativity of the latter and
the neutral role ofε . Moreover, axiom(SP1 ·SP2)

	 ⌋P ≡P (SP2 ·SP1)
	 ⌋P says that looping sequences

can rotate. In the following, for simplicity, we will use≡ in place of≡P.

2.2 (Parallel) Operational Semantics

In order to define a reduction step in which (possibly) more than one rule is applied, following [10], we
first define the application of a single rule, either global orlocal. We resort to the standard notion of
evaluation contexts.

Definition 2.3 (Contexts). Evaluation ContextsE are defined as:

E ::= �
∣∣ E | T

∣∣ T | E
∣∣ (S)	 ⌋E

where T∈ T and S∈ S . The context� is called theempty context. We denote with EE the infinite set
of evaluation contexts.

By definition, every evaluation context contains a single hole�. Let us assumeE ∈ EE, with E[T] we
denote the term obtained by replacing� with T in E. The structural equivalence is extended to contexts
in the natural way (by considering� as a new and unique symbol of the alphabetE ). Note that the shape
of evaluation contexts does not permit to have holes in sequences. A rewrite rule introducing a parallel
composition on the right hand side (asa 7→ b | c) applied to an element of a sequence (e.g.,m·a·m) would
result into a syntactically incorrect term (in this casem· (b | c) ·m).

To enforce the fact that local and global rule applications can be done in parallel, we underline those
subterms that are produced by the application of the rule involved. Terms matching the left-hand-side
of a (local or global) rule must not have any underlined subterm. Underlined terms are only used for
bookkeeping in the definition of rule application.

Let T denote the set of terms in which some subterms can be underlined. The erasing mapping
η : T 7→ T erases all underlining obtaining a term generated by the grammar of Definition 2.1.

We first define the application of global or local rules to terms inT which produces terms inT .
Global rulesare of the shapeP1 7→ P2. They can be applied to terms only if they occur in a legal

evaluation context.
Local rulesare inside compartments, and can be applied only if a term matching the left-hand-side

of the rule occurs in the same compartment.
Notice that global rules have patternsP on both the left and the right-hand side of the rules, whereas

local rules have the less generalL patterns. In particular,L patterns do not contain compartments, and
therefore cannot change the nesting structure of the compartments of a term.
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Definition 2.4 (Rule Application). Given a finite set of global rulesR, the rule application−→ is the least
relation closed with respect to≡ defined by:

P1 7→ P2 ∈ R σ ∈ Σ P1σ 6≡ ε
(GRT)

E[P1σ ]−→ E[P2σ ]

σ ∈ Σ L1σ 6≡ ε
(LR)

E[L1 7→ L2 | L1σ | T]−→ E[L1 7→ L2 | L2σ | T]

σ ∈ Σ L1σ 6≡ ε
(LR-OUT)

E[(S1σ)	 ⌋(L↑S1
1 7→ L↑S2

2 | L1σ | T)]−→ E[L2σ |
(
S2σ

)	
⌋(L↑S1

1 7→ L↑S2
2 | T)]

σ ∈ Σ L1σ 6≡ ε
(LR-IN)

E[L↓S1
1 7→ L↓S2

2 | L1σ | (S1σ)	 ⌋T]−→ E[L↓S1
1 7→ L↓S2

2 |
(
S2σ

)	
⌋(T | L2σ)]

With rule (LR-OUT) a term or a ruleL1σ exits from the membrane in which it is contained only if the
membrane has as loop the sequenceS1σ : when outside,L1σ is transformed intoL2σ , and the sequence
S1σ into S2σ . (LR-IN) is similar, but it moves terms or rules into local membranes.Local rules do not
permit to move, create or delete membranes: only global rules can do that.

Observe that local rules can be dynamically added and deleted both by global and local rules. A
global rule which adds the local ruleR is of the shapeP 7→ R and a global rule which erases the same
local rule is of the shapeR 7→ P. A local rule which adds the local ruleR is of the shapeL 7→ R and a
local rule which erases the same local rule is of the shapeR 7→ L. Moreover local rules can add local
rules in compartments separated by just one membrane, sincethey can be of the shapesL↑S 7→ R↑S′ or
L↓S 7→ R↓S′ .

A reduction step of the parallel semantics=⇒, starting from a term inT applies any number of
global or local rules that could be performed in parallel, producing a final term inT (with no underlined
subterms).

Definition 2.5 (Parallel Reduction). The reduction=⇒ between terms inT is defined by:

T = T0 −→ T1 −→ ·· · −→ Tn+1 n≥ 0 T ′ = η(Tn+1)

T =⇒ T ′

To justify the definition of the reduction=⇒ we have to show that the order in which the local or
global rules are applied is not important. The notion of multi-hole context, i.e., of term where some
disjoint subterms are replaced by holes is handy. More precisely the syntax ofmulti-hole contextsis:

C ::= �
∣∣ T

∣∣ C |C
∣∣ (�)	 ⌋C

∣∣ (S)	 ⌋C

We can show that in a parallel reduction only disjoint subterms can change. Rules(GRT) and (LR)

modify just one subterm. Rules(LR-OUT) and(LR-IN) modify three subterms, i.e., a membrane and a term
exiting or entering the membrane, usingε for the missing term.

