
U. de’Liguoro and A. Saurin (Eds.):
Control Operators and their Semantics 2013 (COS’13)
EPTCS 127, 2013, pp. 30–44, doi:10.4204/EPTCS.127.3

c© Giovanni Birolo
This work is licensed under the
Creative Commons Attribution License.

Interpreting a Classical Geometric Proof with Interactive
Realizability

Giovanni Birolo
Department of Mathematics

University of Turin
Italy

giovanni.birolo@gmail.com

We show how to extract a monotonic learning algorithm from a classical proof of a geometric state-
ment by interpreting the proof by means of interactive realizability, a realizability sematics for clas-
sical logic.

The statement is about the existence of a convex angle including a finite collections of points in
the real plane and it is related to the existence of a convex hull. We define real numbers as Cauchy
sequences of rational numbers, therefore equality and ordering are not decidable. While the proof
looks superficially constructive, it employs classical reasoning to handle undecidable comparisons
between real numbers, making the underlying algorithm non-effective.

The interactive realizability interpretation transformsthe non-effective linear algorithm described
by the proof into an effective one that uses backtracking to learn from its mistakes. The effective
algorithm exhibits a “smart” behavior, performing comparisons only up to the precision required
to prove the final statement. This behavior is not explicitlyplanned but arises from the interactive
interpretation of comparisons between Cauchy sequences.

1 Introduction

Interactive realizability is a realizability semantics that extends the Brouwer-Heyting-Kolmogorov inter-
pretation to (sub-)classical logic, more precisely to first-order intuitionistic arithmetic (Heyting Arith-
metic,HA) extended by the law of the excluded middle restricted toΣ0

1 formulas (EM1), a system moti-
vated by its applications in proof mining. It was introducedby Berardi and de’Liguoro in [2].

We use interactive realizability in order to study the computational content of a classical proof of the
following geometric statement.

Theorem (Convex Angle).
We have a finite set of at least three points in the real planeR2 such
that no three points are on the same line. Then there exist distinct
points P,Q and R such that:

• all other points S are insidêQPR,

• the angleQ̂PR is convex, that is, less thanπ. P

Q
R

P

We choose this particular statement because we have a proof of it that looks algorithmic and can be
easily visualized. Theorem 1 can be thought of as weakened version of the existence of the convex hull
of a finite set of points.

As we said the proof we choose as example looks constructive,using only decidability of ordering
over real numbers. However, it is well known that there is no effective ordering on the real numbers.
In our encoding of the real numbers, totality of the orderingon the recursive reals is equivalent toEM1.

http://dx.doi.org/10.4204/EPTCS.127.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Giovanni Birolo 31

Since the proof needs the ordering to be total, it needsEM1. Due to the low logical complexity of ex-
cluded middle which is used, the proof may be interpreted with a simple case of interactive realizability.

We show how interactive realizability can be applied and what it can tell us about the computational
content of the proof. What we get is an algorithm that, instead of comparing real numbers, makes an
arbitrary guess about which one is smaller. If later it becomes apparent that the guess is wrong the
algorithm retracts the choice it made since it can now make aninformed decision about that particular
comparison. Then the algorithm performs comparisons only when needed and only up to the required
precision.

Thus we see how a simple classical proof which performs comparisons between real numbers is
interpreted as a learning algorithm which uses “educated guesses” in order to avoid non effective oper-
ations. This non-trivial behavior is not explicit in the classical proof, but follows from the definition of
ordering on Cauchy sequences by means of the interactive realizability interpretation.

In the present work, our main goal is to showcase interactiverealizability and the backtracking al-
gorithms it produces through a non-trivial example. For this reason, we chose to present interactive
realizability as a proof interpretation technique rather than as a realizability semantics, in order to con-
centrate on the example and its computational interpretation without being bogged down in technical
details. A more comprehensive treatment of interactive realizability can be found for instance in [1].

2 Real Numbers

In this section we present our treatment of real numbers in Heyting Arithmetic. For a more in depth
treatment of real numbers from a constructive view point see[4].

There are many ways of encoding integer and rational numbersin HA and defining primitive recursive
operations and predicates on them. In the following we assume that we have any such encoding and that
we have decidable equality=Q and ordering<Q,≤Q and effective operations+Q, ·Q. We use the variables
q andp for rationals.

There are many equivalent ways of defining the real numbers from the rational numbers. The best
known are the definition of the reals as equivalence classes of Cauchy sequences and as Dedekind cuts.
We follow the first approach.

A sequence of rationalsr : N→ Q is aCauchy sequenceif the following holds:

∀k. ∃k0. ∀k1,k2. |r(k0+k2)− r(k0+k1)| <
1

2k
. (1)

While this sequence approximates a real number, it can do so very slowly. By means of classical rea-
soning, we can show that, from any Cauchy sequence, we can extract a fast-converging monotone sub-
sequence. For this reason, instead of general Cauchy sequences, we can consider sequences of nested
intervals with rational extremes whose length decreases exponentially. An interval is determined by its
extremes, so we represent a sequence of intervals as a coupleof sequences of rationalsr−, r+, represent-
ing the lower and higher extremes of the intervals respectively. Then we require thatr− is increasing and
r+ is decreasing (since the intervals are nested), thatr−(k) is lesser than or equal tor+(k) (since they are
the lower and higher extremes of a same interval) and their difference is smaller than 2−k. More precisely
we say thatr− andr+ represent a real number when they satisfy the following condition, written as aΠ0

1
formula:

∀k. (r−(k) ≤Q r+(k))∧ (r−(k) ≤Q r−(k+1))∧

∧ (r+(k) ≥Q r+(k+1))∧ (r+(k)−Q r−(k) ≤Q 2(−k)).
(2)

32 Interpreting a Classical Geometric Proof with InteractiveRealizability

While the choice of the specific definition of real number is somewhat arbitrary, it is significant because
it affects the logical properties (in particular the degree of undecidability) of the ordering on the reals.

