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We present a comprehensive language theoretic causality analysis framework for explaining safety

property violations in the setting of concurrent reactive systems. Our framework allows us to uni-

formly express a number of causality notions studied in the areas of artificial intelligence and formal

methods, as well as define new ones that are of potential interest in these areas. Furthermore, our

formalization provides means for reasoning about the relationships between individual notions which

have mostly been considered independently in prior work; and allows us to judge the appropriate-

ness of the different definitions for various applications in system design. In particular, we consider

causality analysis notions for debugging, error resilience, and liability resolution in concurrent reac-

tive systems. Finally, we present automata-based algorithms for computing various causal sets based

on our language-theoretic encoding, and derive the algorithmic complexities.

Causality analysis, which investigates questions of the form “Does event e1 cause event e2?” plays

an important role in many areas of science, medicine and law. In formal methods, causality analysis

has been used to determine the coverage of specifications [4] (that is, which parts of the system under

scrutiny are relevant for the satisfaction of a specification), to explain counterexamples [1] (identify

points in a counterexample trace that are relevant for the failure of a temporal specification), to construct

fault trees [9], and to automatically refine system abstractions [3]. In artificial intelligence, causality-

based explanation finding has applications in natural language processing, automated medical diagnosis,

vision processing, and planning. Resolving liabilities in a legal setting often relies on establishing the

causal relations between potential causes and the occurred damage [2].

Causality definitions based on counterfactuals, which are alternative scenarios where the suspected

cause e1 of e2 did not happen, date back to [8] and have been extensively studied in philosophy [10].

In computer science, the most prominent and widely used definition of causality is that of [7], in which

the authors write “... while it is hard to argue that our definition (or any other definition, for that matter)

is the right definition, we show that it deals with the difficulties that have plagued other approaches

in the past ...”. Halpern and Pearl’s approach is based on structural equations, which describe causal

dependencies between Boolean variables. We extend the Boolean study of causality to the temporal

setting; specifically, we formalize notions of causality in concurrent reactive systems whose behaviors

evolve over time. A concurrent reactive system is a composition of interacting components; the system

behavior is determined by the repeated interaction between the components over time. Moreover, we

consider the setting where component implementations are not available for analysis and the designer

has only access to specifications of their expected behavior. Thus, when analyzing an error trace (an

execution of the system that violates a desired system-level property), the only available information

about the system consists of the components’ specifications and the observed trace.

In our framework, a concurrent reactive system C1 ‖ C2 ‖ . . . ‖ Cn is a composition of components

C1, . . . ,Cn. Each component Ci is specified as a tuple (Xi, inp(Xi),out(Xi),Σi,ϕi), where
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• Xi = inp(Xi)⊎ out(Xi) is the set of variables of the component, consisting of the input variables

inp(Xi) and the output variables out(Xi) (the sets of input and output variables being disjoint);

• Σi is the alphabet, consisting of all possible valuations of the variables Xi;

• ϕi is a non-empty prefix-closed language over Σi, specifying the set of correct behaviours of Ci.

The composite system C1 ‖ C2 ‖ . . . ‖ Cn has an associated prefix-closed specification θ such that θ

contains ϕ1 ‖ . . . ‖ ϕn. Thus, the global requirement is more relaxed than the promised behaviors of the

individual components. In other words, the system C1 ‖C2 ‖ . . . ‖Cn promises to implement or refine the

global requirement θ .

Consider a trace tr of the system C1 ‖C2 ‖ . . . ‖Cn in which the system requirement θ is violated. Let

C′
1, . . . ,C

′
k be the components which violate their local specifications ϕ ′

1, . . . ,ϕ
′
k. The causality analysis

problem is to determine which component set {D1, . . . ,Dm} ⊆ {C′
1, . . . ,C

′
k} is liable for the global system

requirement violation in tr. Our analysis reasons about two classes of scenarios to determine if D =
{D1, . . . ,Dm} is a cause:

• Fault Mitigation Capability analysis asks whether the correct behavior of the components in the

set D is enough to mitigate the faults of all components (including those of components not in D),

by ensuring that the required system property holds.

• Fault Manifestation analysis asks whether the observed faulty behavior of the components in the

set D is enough to manifest a global fault (i.e., a system behavior violating the global property),

even if the components not in D were to behave correctly.

These two classifications parallel the classifications of [6, 5] of causes into necessary causes and sufficient

causes. However, our analysis is not limited to specific definitions of counterfactual sets. In contrast,

we provide a reasoning framework based on generic counterfactual sets, and introduce several natural

instantiations. We demonstrate that the generality and modularity of our definition of causality allow

us to seamlessly extend causality analysis to the case of heterogeneous fault models, where different

components are examined under different fault scenarios. Finally, we present an automata-based method

for determining various causal sets in the setting of heterogeneous component-fault models, and derive

its algorithmic complexity.
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