Theorem 2.6. If T =⇒ T ′, then there is a multi-hole context C[ ] . . . [ ] and terms T1, . . . ,Tn, T′
1, . . . ,T

′
n

such that T≡C[T1] . . . [Tn], T′ ≡C[T ′
1] . . . [T

′
n] and for all 1≤ i ≤ n:

• either C[T∗
1 ] . . . [Ti ] . . . [T∗

n ]−→C[T∗
1 ] . . . [T

′
i ] . . . [T

∗
n ]
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• or there are i1, i2, i3 such that i∈ {i1, i2, i3} and
C[T∗

1 ] . . . [Ti1] | ([Ti2])
	 ⌋ [Ti3] . . . [T

∗
n ]−→C[T∗

1 ] . . . [T
′
i1] |

(
[T ′

i2]
)	

⌋ [T ′
i3] . . . [T

∗
n ]

where T∗j can be either Tj (subterm of T) or T′j (subterm of T′).

Proof. If T =⇒ T ′, then for someU0, . . . ,Um+1 we getT = U0 −→ ·· · −→ Um+1 wherem≥ 0 andT ′ =
η(Um+1). We show by induction onh≤ mand by cases on the last applied reduction rule that

• either Uh =C[T∗
1 ] . . . [Ti ] . . . [T∗

n ] and Uh+1 =C[T∗
1 ] . . . [T

′
i ] . . . [T

∗
n ]

• or there are i1, i2, i3 such that i∈ {i1, i2, i3} and
Uh =C[T∗

1 ] . . . [Ti1] | ([Ti2])
	 ⌋ [Ti3] . . . [T

∗
n ] and Uh+1 =C[T∗

1 ] . . . [T
′
i1] |

(
[T ′

i2]
)	

⌋ [T ′
i3] . . . [T

∗
n ]

where “ ∗” can be either “ ” or “ ′” and all terms with′ are either underlined orε .
If the last applied rule is

σ ∈ Σ L1σ 6≡ ε

E[L1 7→ L2 | L1σ |V]−→ E[L1 7→ L2 | L2σ |V]

thenUh = E[L1 7→ L2 | L1σ | V] andUh+1 = E[L1 7→ L2 | L2σ | V]. By inductionUh = C[T∗
1 ] . . . [T

∗
n ].

SinceL1σ is a subterm ofT andL2σ is a subterm ofUm+1 there must be an indexi such thatTi = L1σ
andT ′

i = L2σ .
If the last applied rule is

σ ∈ Σ Lσ 6≡ ε L1σ ∈ T S1σ ∈ T

E[L↓S1
1 7→ L↓S2

2 | L1σ | (S1σ)	 ⌋V]−→ E[L↓S1
1 7→ L↓S2

2 |
(
S2σ

)	
⌋(V | L2σ)]

thenUh = E[L↓S1
1 7→ L↓S2

2 | L1σ | (S1σ)	 ⌋V] andUh+1 = E[L↓S1
1 7→ L↓S2

2 |
(
S2σ

)	
⌋(V | L2σ)]. By in-

ductionUh =C[T∗
1 ] . . . [T

∗
n ]. Notice thatL1σ ,S1σ are subterms ofT andL2σ ,S2σ are subterm ofUm+1.

MoreoverL1σ , S1σ andε in T are replaced byε , S2σ andL2σ in Um+1, respectively. Therefore there
must be indexesi1, i2, i3 such thatTi1 = L1σ , T ′

i1 = ε , Ti2 = S1σ , T ′
i2 = S2σ , Ti3 = ε , T ′

i3 = L2σ .

Example 2.7. [Mitochondria Running Example: Syntax and Reductions] A CLSLR term representing
the mitochondria evolution inside the cell’s activity discussed in the introduction could be:

CELL= (cell)	 ⌋( NUCLEUS | MITOCH | . . . | MITOCH |
mRNA7→ protein|
protein↓Tom 7→ protein↓Tom )

A cell is composed by its membrane (here just represented by the element cell) and its content (in this
case, the nucleus, a certain number of mitochondria and a fewrules modelling the activity of interest).
In particular, the two rules above model the steps (3) and (4), respectively, of the example schematised
in the introduction.

Assuming thatDNA is the sequence of genes representing the cell’s DNA, and g isthe particular
gene (contained inDNA) codifying the protein, we define the nucleus of the cell withthe CLSLR term:

NUCLEUS= (nucleus)	 ⌋( DNA |
x̃·g· ỹ 7→(x̃ ·g· ỹ | mRNA) |
mRNA↑nucleus7→mRNA↑nucleus )
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. . . =⇒+ (cell)	 ⌋((nucleus)	 ⌋(mRNA| . . . | mRNA| . . .) | . . .)
=⇒+ (cell)	 ⌋(mRNA| . . . | mRNA| . . .)
=⇒ (cell)	 ⌋(protein| . . . | protein| . . .)
=⇒ (cell)	 ⌋((Tom)	 ⌋(protein| . . .) | . . . | (Tom)	 ⌋(protein| . . .) | . . .)
=⇒ (cell)	 ⌋((Tom)	 ⌋((Tim)	 ⌋(MitA 7→(MitA | ATP) | . . .) | . . .) |

(Tom)	 ⌋((Tim)	 ⌋(MitA 7→(MitA | ATP) | . . .) | . . .) | . . .)
=⇒ (cell)	 ⌋((Tom)	 ⌋((Tim)	 ⌋(ATP| . . .) | . . .) |

(Tom)	 ⌋((Tim)	 ⌋(ATP| . . .) | . . .) | . . .)