Now we can define an “order predicate” OP(r, s,k), which can be thought of as a family of strict
partial orders on the real numbers indexed by natural numberk. More precisely, it is a formula that
determines when the sequence of nested intervalsr is strictly lesser thans, at precisionk. This happens
when, atk, the higher extreme of an interval is strictly greater than the lower extreme of the other. Then,
from that point forward, the intervals will be forever disjoint, since they are nested sequences. This
allows us to write the order predicate as the formula:

OP(r, s,k) ≡ r+(k) <Q s−(k), (3)

which is decidable inr ands. Note that the definition of OP depends on that of real number.If we had
used the classical definition of Cauchy sequence the order predicate would be the followingΠ0

1 formula:

OP′(r, s,k) ≡ ∀l. l ≥ k→ r(l) <Q r(l). (4)

This is very significant for our purposes: the order predicate in (3) is decidable inr ands (since the order
on the rationals is), while in (4) it is onlynegatively decidable. This means that we have an effective
method to decide (4) when it is false, but not when it is true.

We need OP to satisfy the following properties, written as rules:

OP(r, s,k)
OP-mon OP(r, s,k+1)

OP(r, r,k)
OP-irrefl

⊥

OP(r, s,k) OP(s, r, l)
OP-asym

⊥

OP(r, s,k) OP(s, t, l)
OP-trans OP(r, t,max(k, l))

(5)

The OP-mon rule expresses a monotonicity property: when an comparison at a given precision can distin-
guish two approximations, then comparisons at greater precision should too. The other rules correspond
to the standard axioms for a strict partial order: irreflexivity, asymmetry and transitivity.

We verify that our definition of OP satisfies these properties.

Lemma 1. The order predicate OP defined by(3) satisfies the properties given in(5).

Proof. Omitted. The properties follow directly from the definitionof OP as (3) and from our representa-
tion of real number as sequences of nested intervals (2). �

We can now define order and equality on the reals. It is noteworthy that, while we define order and
equality in terms of OP, we never use the definition of OP itself in proving their properties. We only
need the properties of OP we proved in Lemma 1, thus we could proceed in the same way even if we had
defined OP differently, as long as Lemma 1 holds.

They are defined as follows:

r <R s≡ ∃k. OP(r, s,k), r ≤R s≡ ∀k. ¬OP(s, r,k),

r ,R s≡ ∃k. OP(r, s,k)∨OP(s, r,k), r =R s≡ ∀k. ¬OP(r, s,k)∧¬OP(s, r,k).

Note that<R and,R areΣ0
1 formulas and≤R and=R areΠ0

1 formulas.
In order to prove Lemma 3, which is needed in the proof of Theorem 1, we need to show some of the

properties of the order≤R.

Giovanni Birolo 33

Lemma 2 (Reflexivity, Semi-Transitivity and Totality of≤R). The following properties hold:

r ≤R r (reflexivity)

r <R s∧ s≤R t→ r ≤R t, (semi-transitivity)

r ≤R s∨ s<R r. (totality)

Proof. The first two properties follows from the corresponding properties of OP. The last is a classical
tautology.

• We omit the proof of reflexivity for reasons of space and irrelevance.

• In order to prove this transitive property for mixed<R and≤R we have to show thatr ≤R t ≡
∀k. ¬OP(t, r,k), assumingr <R s≡ ∃k. OP(r, s,k) and s≤R t ≡ ∀k. ¬OP(t, s,k). This follows by
means of the OP-trans rule:

∃k. OP(r, s,k)

∀k. ¬OP(t, s,k)
∀E
¬OP(t, s,max(k, l))

[OP(t, r,k)]1 [OP(r, s, l)]2

OP-trans OP(t, s,max(k, l))
→ E

⊥
∃E 2

⊥
→ I 1

¬OP(t, r,k)
∀I
∀k. ¬OP(t, r,k)

• Whenr andsdenote recursive real numbers, totality is an instance ofEM1:

r ≤R s∨ s<R r ≡ ∀k. ¬OP(s, r,k)∨∃k. OP(r, s,k). �

The proof is constructive apart from the last point, where weshow that totality is actually an instance
of EM1. Note that only the reflexivity property is stated in the standard way, while transitivity and totality
are written in non-standard forms. We chose these forms for two reasons: they are easier to prove and
they are the exact forms we need in the proof of Lemma 3.

Until now we have usedr, s and t as metavariables for real numbers in an informal way. However,
since we are working in the first-order language of arithmetic, our variables range only on natural num-
bers and not on functions. For our example we only need to address a finite but arbitrary number of
real numbers, that is, we only need a countable quantity of them. Thus we can assume that we have a
countable set of pairs of function symbols indexed by the natural numbers, say (f +n , f

−
n)n∈N. We assume

that each pair satisfies the convergence condition (2) and thus represents a real number. Then, OP can
be formally defined asf +i (k) <Q f −j (k) wherei and j are arithmetic terms. Thus each real numbers is
represented by a natural number, namely its index. For convenience and consistency with the standard
notation for real numbers, instead of writingi <R j, we use the sugared versionr i ≤R r j .

Now we can reason about finite sets of real numbers as sets of indexes. In the next lemma, we shall
work with the sets of real numbers indexed by initial segments of the natural numbers. We show the
existence of a least element in each of these sets. The least element is actually a minimum, that is,
the unique least element of the set. However, in order to prove Theorem 1 we do not need to show its
uniqueness, just its existence.

Lemma 3 (Least Element). For any n, the real numbers r0, . . . , rn have a least element with respect to
≤R. More precisely:

∀n. ∃i ≤ n. ∀ j ≤ n. r i ≤R r j .

