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We present a structural representation of the Herbrand content of LK-proofs with cuts of complexity
prenex Π2/Σ2. The representation takes the form of a typed non-deterministic tree grammar G
of order 2 which generates a finite language, L(G ), of first-order terms that appear in the Herbrand
expansions obtained through cut-elimination. In particular, for every Gentzen-style reduction π π ′

between LK-proofs we study the induced grammars, respectively G and G ′, and classify the cases in
which language equality, L(G ) = L(G ′), and language inclusion, L(G )⊇ L(G ′), hold.

1 Introduction

In classical first-order logic a proof can be considered as being composed of two layers: on the one hand
the terms by which quantifiers are instantiated, and on the other hand, the propositional structure. This
separation is most clearly illustrated by Herbrand’s theorem [9, 3]: a formula is valid if and only if there
is a finite expansion (of existential quantifiers to disjunctions and universal quantifiers to conjunctions
of instances) which is a propositional tautology. Such Herbrand expansions can be transformed to and
obtained from cut-free sequent calculus proofs in a quite straightforward way.

It is non-trivial to formally extend this separation to proofs with cuts. An approach which has been
successful in this respect is the use of tree grammars, introduced in [10] for proofs with Π1-cuts and
extended to Π2-cuts in [1, 2]. In this setting, a proof in sequent calculus induces a tree grammar which
bears all instances of the end-sequent as well as the instantiation structure of the cuts without direct
reference to the cut formulæ themselves: one obtains a Herbrand expansion by computing the language
of the grammar.

In addition to the proof-theoretic interest behind an abstract representation of proofs with cut, proof
grammars provide a number of applications. Motivated by the aim to structure and compress automat-
ically generated proofs, an algorithm for cut-introduction based on proof grammars has been developed
in [13, 12]. This method has been implemented and empirically evaluated with good results in [11].
An extension of these techniques to the case of proofs with Π1-induction has led to a new technique
for inductive theorem proving [6] which is currently being implemented. A final application of proof
grammars is in the area of proof complexity, where lower bounds on the length of proofs with cuts
(which are notoriously difficult to control) are obtained by transferring lower bounds on the size of the
corresponding grammar [5, 4].

There are other formalisms which allow Herbrand expansions to be computed in a way that abstracts
from the propositional structure. The historically first such formalism is Hilbert’s ε-calculus [15]. In [7]
Gerhardy and Kohlenbach adapt Shoenfield’s variant of Gödel’s Dialectica interpretation to a system
of pure predicate logic. Recent work, related to proof nets, is that of Heijltjes [8] and McKinley [16],
and a similar approach, in the formalism of expansion trees [17], can be found in [14]. What sets proof
grammars apart from these formalisms is that they not only compute Herbrand expansions but provide
a (well-understood) abstract description of its structure which is crucial for the applications mentioned
above.
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2 On the Herbrand content of LK

In the present paper we provide an intermediate formalism between proof grammars and functional
interpretations with the aim of studying the relationship between the two approaches. This intermediate
formalism is presented as a grammar but instead of capturing the instantiation structure directly, it is
given by a brief line-by-line definition on the proof, as functional interpretations usually are. The neces-
sity for computing more than one witness (reflected by the case distinction constants in the Gerhardy–
Kohlenbach version of the Dialectica interpretation [7]) is reflected by non-deterministic production rules
in the grammar.

The main result we prove in this paper is stated below. Note that in the presence of Skolemisation it
suffices to consider proofs with Σ1 end sequents.

Theorem 1.1. Let π be a proof of ∃vvvF with F quantifier-free in which cut-formulæ are prenex Π2 or Σ2.
There exists an acyclic context-free grammar G such that

∨
ttt∈L(G ) F(ttt) is valid. Moreover, L(G ) contains

the Herbrand set extracted from any cut-free proof that can be obtained from π via a sequence of cut
reductions (see Figure 2) that always reduces to the weak (quantifier) side of a cut before the strong side.

More generally, L(G ) covers the Herbrand set of any cut-free proof obtained from π by a sequence
of reductions fulfilling the following two restrictions.

1. A contraction on a universally quantified Π2 formula is reduced only when no other reduction rule
is applicable (to this cut);

2. If two cuts are permuted in the form

A,B,Γ Ā,∆
cut−−−−−−−−−−−−−−−

B,Γ,∆ B̄,Λ
cut−−−−−−−−−−−−−−−−−−−

Γ,∆,Λ

 

A,B,Γ B̄,Λ
cut−−−−−−−−−−−−−−−−

A,Γ,Λ Ā,∆
cut−−−−−−−−−−−−−−−−−−−

Γ,∆,Λ

then one of A and B is not Π2.