=⇒ (cell)	 ⌋((Tom)	 ⌋(ATP| (Tim)	 ⌋(ATP| . . .) | . . .) |

(Tom)	 ⌋(ATP| (Tim)	 ⌋(ATP| . . .) | . . .) | . . .)

=⇒ (cell)	 ⌋(ATP| . . . | ATP| (Tom)	 ⌋(ATP| (Tim)	 ⌋(ATP| . . .) | . . .) |

(Tom)	 ⌋(ATP| (Tim)	 ⌋(ATP| . . .) | . . .) | . . .)

Figure 3: Mitochondria evolution

Note that the first of the two rules above models step (1) of ourexample (DNA transcription into mRNA),
the second one (mRNA exits the nucleus) models step (2).

The mitochondria of our model are composed of a membrane, on which we point out the Tom com-
plex, containing an inner membrane (INN MITOCH) and a couple of rules:

MITOCH= (Tom)	 ⌋( INN MITOCH |
protein↓Tim 7→(MitA 7→(MitA | ATP))↓Tim |

ATP↑x̃ 7→ATP↑x̃ )

where we denote with the element MitA a mitochondrial factor inside the inner membrane (activated by
our protein), necessary to produce ATP. In particular, the protein, when in the intermembranous space, is
moved through Tim inside the inner mitochondrial space (step (5) of our example) and then transformed
into the newly generated rule MitA 7→(MitA | ATP) which will lead the production of ATP (step (6) of our
example).

Finally, in INN MITOCH we point out the Tim complex:

INN MITOCH= (Tim)	 ⌋( MitA |

ATP↑x̃ 7→ATP↑x̃ )

Both in MITOCH and INN MITOCH we have the rules needed to transport the ATP towards the cell’s
cytoplasm (steps (7) and (8) of the example).

A possible (parallel) reduction of this term, when g initially produces a certain number of mRNA is
(by focusing only on the more interesting changes) shown in Figure 3. The ATP produced in the last but
two reductions inINN MITOCH moves toMITOCH in the last but one reduction and new ATP is produced
in INN MITOCH. In the last reduction, the firstly generated ATP moves to thecell, the secondly generated
ATP moves toMITOCH and new ATP is produced inINN MITOCH.

3 Types

In this section we introduce a type system that enforces the fact that compartments must contain rules
having specific features. E.g., in [16] the followingrule featuresfor L1 7→ L2 are suggested:
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• the rule isdeletingif Vars(L1)⊃Vars(L2) (denoted byd);

• the rule isreplicating if some variable inL2 occurs twice (denoted byr);

• the rule issplitting if L1 has a subterm containing two different variables (denoted by s);

• the rule isequatingif some variable inL1 occurs twice (denoted bye).

This kind of features reflects a structure of rewrite features which could be common for rewrite systems
in general. Other, model-dependent, features could be defined to reflect peculiarities and properties
of the particular model under investigation. The features of the rules allowed in a compartment are
controlled by the wrapping sequence of the compartment. Ourtyping systemand the consequenttyped
parallel reductionensure that, in spite of the facts that reducing a term may move rules in and out of
compartments, compartments always contain rules permitted by their wrapping sequence. In addition to
the previous features of rules we say that:

• the feature of ruleL↑S1
1 7→ L↑S2

2 is that it is anout rule (denoted byo);

• the feature of ruleL↓S1
1 7→ L↓S2

2 is that it is anin rule (denoted byi).

To express the control of the wrapping sequence over the content of the compartment, we associate a
subsetϕ of {d, r,s,e,o, i} to every element inE . This is called amembrane type. We useΛ to denote a
classification of elements. The type assignment in Figure 4,where a basis∆ assigns membrane types to
element and sequence variables, defines the type of a sequence as the union of the membrane types of its
elements.

∆ ⊢s ε : /0 (TSEPS) ∆,χ : ϕ ⊢s χ : ϕ (TSVAR)
a : ϕ ∈ Λ

(TSELM )
∆ ⊢s a : ϕ

∆ ⊢s SP: ϕ ∆ ⊢s SP′ : ϕ ′

(TSSEQ)
∆ ⊢s SP·SP′ : ϕ ∪ϕ ′

Figure 4: Typing Rules for Membranes

To define the type of patterns, that may contain parallel (composition) of rules, we consider:

1. the features of the rules, contained in the pattern, and

2. in case there are output rules the type of the rules that areemitted by these output rules.

Therefore apattern type, denoted byτ , is a sequence of membrane types, i.e.,τ ∈ {ϕ}∗. With /0 we
denote the empty sequence. If the parallel composition of local rulesR1 | · · · | Rn, n≥ 0, has typeϕ · τ ,
thenϕ is the union of the features of the rulesRi (1≤ i ≤ n), andτ is the type of the parallel composition
of rules inL′ for thoseL′ such thatRi = L↑SP 7→L′↑SP′ for somei, 1≤ i ≤ n (the type of the parallel
composition of the rules that are emitted). If no rule is emitted, thenτ = /0.

Union of pattern types,⊔, is defined inductively by:

• /0⊔ τ = τ ⊔ /0= τ , and

• ϕ1 · τ1⊔ϕ2 · τ2 = (ϕ1∪ϕ2) · (τ1⊔ τ2).

andcontainment, ⊑, is defined by:

• /0⊑ τ
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• ϕ · τ ⊑ ϕ ′ · τ ′ if ϕ ⊆ ϕ ′ andτ ⊑ τ ′.