Proof. We proceed by induction onn.

34 Interpreting a Classical Geometric Proof with InteractiveRealizability

Zero case In the base casen= 0 and we have to prove that∃i ≤ 0. ∀ j ≤ 0. r i ≤R r j . Both i and j can only
be 0; thus we just have to check the conditionr0 ≤R r0, which holds by reflexivity of≤R.

Successor case In the inductive case we have to prove that∃i ≤ n+ 1. ∀ j ≤ n+ 1. r i ≤R r j . By the
inductive hypothesis, let̄i ≤ n be the index of the least element inr0, . . . , rn. By totality of ≤R we
have two cases.

r ī ≤R rn+1 Thenī is the index of a least element inr0, . . . , rn+1, sincer ī ≤R r j when j = n+1 (since
we are considering this case) and whenj ≤ n by inductive hypothesis.

rn+1 <R r ī Thenn+1 is the index of a least element inr0, . . . , rn+1, sincern+1 ≤R r j when j = n+1
by reflexivity of ≤R and whenj ≤ n by transitivity of<R and≤R, sincern+1 <R r ī ≤R r j by
inductive hypothesis. �

The proof looks constructive: its computational interpretation is the usual algorithm that finds the
least element in a vector, by a simple recursion or by loopingon its elements. We can write it as a
recursive function “rmin” in Haskell:

Listing 1: The Least Element Program

rmin 0 = 0

rmin n = if rle (rmin (n-1)) n

then rmin (n-1)

else n

where “rle” is a boolean function that stands for≤R, that is, it compares the reals indexed by its ar-
guments. The problem is that we are unable to write “rle” as a terminating program. The closest
approximation would be the following unfounded recursion:

Listing 2: The Lesser or Equal Program

rle i j = rle_urec 0 i j

rle_urec k i j = if op j i k end

then False

else rle_urec (k+1) i j

where “op” is a total boolean function that stands for the order predicate OP. We can assume that
“op” terminates for any input since OP is decidable. The problemis that≤R is total only classically.
More precisely, totality is an instance ofEM1 because≤R is aΠ0

1 formula and thus negatively decidable.
This can bee seen concretely in the program for “rle”: “ rle i j” only halts (returning “False”) if
“op j i k” is true for somek, that is, if and only ifr i ≤ r j is false. On the other hand, whenr i ≤ r j is
true there is no suchk and the evaluation of “rle i j” will never halt: “True” does not even appear in
the program. This is the general behavior of an algorithm that computes a negatively decidable predicate:
when the predicate is false it halts with the correct answer and when the predicate is true it does not halt.

For positively decidable predicates we have the dual behavior. For instance, in the case of<R which
is defined by aΣ0

1 formula and thus positively decidable, the decision procedure can be written as:

Listing 3: The Lesser Than Program

rlt i j = rlt_urec 0 i j

rlt_urec k i j = if op i j k

then True

else rlt_urec (k+1) i j

Giovanni Birolo 35

The program is very similar to the previous one, the only noteworthy changes are the order of the argu-
ment given to “op” and the fact that the only possible return value is “True” instead of “False”. It only
halts (returning “True”) if “ op i j k” is true for somek, that is, whenr i ≤ r j is true.

3 The Interactive Interpretation of the Least Element Lemma

We have seen why the naive way of extracting a program from proofs fails in the case of Lemma 3. Now
we give the interactive interpretation of Lemma 3. Since we are working inHA+EM1, any proof can
be thought of as a constructive proof with open assumptions,that are the instances ofEM1 that are used
in the proof. The interactive realizability interpretation follows the standard BHK interpretation for the
constructive parts, so we will concentrate on the interpretation of theEM1 instances.

The only instances ofEM1 in the proof are those used to deduce the totality property:

r i ≤R r j ∨ r j <R r i . (6)

The left disjunct, which we call theuniversal disjunct, is Π0
1 and negatively decidable, while the right

one, theexistential disjunctis Σ0
1 and positively decidable. Moreover universal disjunct andnegation of

the existential disjunct are classically equivalent. We say that a formula isconcretewhen it is closed and
atomic.

A naive attempt to give a computational content to anEM1 instance fails, because in generalEM1

instances are undecidable. Interactive realizability proposes a way to side-step this problem. This is
possible since it is not true that the computational interpretation of a proof using instances ofEM1 nec-
essarily needs to decide these instances. Consider the caseof totality of the order on the real numbers.
The universal disjunct isr i ≤R r j ≡ ∀k. ¬OP(r j , r i ,k). Being an universally quantified statement, it proves
infinite instances¬OP(r j , r i ,k), one for each natural numberk. A proof that uses totality may need all
this infinite information or (for example, when proving a simply existential statement) may only need a
finite quantity of these instances. In the second case, we canavoid the problem of effectively deciding
theEM1 instance. We only need to decide those instances that are actually used in the proof. This is pos-
sible, since each instance is decidable (being a quantifier free formula) and we assumed there is a finite
quantity of them. Interactive realizability takes advantage of this fact and gives a procedure to determine
which instances of the universal disjunct are needed and to iteratively decide them.

The interactive interpretation is a “relaxation” of the BHKinterpretation. In the BHK interpretation
the decision of a disjunction effectively selects a true disjunct, in the interactive case instead of a decision
we have a sort of “educated guess”. Therefore, whileEM1 cannot be realized by the BHK interpretation
since there is no effective procedure to decide it, the interactive interpretation can because it yields a
weaker semantics, which produces a sure result only when thegoal is simply existential.

Interactive realizability revolves around the concept ofknowledge state. A knowledge state, or simply
state, is a finite object that stores information about theEM1 instances we use in the proof. The purpose
of this information is to help us decide theEM1 instances, that is, help us in choosing which disjunct
holds. Moreover, whenever the state chooses the existential disjunct, it should also produce a witness,
like in the BHK interpretation.