2 The system LK

Traditionally LK is represented in two-sided sequent calculus. For notational simplicity however, we
work in one-sided sequent calculus (Tait-style) with explicit weakening (w), contraction (c) and per-
mutation (p) rules. Axioms and rules are laid out in Figure 1 and the cut reduction steps are presented
in Figure 2. We generally leave applications of the permutation rule implicit: its only role is to facilitate
defining the grammar in the next section.

Axioms: A, Ā for A an atomic formula

Inference rules:

A,B,Γ
∨ −−−−−−−−−

A∨B,Γ

A,Γ B,∆
∧ −−−−−−−−−−−−

A∧B,Γ,∆

A(v/α),Γ
∀ −−−−−−−−−−−−
∀vA,Γ

A(v/t),Γ
∃ −−−−−−−−−−−
∃vA,Γ

A,Γ Ā,∆
cut−−−−−−−−−−−−

Γ,∆

Γ
w−−−−

A,Γ

A,A,Γ
c−−−−−−−

A,Γ

Γ,B,A,∆
p−−−−−−−−−−

Γ,A,B,∆

Figure 1: Axioms and rules of LK. The usual eigenvariable conditions for quantifier introduction apply.
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Axiom:
π

Γ,A Ā,A
cut−−−−−−−−−−−−−−−−

Γ,A

 
π

Γ,A

Boolean:

π0

A,Γ

π1

B,∆
∧ −−−−−−−−−−−−−−−−−−−−

A∧B,Γ,∆

π2

Ā, B̄,Π
∨ −−−−−−−−−−

Ā∨ B̄,Π
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,Π

 
π0

A,Γ

π1

B,∆

π2

Ā, B̄,Π
cut−−−−−−−−−−−−−−−−−−−−−−

Ā,∆,Π
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,Π

Quantifier:

π0

A(v/α),Γ
∀ −−−−−−−−−−−−
∀vA,Γ

π1

Ā(v/t),∆
∃ −−−−−−−−−−−
∃vĀ,∆

cut−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆

 

π
[α 7→t]
0

A(v/t),Γ

π1

Ā(v/t),∆
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆

Weakening:

π0

Γ
w−−−−

A,Γ

π1

Ā,∆
cut−−−−−−−−−−−−−−−−−−−−

Γ,∆

 

π0

Γ
w∗ −−−−

Γ,∆

Contraction:

π0

A,A,Γ
c−−−−−−−

A,Γ

π1

Ā,∆
cut−−−−−−−−−−−−−−−−−−−−

Γ,∆

 

π0

A,A,Γ

π1

Ā,∆
cut−−−−−−−−−−−−−−−−−−−−−−

A,Γ,∆

π∗1

Ā,∆
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,∆
c∗ −−−−−−−

Γ,∆

Unary inf.:

π0

Γ′,A
r−−−−−

Γ,A

π1

∆, Ā
cut−−−−−−−−−−−−−−−−−−−−

Γ,∆

 

π0

Γ′,A

π1

∆, Ā
cut−−−−−−−−−−−−−−−−−−−−−

Γ′,∆
r−−−−−

Γ,∆

Binary inf.:

π0

Γ′

π1

∆′,A
r−−−−−−−−−−−−−−−−−−−

Γ,∆,A

π2

Λ, Ā
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,Λ

 
π0

Γ′

π1

∆′,A

π2

Λ, Ā
cut−−−−−−−−−−−−−−−−−−−−−

∆′,Λ
r−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,Λ

Figure 2: One-step cut reduction and permutation rules. In the final two reductions, r denotes respectively
an arbitrary unary and binary rule.
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We use α , β , etc. for free and v, w, etc. for bound variables. Upper-case Roman letters, A, B, etc.
denote formulæ and upper-case Greek letters Γ, ∆, etc. range over sequents, namely finite sequences of
formulæ. We write Ā to denote the dual of the formula A obtained by de Morgan laws. A proof is a finite
binary tree labelled by sequents obtained from the axioms and rules of the calculus with the restriction
that cuts apply to prenex Π2/Σ2 formulæ only. Without loss of generality, we assume all proofs are
regular, namely strong quantifier inferences are associated unique eigenvariables. This is particularly
relevant in the case of contraction reduction where a sub-proof is duplicated and eigenvariables renamed
(expressed by annotating the proof in question by an asterisk) to maintain regularity. The length of a
sequent Γ is denoted |Γ| and we write π ` Γ to express that π is a proof with end sequent Γ.

3 Proof grammars

To an LK-proof π ` Γ we associate a typed non-deterministic tree grammar Gπ (equivalently, an order-2
recursion scheme) with production rules that abstract the computation of Herbrand sets achieved through
Gentzen-style cut-elimination.