The judgment∆ ⊢p P : τ , defined in Figure 5, asserts that the patternP is well formedand has pattern
type τ , assuming the basis∆, which assigns membrane types to element and sequence variables and
pattern types to term variables. The judgement∆ ⊢gr P1 7→ P2 : ok in last rule defines well-formedness of
global rules. It is easy to verify that the typing rules in Figures 4 and 5 enjoy weakening, i.e., if∆ ⊆ ∆′

∆,X : τ ⊢p X : τ (TVAR) ∆ ⊢p SP: /0 (TSEQ)

∆ ⊢p L2 : τ
(TRLOC)

∆ ⊢p L1 7→ L2 : features(L1 7→ L2)⊔ τ

∆ ⊢p L2 : τ ∆ ⊢s S1 : ϕ1 ∆ ⊢s S2 : ϕ2 ϕ1 ⊆ ϕ2
(TRLOCOUT)

∆ ⊢p L↑S1
1 7→ L↑S2

2 : {o} · τ

∆ ⊢p L2 : ϕ · τ ∆ ⊢s S1 : ϕ1 ∆ ⊢s S2 : ϕ2 ϕ ∪ϕ1 ⊆ ϕ2
(TRLOCIN)

∆ ⊢p L↓S1
1 7→ L↓S2

2 : {i}⊔ τ

∆ ⊢p P : τ ∆ ⊢p P′ : τ ′

(TPAR)
∆ ⊢p P | P′ : τ ⊔ τ ′

∆ ⊢s SP: ϕ ∆ ⊢p P : ϕ ′ · τ ′ ϕ ′ ⊆ ϕ
(TCOMP)

∆ ⊢p (SP)	 ⌋P : τ ′

∆ ⊢p P1 : τ1 ∆ ⊢p P2 : τ2 τ2 ⊑ τ1
(TRGLOB)

∆ ⊢gr P1 7→ P2 : ok

Figure 5: Typing Rules for Patterns and Global Rules

then ∆ ⊢s SP: ϕ implies ∆′ ⊢s SP: ϕ , ∆ ⊢p P : τ implies ∆′ ⊢p P : τ , and∆ ⊢gr P1 7→ P2 : ok implies
∆′ ⊢gr P1 7→ P2 : ok.

Rule (TVAR) asserts that a term variable is well typed when its pattern type is found in the basis. Rule
(TSEQ) asserts that, since a sequence does not contain rules, its pattern type is empty. Rule(TRLOC) asserts
that the type of a local ruleR= L1 7→ L2 is the union of the set of features of the ruleR, denoted by
features(R), and the pattern type of its right-hand-sideL2. This is because once the rule is applied an
instance of the patternL2 will substitute the instance of its left-hand-sideL1. Rule (TRLOCOUT) checks
that the features of rules permitted by the membraneS2 include the one permitted byS1, so that if the
compartment was well formed before applyingL↑S1

1 7→ L↑S2
2 , it will be well formed afterwards (whenS2

replacesS1). Moreover, the pattern type of the rule is{o}, concatenated with the pattern type ofL2, since
L2 is the pattern sent outside the compartment. Rule(TRLOCIN) checks ruleL↓S1

1 7→ L↓S2
2 . Since the pattern

L2 will get into a compartment with membraneS1, the membraneS2, that replacesS1, must permit all the
features of rules that were permitted before, and moreover,it permits the features of the rules inL2. The
type is{i} union the type of the patterns that are emitted by the out rules contained inL2. Rule (TPAR)

enforces the fact that the patterns in parallel are both wellformed and the final pattern type is the union
of the two pattern types. Rule(TCOMP) checks that a compartment contain only rules whose featuresare
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permitted by its wrapping sequence. The pattern type of the compartment is the type of the rules that are
emitted. Finally, rule(TRGLOB) says that the global ruleP1 7→ P2 is well formed in case the patternP2 that
will replaceP1 has less features, so that it is permitted by all the compartments in whichP1 is permitted.

As we can see from rule(TRLOC) the type system is independent from the specific set of features
considered. Any syntactic characterisation of rules couldbe considered for a feature.

Based on the previous typing system we define atyped semantics, that preserves well-formedness of
terms. Let an instantiationσ agreewith a basis∆ (notationσ ∈ Σ∆) if x : ϕ ∈ ∆ implies⊢s σ(x) : ϕ ,
x̃ : ϕ ∈ ∆ implies⊢s σ(x̃) : ϕ , andX : τ ∈ ∆ implies⊢p σ(X) : τ . This is sound since the judgments
⊢s use assumptions on element and sequence variables, while the the judgments⊢p use assumptions on
term variables.