We can represent a state as a finite partial function1 that maps a concrete instance ofEM1 into a
witness of its existential disjunct. Such a function decides or guesses a concrete instanceA of EM1: if it
is undefined onA, then we choose the universal disjunct; if it is defined we chose the existential disjunct

1By finite partial function, we mean a partial function whose domain (the set of elements where it is defined) is finite.

36 Interpreting a Classical Geometric Proof with InteractiveRealizability

with the returned witness. We are only interested in the instances appearing in the proof, namely, those
of the form (6) wheni, j are numerals. Thus an instance is determined by two natural numbers; since
witnesses are natural numbers too, a state can be concretelydefined as a finite partial function fromN×N
toN.

For instance, consider the case of theEM1 instances used in the proof of Lemma 3. When we have to
decide (6), we check the state on the pair (i, j). At first, let us assume that the state is undefined on (i, j).
This means we have no knowledge about the universal disjunctr i ≤R r j . Since we cannot effectively
check that the universal disjunct holds, we make an educatedguess and assume thatr i ≤R r j is true.
Clearly this assumption could very well be wrong, which may or may not become apparent later in the
proof. Keeping track of this assumption, we carry on with theproof. Every time we use this assumption
to prove a decidable instance of its we check if the instance holds. More concretely, if later in the proof
we use the assumptionr i ≤R r j to deduce that¬OP(j, i,k) for somek, we check that¬OP(j, i,k) holds. If
this is the case, we carry on with the proof:r i ≤R r j could still be false, but at least the particular instance
we are using is true. If this is not the case, we have found a counterexample to the assumptionr i ≤R r j:
being negatively decidable, the counterexample is enough to effectively decide that it is false. Therefore
we stop following the proof because we have chosen the wrong disjunct in theEM1 instance (6).

Moreover, a counterexample tor i ≤R r j is a natural numberk such that OP(j, i,k). Thereforek is a
witness for the existential disjunctr j <R r i . We can use this new knowledge to add (i, j) to the domain of
the state with valuek. Remember that we assumed the state to be undefined on (i, j), which is why we
assumed the universal disjunct to be true in the first place.

At this point, we forget what we did after guessing (wrongly)that the universal disjunct was true
and start again. More precisely, we need to backtrack to a computation statebeforewe decided theEM1

instance in question and repeat our decision with the extended state. Since the extended state is defined
on (i, j) and yieldsk, this time we decide theEM1 instance differently: we choose the existential disjunct
r j <R r i with k as witness. Now we are sure that our choice is the correct one and not a guess, since we
have effectively decided that the existential disjunct holds (we can since it is positively decidable).

In order for the interactive interpretation to produce correct results, we need to assume that the state
is sound, that is, when it is defined, the witness it yields is actually a witness. More formally, a states
is sound if, for any pair (i, j), we have that OP(j, i, s(i, j)) holds. This assumption is not problematic: the
empty state, namely the state that is always undefined, satisfies it vacuously. Moreover, in the interactive
interpretation we outlined above, we only extend a state with an actual witness. In other words, the
extension preserves the soundness property.

To summarize, the general procedure is the following:

1. we start from any sound state (usually the empty state),

2. we follow the proof choosing anyEM1 instance according to the state,

3. if we discover that we wrongly assumed the universal disjunct of anEM1 instance:

(a) we extend the state with the counterexample we found,
(b) we backtrack to a point before theEM1 instance we guessed wrong,
(c) we proceed as in step 2,

4. if we never discover that we wrongly assumed an universal disjunct we carry on until the end of
the proof and we are done.

The exact point we need to backtrack to is not relevant, as long as it is before the decision of the
EM1 instance. A simple choice would be the very beginning, in which case we do not need to keep track
of where we decided theEM1 instance. In this case we only need a simple abort operator inorder to

Giovanni Birolo 37

formally write interactive realizers. A monadic version ofthis approach is given in [3]. A more efficient
choice is to backtrack right before the decision point, so that we do not need to repeat the computations
that took place before it, since they are not affected by the extension of the state. However this approach
would require more sophisticated control operators.

Interactive realizability can be thought as a “smart”, albeit “partial”, decision algorithm for nega-
tively decidable statements. This can be seen comparing it with the naive algorithm given in Listing 2. It
is partial because a real decision is impossible, so it only considers a finite number of instances, unlike
the unbounded recursion employed by the program in Listing 2. It is smart because it does not perform a
blind search, trying in order all the natural numbers. Instead it uses the proof itself to find the counterex-
amples. There is a reasonable expectation that the ideas underlying the proof provide a more focused
way of selecting counterexamples than a blind search (this of course depends on the proof itself).

Until now we considered a single instance of theEM1 axiom, but little changes if there is more than
one. We will return to this point later. In the proof of Lemma 3, one instance ofEM1 is used for each
inductive step in the proof. When we interpret the proof withthe empty state, for each of these instances
we assume that the universal disjunct holds. Therefore the proof is interpreted as follows. In the base
step we chooser0. In the first inductive step, we have to decide theEM1 instancer0 ≤R r1∨ r1 <R r0.
Since the state is empty, we assume thatr0 ≤R r1. Thus we keepr0 as the least element ofr0, r1. In the
second inductive step, we have to decide theEM1 instancer0 ≤R r2∨ r2 <R r0. Since the state is empty,
we again assume thatr0 ≤R r2. Thus we keepr0 as the least element ofr0, r1, r2. At the end of the proof,
we have assumed the following universal disjuncts:

r0 ≤R r1, r0 ≤R r2, . . . , r0 ≤R rn. (7)

Under these assumptions, we have found that the least element is r0. Rather disappointing, isn’t it?
The reason for this is that the universal disjunctsr i ≤R r j are never instanced, so we have neither

opportunity nor reason to falsify one of them. However this may change if Lemma 3 is used inside
a bigger proof. This will happen later in the proof of Theorem1. In this case the outer proof might
instance these assumptions and discover them wrong, in which case we have to backtrack to the proof of
Lemma 3.

Let us see how Lemma 3 behaves when its conclusion is used to deduce decidable instances. Assume
thatn= 5. If the state is empty, then Lemma 3 tells us thatr0 is a least element. This means thatr0 ≤R r i

for any i. Imagine that we use Lemma 3 in a bigger proof to prove thatr0 ≤R r3. This is one of theEM1

instances we assumed in (7). Moreover, imagine that, after instantiating this assumption, we discover
that r0 ≤R r3 does not hold at precision 33, that is, OP(r3, r0,33) holds. Then we have to extend the
domain of the state to (0,3) with value 33. At this point we backtrack, say at the beginning of the proof
of Lemma 3.

Figure 1: A graph showing the result of
the least element computation

r3

r0

r4

r5

r1

r2

Full arrows represent information provided
by the state, dotted arrows “guessed” infor-
mation the state knows nothing about.

We again start fromr0 and proceed like before. The first
and second inductive steps again selectr0 as the least ele-
ment, assuming thatr0 ≤R r1 and r0 ≤R r2. Things change
at the third inductive step when we have to decider0 ≤R

r3∨ r3 <R r0. Since now the state has a relevant witness, this
time we choose the existential disjunct with witness 33, thus
selectingr3 as the new least element. In the next inductive
steps we again assume the universal disjunctsr3 ≤R r4 and
r3 ≤R r5, since the state has no information on them. Thus
the least element isr3. A summary of our decisions is rep-
resented in Figure 1. Now imagine that we were to discover

38 Interpreting a Classical Geometric Proof with InteractiveRealizability

a counterexample tor3 ≤R r2, say at precision 25. This statement is not one of the universal disjuncts
that we assumed. By looking at the proof or at Figure 1, we can see that it has been deduced by the
semi-transitivity property fromr3 <R r0 andr0 ≤R r2. The first is the existential disjunct for which we
found a witness, so we are sure that it holds. Thus the wrong assumption isr0 ≤R r2. By checking the
proof of semi-transitivity we can see that the counterexample for r0 ≤R r2 is max(25,33), thus 33 again.
We extend the state accordingly and repeat the least elementcomputation, which results in new least
elementr2. In Figure 2 we summarize the two iterations we saw until now and add some more, as an
example.

Figure 2: An example of evaluations of the interactive interpretation of Lemma 3.

Iter State Least element Used Deduced
from Discovered

1st r0 r1,...,5 r0 ≤R r3 r0 ≤R r3 r3 <R r0

2nd r3 <R r0 r3

r0 r1,2

r4,5

r3 ≤R r2
r3 <R r0
r0 ≤R r2

r2 <R r0

3rd r2 <R r0
r3 <R r0 r2

r0 r1

r3,4,5

r2 ≤R r3 r2 ≤R r3 r3 <R r2

4th
r2 <R r0
r3 <R r0
r3 <R r2

r3
r2 r0 r1

r4,5
r3 ≤R r1

r3 <R r2
r2 <R r0
r0 ≤R r1

r1 <R r0

5th
r1 <R r0
r2 <R r0
r3 <R r0
r3 <R r2

r1
r0

r2,3,4,5
r1 ≤R r4 r1 ≤R r4 r4 <R r1

6th

r1 <R r0
r2 <R r0
r3 <R r0
r3 <R r2
r4 <R r1

r4
r1

r0

r2,3r5
.

Iter: the iteration represented by the current row,State: the existential disjuncts witnessed by the state,Least
element: the least element yielded by Lemma 3,Used: a concrete consequence of Lemma 3 that is falsified in
the proof,Deduced from: the premisses we deduced the falsified consequence from,Discovered: the existential
assumption we found a witness of.

In general we do not use all the information in the state in each iteration: for example, in the third
iteration we do not user3<R r0, which we discovered in the first iteration and used in the second iteration.
This happens because the state affects which instances ofEM1 are used in the proof, which should be
apparent from the given iterations.

In the iterations listed in Figure 2, we compute the following sequence of least element candidates:
r0, r3, r2, r3, r1, r4. The fact thatr3 appears two times may cause doubts regarding the termination of the
backtracking algorithm. The termination of the backtracking algorithms in interactive realizability has
been proven in general, see Theorem 2.15 in [1].

In this particular case we can understand whyr3 is computed two times by taking a closer look at the
tree of the possible computations of the least element, which is shown in Figure 3. For reasons of space,
we only show the tree forn= 3, which is enough to see what happens up to the fifth iterationin Figure 2.
We can see that the first five iterations in Figure 2 correspondto the computation paths ending with the
first five leaves from the left in Figure 3, in order.

Moreover, from the computation tree we can see that we never perform the same computation more

Giovanni Birolo 39

Figure 3: The computation tree of the least element forn= 3
.

r0

r0

r0 ≤R r3

r3

r3 <R r0

r0

r0 ≤R r2

r2

r2 ≤R r3

r3

r3 <R r2

r2

r2 <R r0

r0

r0 ≤R r1

r1

r1 ≤R r3

r3

r3 <R r1

r1

r1 ≤R r2

r2

r2 ≤R r3

r3

r3 <R r2

r2

r2 <R r1

r1

r1 <R r0

Each path represents a possible computation, proceeding from root to leaf, where non-leaf nodes are the current
least element candidates and the leaf is the final result. Each branching corresponds to anEM1 instance, where
the left branch is taken when we guess that the universal disjunct holds for lack of information and the right branch
is taken when the state contains the relevant witness.

than once. Indeed, assume we have just followed a particularcomputation path. When we backtrack
we increment the state adding a witness of one of theEM1 instances we encountered along the path,
an instance we did not have a witness for. This means that in the next computation, when we arrive
at the node corresponding to thatEM1 instance, instead of taking the left path as we did previously
(since the state did not have a witness for that instance), wetake the right path, because this time we
do have a witness (since we just extended the state with it). Therefore, each time we backtrack, the
computation path ends with a leaf that is more to the right in Figure 3. This gives a bound to the number
of backtrackings, namely 2n−1.