Definition 3.1 (Typed Rule Application). Given a finite set of global rulesR, thetyped rule application
→⊺ is the least relation closed with respect to≡ and satisfying the following rules:

R∆ = {P1 7→ P2 ∈ R | ∆ ⊢gr P1 7→ P2 : ok}
P1 7→ P2 ∈ R∆ σ ∈ Σ∆ P1σ 6≡ ε

(T-GRT)
E[P1σ ]→⊺ E[P2σ ]

σ ∈ Σ∆ L1σ 6≡ ε
(T-LR)

E[L1 7→ L2 | L1σ ]→⊺ E[L1 7→ L2 | L2σ ]

σ ∈ Σ∆ L1σ 6≡ ε
(T-LR-OUT)

E[(S1σ)	 ⌋(L↑S1
1 7→ L↑S2

2 | L1σ | T)]→⊺ E[L2σ |
(
S2σ

)	
⌋(L↑S1

1 7→ L↑S2
2 | T)]

σ ∈ Σ∆ L1σ 6≡ ε
(T-LR-IN)

E[L↓S1
1 7→ L↓S2

2 | L1σ | (S1σ)	 ⌋T]→⊺ E[L↓S1
1 7→ L↓S2

2 |
(
S2σ

)	
⌋(T | L2σ)]

Definition 3.2 (Typed Parallel Reduction). The reduction=⇒⊺ between term inT is defined by:

T = T0 →⊺ T1 →⊺ · · · →⊺ Tn+1 n≥ 0 T ′ = η(Tn+1)

T =⇒⊺ T ′

The property enforced by the type system is that well-typed terms reduce to well-typed terms: the
proof is the content of the Appendix.

Theorem 3.3(Subject Reduction). If ⊢p T : τ and T=⇒⊺ T ′, then⊢p T ′ : τ ′ for someτ ′ ⊑ τ .

Example 3.4(Mitochondria Running Example: Typing). Let the rules used in Example 2.7 be labelled
by:

• Rg = x̃ ·g· ỹ 7→(x̃·g· ỹ | mRNA),

• Rm= mRNA7→ protein,

• Ro↓ = protein↓Tom 7→ protein↓Tom,

• Rm↑ = mRNA↑nucleus7→mRNA↑nucleus,

• Ri↓ = protein↓Tim 7→Ra
↓Tim,

• Ra = MitA 7→(MitA | ATP)
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• Ra↑ = ATP↑x̃ 7→ATP↑x̃.

Let ϕg = features(Rg), ϕm = features(Rm), ϕa = features(Ra). The term representing our model can be
typed ifΛ contains appropriate membrane types for the elements whichoccur in the membranes, i.e.:

{cell : ϕcell,nucleus: ϕnucleus,Tom: ϕTom,Tim : ϕTim} ⊆ Λ

where{i}∪ϕm ⊆ ϕcell, {o}∪ϕg ⊆ ϕnucleus, {o, i} ⊆ ϕTom, and{o}∪ϕa ∈ ϕTim. In this case the given
parallel reduction is also a typed parallel reduction for this term.

We can type theMITOCH with the following derivations:

∆ ⊢p MitA | ATP: /0
(TRLOC)

∆ ⊢p Ra : ϕa ∆ ⊢s Tim : ϕTim ϕa ⊆ ϕTim
(TRLOCIN)

∆ ⊢p Ri↓ : {i} ∆ ⊢p Ra↑ : {o}
(TPAR)

∆ ⊢p Ri↓ | Ra↑ : {i,o}

∆ ⊢s Tom: ϕTom

∆ ⊢p INN MITOCH : /0 ∆ ⊢p Ri↓ | Ra↑ : {i,o}
(TPAR)

∆ ⊢p INN MITOCH | Ri↓ | Ra↑ : {i,o} {i,o} ⊆ ϕTom
(TCOMP)

∆ ⊢p (Tom)	 ⌋(INN MITOCH | Ri↓ | Ra↑) : /0

where we can typeINN MITOCH with:

∆ ⊢p MitA : /0

∆ ⊢p ATP: /0 ∆ ⊢s x̃ : ϕTom ϕTom⊆ ϕTom
(TRLOCOUT)

∆ ⊢p Ra↑ : {o} · /0
(TPAR)

∆ ⊢p MitA | Ra↑ : {o}

∆ ⊢s Tim : ϕTim {o} ⊆ ϕTim
(TCOMP)

∆ ⊢p (Tim)	 ⌋(MitA | Ra↑) : /0

4 Related Works and Conclusions

κ-calculusis a formalism proposed by Danos and Laneve [11] that idealises protein-protein interactions
using graphs and graph-rewriting operations. A protein is anode with a fixed number of sites, that may
be bound or free. Proteins may be assembled into complexes byconnecting two-by-two bound sites
of proteins, thus building connected graphs. Collections of proteins and complexes evolve by means
of reactions, which may create or remove proteins and boundsbetween proteins:κ-calculus essentially
deals with complexations and decomplexations, where complexation is a combination of substances into
a new substance called complex, and the decomplexation is the reaction inverse to complexation, when a
complex is dissociated into smaller parts. These rules contain variables and are pattern-based, therefore
may be applied in different contexts. Even ifκ-calculus does not deal with membranes, we have in
common the use of variables and contexts for rule application. Moreover, both approaches emphasise
the key rule of the surface components, in proteins (κ-calculus) or membranes (CLSLR), for biological
modelling.

P-Systems[17] are a biologically inspired computational model. A P-System is formed by a mem-
brane structure: each membrane may contain molecules, represented by symbols of an alphabet, other
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membranes and rules. The rules contained into a membrane canbe applied only to the symbols contained
in the same membrane: these symbols can be modified or moved across membranes. The key feature
of P-Systems is the maximal parallelism, i.e., in a single evolution step all symbols in all membranes
evolve in parallel, and every applicable rule is applied as many times as possible. Locality and intrinsic
parallelism of rules are also present in our approach, but inCLSLR the level of parallelism is not neces-
sarily maximal, and moreover not only molecules but also rules can be created, deleted or moved across
membranes. In both approaches the local rules cannot describe some possible biological behaviours such
as fusion, deletion or creation of membranes. P-Systems arenot so flexible in the description of new ac-
tivities observed on membranes without extending the formalism to model such activities. In CLSLR
this limit is overcome by global rules, that contain genericpatterns.