This is very different from what one could expect by a superficial look at the proof of Lemma 3.
Indeed, if the order on the reals were decidable, then this simple and natural proof would be quite
efficient, since its complexity would be linear inn. However, its interactive interpretation has exponential
complexity. This can be seen in the computation tree too: a single computation corresponds to a path
and paths have lengthn. On the other hand, since we have backtracking, in the worst case we may have
to perform every possible computation. Naturally, since the order on the realsis undecidable, an actual
comparison is impossible.

Moreover, while in the worst case the interactive interpretation needs a time that is exponential in
n, in general it is hard to estimate the amount of backtrackingthat will be actually performed, for two
different reasons.

The first one is that the actual order ofr0, . . . , rn affects heavily the operation of the algorithm. Indeed,
assume thatr0 is the least element: the interactive interpretation only performsn dummy comparisons
and immediately returns a least element candidate that, in this case, is the actual least element, so no
backtracking can ensue later.

The second reason is that the backtracking is controlled by how the least element candidate returned
by the interactive interpretation is used. It is possible for the interactive interpretation to return a can-
didate that is not a least element, but such that its use in an outer proof is does not cause backtracking.
In other words, we only need to compute a least element candidate that is good enough instead of the
correct one and this can translate to a faster computation, again depending on the situation. This also
explains why the interactive interpretation is effective even if a certainly correct least element cannot be
found effectively.

In the BHK interpretation, the computational content of a proof is usually much longer than the

40 Interpreting a Classical Geometric Proof with InteractiveRealizability

algorithm it describes. This can be easily seen by comparingthe program in Listing 1 with the proof
Lemma 32. The reason for this discrepancy is that the proof contains both the algorithm described in
Listing 1 and the evidence for its correctness. In general, in the computational content of a proof in
the BHK interpretation we can separate the part that computes values and such (the informative com-
putation) from the part that computes the evidence showing that the values are correct (the correctness
computation). The correctness computation does not affect the result of the informative computation and
can be safely discarded when we are only interested in algorithm extraction.

This is not the case for the computational content in the interactive interpretation. Here the correct-
ness part of the computation affects the backtracking, which affects the state, which in turn affects the
informative part of computation and thus the computed values. Therefore, in interactive realizability both
parts of the proof interact to produce the final result. This is apparent in the second iteration, when we
falsify r3 ≤R r2 and we have to retrace the proof of semi-transitivity, whichis a non informative proof,
in order to find whichEM1 instance we guessed wrongly and to compute the witness that we need to
extend the state. This shows that in the interactive interpretation we cannot forget how we proved the
correctness of our computations.

4 The Real Plane

In this section we introduce the real plane, points, lines and some relations between them. We use
elementary analytic geometry: points are represented by coordinates, lines by equations and proofs are
mostly computations with real numbers.

We represent a point as a pair of real numbers, its coordinates. Formally we can say that a point is
just a natural numberi and that there is a primitive recursive function mapping indexes into pairs of real
numbers. As we did for real numbers, in order to improve readability we add some sugar to the notation
and use the metavariablesP,Q,R,S for arithmetic terms used as indexes of points. When we use the
index of a point both as a number and as a point, we write it asi in the first case and asPi in the second.
We write the coordinates of a pointP as (xP,yP) and of a pointPi as (xi ,yi). A line passing through two
pointsPQ is written asPQ.

Before proceeding we need to introduce further infrastructure for the real numbers. Any rational
numberq can be represented as a real number by taking the constant sequence of the degenerate interval
[q,q]. Let 0R be the representation of the rational zero. We can define addition, subtraction and multipli-
cation on the nested interval sequences by using the corresponding rational operation point-wise on the
extremes. It is possible to retain the exponential convergence by taking a suitable sub-sequence. This
can be done effectively and follows from the continuity of the operations on the rationals. Thus we can
safely assume that we have addition, subtraction and multiplication on the reals.

In order to write the formal statement of Theorem 1, we need a way to determine the position of a
point with respect to a line.

First of all consider two pointsP andQ. We can write the equation that a pointRhas to satisfy to be
on the line going through them:

(xQ− xP)(yR−yP)− (xR− xP)(yQ−yP) =R 0R. (8)

If the left-hand side is zero thenR is on the same line withP andQ. When left-hand side is not zero,
we can use its sign to distinguish which side ofPQ Ris on. We call these sides left and right. We write

2A straightforward formalization of the proof in the Coq proof assistant is ten times longer than Listing 1.

Giovanni Birolo 41

left(P,Q,R) (resp.right(P,Q,R)) and we say thatR is to theleft (resp.right) of the line passing through
the pointsP andQ when

left(P,Q,R) ≡ (xQ− xP)(yR−yP)− (xR− xP)(yQ−yP) >R 0R,

right(P,Q,R) ≡ (xQ− xP)(yR−yP)− (xR− xP)(yQ−yP) <R 0R.

Both left andright are positively decidable, since they are defined by means of<R. Moreover, note that
R is to the left ofPQ if and only if Q is to the right ofPR. We say thatP is above Qif yP ≥R yQ and that
R is below QwhenyR≤R yQ.

5 The Geometric Part of the Proof

Now we are ready to present the rest of the proof of the main statement. We divide the proof in two parts,
the first given as a lemma. Since these proofs are more complex, for reason of readability and space we
will not be as formal as we have been until now.

From this point onward we assume that no three points are on the same line, formally:

∀P,Q,R. left(P,Q,R)∨ right(P,Q,R). (9)

This is a strong assumption, even more so because we require this to hold constructively: sinceleft and
right areΣ0

1 formulas defined with≤R, we assume that we have an effective map that given three points
yields the precision we need to reach in order to check thatR is not on the linePQ. In other words, we
are assuming that we have a procedure that effectively decides instances of theleft andright predicates.
The effective computation we extract uses this procedure as a parameter.

A further consequence is that all points must be distinct: when xP =R xQ andyP =R yQ, the left-hand
side in (8) is always zero for anyR.

In the next lemma the pointsQ0,Q1,Q2 are three generic points, that is,Qi is not necessarily the
point indexed by the natural numberi. Moreover we assume that the indexi in Qi is interpreted up to
congruence modulo 3 and thus always falls in{0,1,2}. For instance, when we writeQ4, we actually mean
Q1. We write the coordinates ofQi as (xi ,yi), with the same conventions for the index. We prove that
when three points are one to the left of the other with respectto a central one, one of them is necessarily
lower than the central point.

Lemma 4 (Three points). Assume(9) and let P,Q0,Q1 and Q2 be four points in the real plane such that
Qi+1 is to the left (resp. right) of PQi for any i< 3. Then at least one of Q0,Q1,Q2 is strictly below P.
Formally:

∀P,Q0,Q1,Q2. (∀i < 3. left(P,Qi ,Qi+1))→∃i < 3. yi <R yP.

We omit the proof for reasons of space. Since it is a constructive proof, its interactive interpretation
coincides with its BHK interpretation and thus is not particularly relevant for our analysis.

We can now prove the main statement.

Theorem 1 (Convex Angle). Assume(9). For any n≥ 2, we can select three points P, Q and R from
{P0, . . . ,Pn} such that all the remaining points fall in the anglêQPR, that is, all points are to the left of
PQ and to the right of PR.

∀n ≥ 2. ∃i, j,k ≤ n. ∀l ≤ n. l , i → (l , j → left(Pi ,P j ,Pl)) ∧ (l , k → right(Pi ,Pk,Pl)).

42 Interpreting a Classical Geometric Proof with InteractiveRealizability

Note that the convexity of the anglêQPR is assured, because we require thatR is to the left ofPQ
andQ to the right ofPR.

Classical proof.Let P be the point with the least vertical coordinate and choose other two pointsQ′ and
R′, which are our candidates forQ andR respectively. We want all points exceptP to be to the left of
PQand to the right ofPR. If Q′ is to the left ofPR′, we swapQ′ andR′. Thus we know thatQ′ is to the
right of PR′ andR′ is to the left ofPQ′.

Now consider any pointS exceptP, Q′ andR′. We have four cases:

• If S is to the left ofPQ′ and if it is to the right ofPR′, then we keepQ′ andR′ as candidates forQ
andR.

• If S is to the right ofPQ′, then we chooseS as the new candidate forQ.
Clearly Q′ is to the left ofPS. Moreover, any other pointS′,
which we already checked to be to the left ofPQ′, is to the left
of PS too. This is a consequence of (9) and Lemma 4.
Indeed, from (9), we know thatS′ is either to the left or to the
right of PS. We already know thatS is to the right ofPQ′ and
Q′ is to the right ofPS′.

P

Q′
R′ S

S′

If S′ were to the right ofPS, then by Lemma 4, one ofQ′, S or S′ would have been strictly lower
thanP which would be a contradiction, sinceP is the lowest point. ThusS′ is to the left ofPS.

• Symmetrically, ifS is to the left ofPR′, then we chooseS as the new candidate forR.

• We show thatS cannot be to the right ofPQ′ and to the left ofPR′.
If this were the case,Q′ would be to the left ofPS andS would
be to the left ofPR′. Since we know thatR′ is to the left ofPQ′,
by Lemma 4, one ofS, Q′ or R′ would be strictly lower thanP.
This is a contradiction, sinceP is the lowest point by Lemma 3.

P

Q′R′

S

We repeat this procedure for all the points exceptP, Q′ andR′ and we find the required pointsQ and
R. �

For convenience we have written the proof as an iterative algorithm. The proof is actually by induc-
tion on a slightly stronger version of the final statement, that adds the requirement forP to be lower than
all the other points.

6 The Interactive Interpretation

Before studying the interactive interpretation of the whole proof of Theorem 1 along with its lemmas,
we need to understand their computational significance. Thus we stop for a moment and recall some
general considerations on the computational meaning of formulas in the BHK interpretation and, more
specifically, in the Curry-Howard correspondence.

As a consequence of the proofs-as-programs and formulas-as-types interpretation, the conclusion of
a proof (that is, the statement it proves) can be thought of asthe specification of the program representing
the proof.

In order to understand how the interactive interpretation works, it is important to distinguish com-
putations that can be carried out effectively from those that cannot. Consider a proof of a statement of
the form∀x. ∃y. A. If we read it as a specification, it calls for a program that describes a function, a
subroutine. It takes a natural number as an argument namedx and returns a pair containing a natural

Giovanni Birolo 43

numbery and a program/proof thaty satisfiesA. All of our theorems begin with universal quantifications
and implications, that is, they are specification for programs describing functions with arguments. Thus,
in order to have an actual computation we have to provide the program with the required arguments.

We can now explain the interactive interpretation of the whole proof, composed of the two lemmas
and the final algorithmic proof. We focus on the interaction between these parts without analyzing each
part in detail as we have done for Lemma 3.

We start by considering the statement of Theorem 1. Assume that we are given a natural numbern.
In the proof we work with the firstn+1 points of the enumeration.