In rewrite system models, the term (describing the systems under consideration) and the list of rules
(describing the system’s evolution) could be considered asseparate (written on two different sheets of
paper). In this work, we have presented a calculus with global (separate from the system) and local
(dynamic and system intrinsic) rewrite rules. While globalrules can, as usual, be applied anywhere in a
given term, local rules can only be applied in the compartment on which they are defined. Local rules
are equipped with dynamic features: they can be created, moved and erased.

As it happens for P-Systems, local rules are intrinsically parallel. Indeed, expressing rules that are
local to well delimited compartments, and with the possibility to define systems with multiple, parallel,
compartments, naturally leads to the definition of a parallel semantics.

As a future work, in the lines of [9, 12, 8], we plan to investigate how to adapt this model with a
quantitative semantics, also studying the limits and constraints imposed by a parallel semantics.
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A APPENDIX

Lemma A.1 (Inversion Lemma). 1. If ∆ ⊢s ε : ϕ , thenϕ = /0.

2. If ∆ ⊢s χ : ϕ , thenχ : ϕ ∈ ∆.

3. If ∆ ⊢s a : ϕ , then a: ϕ ∈ Λ.

4. If ∆ ⊢s SP·SP′ : ϕ , then∆ ⊢s SP: ϕ1, ∆ ⊢s SP′ : ϕ2 andϕ = ϕ1⊔ϕ2.

5. If ∆ ⊢p X : τ , then X: τ ∈ ∆.

6. If ∆ ⊢p SP: τ , thenτ = /0.

7. If ∆ ⊢p L1 7→ L2 : τ , thenτ = features(L1 7→ L2)⊔ τ ′ and∆ ⊢p L2 : τ ′.

8. If ∆ ⊢p L↑S1
1 7→ L↑S2

2 : τ , thenτ = {o} · τ ′, ∆ ⊢p L2 : τ ′, ∆ ⊢s S1 : ϕ1, ∆ ⊢s S2 : ϕ2 andϕ1 ⊆ ϕ2.

9. If ∆ ⊢p L↓S1
1 7→ L↓S2

2 : τ , thenτ = {i}⊔ τ ′, ∆ ⊢p L2 : ϕ ·τ ′, ∆ ⊢s S1 : ϕ1, ∆ ⊢s S2 : ϕ2 andϕ ∪ϕ1 ⊆ ϕ2.

10. If ∆ ⊢p P | P′ : τ , thenτ = τ1⊔ τ2, ∆ ⊢p P : τ1 and∆ ⊢p P′ : τ2.

11. If ∆ ⊢p (SP)	 ⌋P : τ , then∆ ⊢s SP: ϕ , ∆ ⊢p P : ϕ ′ · τ andϕ ′ ⊆ ϕ .

12. If ∆ ⊢gr P1 7→ P2 : ok, then∆ ⊢p P1 : τ1, ∆ ⊢p P2 : τ2 andτ2 ⊑ τ1.

Proof. Immediate from the typing rules in Figures 4 and 5.

Lemma A.2. If ∆ ⊢p E[P] : τ then

1. ∆ ⊢p P : τ0 for someτ0, and
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2. if P′ is such that∆ ⊢p P′ : τ ′ with τ ′ ⊑ τ0, then∆ ⊢p E[P′] : τ ′′ with τ ′′ ⊑ τ .

Proof. By induction on the definition of contexts.

• If E = �, thenE[P] = P, and so∆ ⊢p P : τ . Since in this caseE[P′] = P′, and∆ ⊢p P′ : τ ′ with
τ ′ ⊑ τ by hypothesis, then∆ ⊢p E[P′] : τ ′.

• If E=E′ |T, thenE[P] =E′[P] |T. From Lemma A.1(10) we derive∆⊢p E′[P] : τ1 and∆⊢p T : τ2,
with τ1⊔ τ2 = τ . By induction hypothesis onE′[P] we get∆ ⊢p P : τ0 and∆ ⊢p E′[P′] : τ ′

1 with
τ ′

1 ⊑ τ1. Applying rule (TPAR) we conclude∆ ⊢p E[P′] : τ ′′ with τ ′′ = τ ′
1⊔ τ2, and thenτ ′′ ⊑ τ .

• If E = (S)	 ⌋E′, then E[P] = (S)	 ⌋E′[P]. From Lemma A.1(11) we derive∆ ⊢p S : ϕ0, and
∆ ⊢p E′[P] : ϕ · τ , with ϕ ⊆ ϕ0. By induction hypothesis onE′[P] we get∆ ⊢p P : τ0, and∆ ⊢p

E′[P′] : ϕ ′ · τ ′ with ϕ ′ · τ ′ ⊑ ϕ · τ . Applying rule (TCOMP) we conclude∆ ⊢p E[P′] : τ ′, with τ ′ ⊑ τ .

Lemma A.3. If σ ∈ Σ∆, then⊢s SPσ : ϕ if and only if∆ ⊢s SP: ϕ .