The proof is an iterative procedure to selectP, Q andRsatisfying the followingbounding condition:

∀l ≤ n. l , i→ (l , j→ left(Pi ,P j ,Pl))∧ (l , k→ right(Pi ,Pk,Pl)). (10)

The bounding condition specifies an informative computation, sinceleft andright are defined by means of
<R, which is an existential quantification. Thus its proof computes some witnesses, namely the precision
of the comparisons we need to check that the bounding condition holds. While we are mainly interested
in the choice of the pointsP,Q andRand not in the information needed to prove the bounding condition
itself, the precision of the computation provided by (10) isactually used in interactive interpretation since
it can cause backtracking.

We claim that this bounding condition specifies an effective computation. First of all, the outer
universal quantification is bounded, thus, in order to compute the condition, we have to compute the
body of the quantificationn+1 times. The same holds for the conjunctions. Thus the effectiveness of the
whole condition follows from the effectiveness of the conjuncts. The implications are effective: their only
argument, the proof of the antecedent, is arithmetical atomic, hence irrelevant, thus the computations they
specify must be constant functions. Therefore, we can effectively compute them by applying them to any
single argument. Finally their consequents specify effective computations, thanks to (9), the assumption
that no three points are on the same line. Thus, proofs of the bounding condition describe effective
computations.

Now we can start following the proof. In the beginning, the lowest pointP is selected using Lemma 3
on the vertical coordinate. Consider the statement of Lemma3:

∀n. ∃i ≤ n. ∀ j ≤ n. r i ≤R r j .

As a specification, it calls for a program that, givenn, yields the valuei and the correctness computation
that checks thati is the least element. Since the correctness computation cannot be carried out effectively
(it is negatively decidable), the interactive interpretation computes a trivial least element the first time. If
later in the proof we happen to partially compute the correctness computation, then we may discover new
information and backtrack again to the least element computation. Since Lemma 3 does not necessarily
return a least element, but only a least element candidate,P is not the lowest point either, but just a lowest
point candidate.

The role of Lemma 4 is to prove that some point is strictly lower thanP, thus producing a contra-
diction. In the classical proof this ensures that undesirable situations never happen. In the interactive
interpretation however, sinceP is not necessarily the lowest point, no contradiction occurs. Instead, what
happens is that we actually are in one of the cases we had excluded in the classical proof. At this point,
in order to deduce the contradictory statement, we have partially computed the correctness computa-
tion returned by Lemma 3 and thus discovered which assumption was incorrectly guessed. We compute
the relevant witness and extend the state accordingly. Thenwe compute a new lowest point candidate

44 Interpreting a Classical Geometric Proof with InteractiveRealizability

and continue again following the proof of Theorem 1 until either we can satisfy its conclusion or we
backtrack again.

We use Lemma 4 in two places in the proof of Theorem 1. The first use takes place when, while
iterating on the points, we discover that the bounding condition fails for someS and we chooseS as the
new candidate forQ or R. We use Lemma 4 to show that this choice satisfies the boundingcondition
for all the previous points we iterated over until now. More precisely we use Lemma 4 to prove that,
if the bounding conditions fails forS, then one ofQ, R or S is strictly lower thanP. As we described
previously, this in turn starts the backtracking.

We also use Lemma 4 to claim that the bounding condition cannot fail becauseS is both to the right
of PQ and to the left ofPR. This case was excluded completely in the classical proof, since it always
leads to contradiction. When it occurs in the interactive interpretation, we backtrack for sure since the
bounding condition cannot be satisfied. More precisely, in this case Lemma 4 proves that one ofQ, R
or S is strictly lower thanP. Therefore, in order to get the contradiction, we instantiate the assumptions
yP ≤R yQ, yP ≤R yR andyP ≤R yS with enough precision to falsify at least one of them.

As a last example, consider a situation where the state is empty and thusP is simply the first point in
the enumeration. Assume that the points are arranged as shown in Figure 4.

Figure 4: A situation where no
backtracking occurs.

P
Q

R

S

Since the bounding condition is satisfied immediately, we never need
to use Lemma 4. Thus backtracking never ensues. This mean that
P, while certainly not the lowest point, is a good enough candidate
and we do not need another one. This is one of the cases we men-
tioned where the interactive interpretation produces a fast computa-
tion, since the lowest point is only computed once and the proof ends
with no backtracking. This shows how the behavior of interactive in-
terpretation of Lemma 3 depends heavily on the final statement of the
proof.

References

[1] Federico Aschieri & Stefano Berardi (2010):Interactive Learning-Based Realizability for Heyting Arithmetic
with EM1. Logical Methods in Computer Science6(3), doi:10.2168/LMCS-6(3:19)2010.

[2] Stefano Berardi & Ugo de’Liguoro (2008):A Calculus of Realizers forEM1 Arithmetic (Extended Abstract).
In: CSL, pp. 215–229, doi:10.1007/978-3-540-87531-4_17.

[3] Giovanni Birolo (2013):Interactive Realizability, Monads and Witness Extraction. Ph.D. thesis, University of
Turin. Available athttp://arxiv.org/abs/1304.4091.

[4] A.S. Troelstra & D. van Dalen (1988):Constructivism in Mathematics. Studies in Logic and the Foundations
of Mathematics, Elsevier Science. Available athttp://books.google.it/books?id=-tc2qp0-2bsC.

http://dx.doi.org/10.2168/LMCS-6(3:19)2010
http://dx.doi.org/10.1007/978-3-540-87531-4_17
http://arxiv.org/abs/1304.4091
http://books.google.it/books?id=-tc2qp0-2bsC

	1 Introduction
	2 Real Numbers
	3 The Interactive Interpretation of the Least Element Lemma
	4 The Real Plane
	5 The Geometric Part of the Proof
	6 The Interactive Interpretation