Proof. (⇐) By induction on∆ ⊢s SP: ϕ . Consider the last applied rule.

• If the rule is(TSVAR), the proof follows fromσ ∈ Σ∆. For rules(TSEPS) and(TSELM ), the fact thatSP
is a term implies thatSPσ = SP, and, moreover, it is typable from the empty environment.

• Rule (TSSEQ). In this caseSP= SP1 ·SP2, and from Lemma A.1(4) we derive∆ ⊢s SP1 : ϕ1, ∆ ⊢s

SP2 : ϕ2, andϕ = ϕ1 ∪ ϕ2. By induction hypotheses onSP1 and SP2 we get⊢s SP1σ : ϕ1 and
⊢s SP2σ : ϕ2. Therefore, sinceSP1σ ·SP2σ = (SP1 ·SP2)σ , applying the rule(TSSEQ) we conclude
⊢s (SP1 ·SP2)σ : ϕ .

(⇒) By induction onSP.

• If SP= χ , the proof follows fromσ ∈ Σ∆. If SP= ε or SP= a we use weakening.

• Let SPbeSP1 ·SP2. Since(SP1 ·SP2)σ = SP1σ ·SP2σ , from Lemma A.1(4) we deriveϕ = ϕ1∪ϕ2,
⊢s SP1σ : ϕ1, and⊢s SP2σ : ϕ2. By induction hypotheses we get∆ ⊢s SP1 : ϕ1, and∆ ⊢s SP2 : ϕ2.
Applying rule (TSseq) we conclude∆ ⊢s SP1 ·SP2 : ϕ .

Lemma A.4. If σ ∈ Σ∆, then⊢p Pσ : τ if and only if∆ ⊢p P : τ .

Proof. (⇐) By induction on∆ ⊢p P : τ . Consider the last applied rule.

• If the rule is(TVAR), the proof follows fromσ ∈ Σ∆. For rules(TRLOC), (TRLOCOUT), (TRLOCIN) the fact
thatP is a rule implies thatPσ = P and, moreover, it is typable from the empty environment. For
rule (TSEQ) if P is a sequence pattern then alsoPσ is a sequence pattern, and then we can apply rule
(TSEQ) with the empty environment.

• If the rule is(TPAR), thenP= P1 | P2, and from Lemma A.1(10) we derive∆ ⊢p P1 : τ1, ∆ ⊢p P2 : τ2,
and τ = τ1 ⊔ τ2. By induction hypotheses onP1 and P2 we get⊢p P1σ : τ1, and⊢p P2σ : τ2.
Therefore, sinceP1σ | P2σ = (P1 | P2)σ , applying the rule(TPAR) we conclude⊢p (P1 | P2)σ : τ .

• If the rule is(TCOMP), then the proof is similar using Lemmas A.1(11) and A.3 for the first premise.

(⇒) By induction onP.

• If P= X, the proof follows fromσ ∈ Σ∆. If P is a sequence pattern, then alsoPσ is a sequence
pattern, and we can apply the rule(TSEQ). If P is a rule, thenP= Pσ .
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• Let P beP= P1 | P2. Since(P1 | P2)σ = P1σ ·P2σ , and the fact that⊢p (P1 | P2)σ : τ , from Lemma
A.1(10) we derive⊢p P1σ : τ1, ⊢p P2σ : τ2, andτ = τ1⊔ τ2. By induction hypotheses onP1 andP2

we get∆ ⊢p P1 : τ1 and∆ ⊢p P2 : τ2. Applying rule (TPAR) we conclude∆ ⊢p (P1 | P2) : τ .

• If P= (SP)	 ⌋P′ the proof is similar using Lemmas A.1(11) and A.3 for the firstpremise.

Proof of Theorem 3.3 (Subject Reduction)
By cases on the reduction rules.

Rule (TGR)

From Definition 3.1,T = E[P1σ ], T ′ = E[P2σ ], andσ ∈ Σ∆. By hypothesis⊢p T : τ and∆ ⊢gr

P1 7→ P2 : ok. Therefore, Lemma A.2(1) implies⊢p P1σ : τ1 for someτ1, and from Lemma A.4 we
derive∆ ⊢p P1 : τ1. From∆ ⊢gr P1 7→ P2 : ok, Lemma A.1(12) implies∆ ⊢p P2 : τ2 with τ2 ⊑ τ1. We
can apply Lemma A.4 obtaining⊢p P2σ : τ2. From Lemma A.2(2) we conclude∆ ⊢p E[P2σ ] : τ ′

for someτ ′ ⊑ τ .

Rule (TLR)

From Definition 3.1,T = E[L1 7→ L2 | L1σ ], T ′ = E[L1 7→ L2 | L2σ ], andσ ∈ Σ∆. By hypothesis
⊢p T : τ . Therefore, Lemma A.2(1) implies⊢p L1 7→ L2 | L1σ : τ0 for someτ0. Sinceσ ∈ Σ∆,
Lemma A.4 implies∆ ⊢p L1 7→ L2 | L1 : τ0. From Lemma A.1(10) we derive∆ ⊢p L1 7→ L2 : τ ′

0,
and∆ ⊢p L1 : τ1 with τ ′

0⊔ τ1 = τ0. By Lemma A.1(7) we derive∆ ⊢p L2 : τ2 with τ2 ⊑ τ1. Lemma
A.4 implies⊢p L2σ : τ2, then from(TPAR) we derive⊢p L1 7→ L2 | L2σ : τ3 with τ3 = τ ′

0⊔ τ2. Since
τ3 ⊑ τ0 we can apply Lemma A.2(2) obtaining⊢p E[L1 7→ L2 | L2σ ] : τ ′ with τ ′ ⊑ τ .

Rule (LR-O UT)

From Definition 3.1,T = E[(S1σ)	 ⌋(L↑S1
1 7→ L↑S2

2 | L1σ | T0)], T ′ = E[L2σ | (S2σ)	 ⌋(L↑S1
1 7→

L↑S2
2 | T0)], andσ ∈ Σ∆. By hypothesis⊢p T : τ . Lemma A.2(1) implies⊢p (S1σ)	 ⌋(L↑S1

1 7→

L↑S2
2 | L1σ | T0) : τ0, and, sinceσ ∈ Σ∆, Lemma A.4 implies∆ ⊢p (S1)

	 ⌋(L↑S1
1 7→ L↑S2

2 | L1 | T0) : τ0.

By Lemma A.1(11) we get∆ ⊢s S1 : ϕ1, and∆ ⊢p L↑S1
1 7→ L↑S2

2 | L1 | T0 : ϕ0 · τ0 whereϕ0 ⊆ ϕ1. By
Lemma A.1(10) we have∆ ⊢p T0 : ϕ · τ1, and∆ ⊢p L↑S1

1 7→ L↑S2
2 : ϕ ′ · τ2 for someϕ · τ1⊔ϕ ′ · τ2 ⊑

ϕ0 · τ0. Lemma A.1(8) impliesϕ ′ = {o}, ∆ ⊢p L2 : τ2 and ∆ ⊢s S2 : ϕ2 whereϕ1 ⊆ ϕ2. Since
σ ∈ Σ∆, Lemma A.4 implies⊢p L2σ : τ2, ⊢s S2σ : ϕ2, ∆ ⊢p L↑S1

1 7→ L↑S2
2 : {o}·τ2, and⊢p T0 : ϕ ·τ1.

Using these premises, we apply rule(TPAR) deriving ⊢p L↑S1
1 7→ L↑S2

2 | T0 : {o} · τ2 ⊔ ϕ · τ1, and
then⊢p (S2σ)	 ⌋(L↑S1

1 7→ L↑S2
2 | T0) : τ1 ⊔ τ2 by rule (TCOMP). Finally ⊢p L2σ | (S2σ)	 ⌋(L↑S1

1 7→

L↑S2
2 | T0) : τ1⊔ τ2 by rule (TPAR): sinceτ1⊔ τ2 ⊑ τ0, we can apply the Lemma A.2(2), obtaining

⊢p E[L2σ | (S2σ)	 ⌋(L↑S1
1 7→ L↑S2

2 | T0)] : τ ′ with τ ′ ⊑ τ .

Rule (LR-I N)

From Definition 3.1,T =E[L↓S1
1 7→L↓S2

2 |L1σ | (S1σ)	 ⌋T0], T ′ =E[L↓S1
1 7→L↓S2

2 | (S2σ)	 ⌋(T0 |L2σ)],
andσ ∈ Σ∆. By hypothesis⊢p T : τ . Lemma A.2(1) implies⊢p L↓S1

1 7→ L↓S2
2 | L1σ | (S1σ)	 ⌋T0 : τ0,

and, sinceσ ∈ Σ∆, Lemma A.4 implies∆ ⊢p L↓S1
1 7→ L↓S2

2 | L1 | (S1)
	 ⌋T0 : τ0. By Lemma A.1(10)

we have∆ ⊢p L↓S1
1 7→ L↓S2

2 : τ1 and∆ ⊢p (S1)
	 ⌋T0 : τ2 for someτ1⊔τ2 ⊑ τ0. Lemma A.1(9) implies

τ1 = {i}⊔τ3, ∆ ⊢s S1 : ϕ1, ∆ ⊢s S2 : ϕ2, and∆ ⊢p L2 : ϕ ·τ3, whereϕ ∪ϕ1 ⊆ ϕ2. By Lemma A.1(11)
∆ ⊢p T0 : ϕ ′ · τ2 for someϕ ′ ⊆ ϕ1. Sinceσ ∈ Σ∆, Lemma A.4 implies⊢s S1σ : ϕ1, ⊢s S2σ : ϕ2,
⊢p L2σ : ϕ · τ3, ⊢p L↓S1

1 7→ L↓S2
2 : {i}⊔ τ3, and⊢p T0 : ϕ ′ · τ2. Using these premises, we apply rule

(TPAR) deriving⊢p L2σ | T0 : ϕ · τ3⊔ϕ ′ · τ2, and then⊢p (S2σ)	 ⌋L2σ | T0 : τ3⊔ τ2 by rule (TCOMP).
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Finally ⊢p L↓S1
1 7→ L↓S2

2 | (S2σ)	 ⌋L2σ | T0 : τ1⊔ τ2, becauseτ1 = {i}⊔ τ3, by rule (TPAR): since
τ1⊔ τ2 ⊑ τ0, we can apply the Lemma A.2(2) obtaining⊢p E[L↓S1

1 7→ L↓S2
2 | (S2σ)	 ⌋L2σ | T0] : τ ′

for someτ ′ ⊑ τ .
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