Informally, Gπ comprises rewrite rules for symbols σ i
π ′ where π ′ ` Γ′ is a sub-proof of π and 0 ≤

i < |Γ′|. The non-terminal σ i
π ′ is of function type (of order ≤ 2) with arity |Γ′| returning a sequence of

closed terms as witnesses for the weak quantifiers in the i-th formula in Γ′. The j-th argument of σ i
π ′

is interpreted as input for the strong quantifiers in the j-th formula in Γ′ and is either a finite sequence
(of determined length) or a function from first-order objects to sequences thereof, the case depending on
the quantifier complexity of the corresponding formula. The type of the arguments to σ i

π ′ is independent
of i.

As an example, consider a derivation π ` A0,A1 where A0 and A1 are prenex Σ2∪Π2 formulæ with
m0 and m1 existential quantifiers respectively. The grammar contains two non-terminals associated to π ,
σ0

π and σ1
π , of type

σ
0
π : τ0→ τ1→ (o×·· ·×o︸ ︷︷ ︸

m0

) σ
1
π : τ0→ τ1→ (o×·· ·×o︸ ︷︷ ︸

m1

)

where o denotes the type of first-order terms and τi is a type depending on the number of universal
quantifiers in Ai. Given terms T0 : τ0 and T1 : τ1 the grammar rewrites the term σ i

πT0T1 to a sequence
of first-order terms 〈t1, . . . , tmi〉 of length mi to be interpreted as witnesses to the extensional quantifiers
in Ai. The role of T0 and T1 is to provide input for the strong quantifiers (specifically, their corres-
ponding eigenvariables) on which witnesses to the existential quantifiers may depend. For instance, if
Ai = ∀v∃w0∃w1Bi and Bi is quantifier-free for each i, then τ0 = τ1 = o, m0 = m1 = 2 and σ i

πT0T1 re-
writes to pairs of the form 〈r,s〉[α 7→ T0][β 7→ T1] where r and s are first-order terms and α and β are
the eigenvariables for the strong quantifier in A0 and A1 respectively. Higher-type terms arise in the case
of sequents with Σ2 formulæ. Suppose A0 = ∃v∀wB0 where B0 is quantifier-free and A1 is as above. In
this case T0 has type τ0 = (o→ o) and is utilised in generating input for the universal quantifier in A0
modulo witnesses for the existential quantifier. If the final inference in π derives the sequent A0,A1 from
π0 ` ∀wB0(v/r),A1 then since B0 is quantifier-free, the two non-terminals associated to π0 are

σ
0
π0

: o→ o→ o σ
1
π0

: o→ o→ (o×o).

The production rules corresponding to this inference are

σ
0
π T0T1→ 〈r〉 σ

1
π T0T1→ σ

1
π0
(T0r)T1.
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The left-hand rule returns the term r as the (single) witness to the existential quantifier in A0 whereas
the right-hand rule records the fact that in a witness to the existential quantifier in A1, any occurrence
of the eigenvariable for the universal in A0 will be substituted for T0r. In general, T0 will itself contain
non-terminals for other parts of the (wider) proof and will have been introduced through the nesting of
non-terminals that occurs when passing through a cut rule (see Figure 3).

In the following, fix an LK-proof π ` Γ in which all formulæ are prenex Π2/Σ2.

3.1 Terms and types

We expand first-order terms by a form of explicit substitution, resulting in structured (first-order) terms:
every first-order term is a structured term, and if s and t are structured terms and α is a free-variable
symbol then the expression s[α 7→ t] is a structured term.

Let o denote the type of structured first-order terms and ε the unit type with a single element 〈〉 : ε .
o and ε are called ground-types and their elements ground-terms. We consider the explicit substitution
constructors above as term building operations on both o and ε . A type hierarchy is formed by closing the
ground-types under the usual pair-types and function-types: given u,x : ρ and u′ : ρ ′ we have u?u′ : ρ×ρ ′

and λxu′ : ρ → ρ ′. To avoid unnecessary parenthesis the three binary (infix) operations are assumed to
associate to the right. We define o0 = ε and ok+1 = o×ok. An element of a type of the form ok is called a
sequence-term. Given a (possibly empty) sequence (ui : o)i<k of terms of type o, we write 〈u0, . . . ,uk−1〉
to abbreviate the sequence-term u0 ? · · ·?uk−1 ? 〈〉 of type ok.

Rule of inference Corresponding production rule(s)

π ` Ā,A σ i
πz0z1→ z1−i

π0 ` A(v/α),Γ
∀ −−−−−−−−−−−−−−−−−−

π ` ∀vA,Γ
σ i

π(z0 ? z1)yyy→ (σ i
π0

z1yyy)[α 7→ z0]

π0 ` A(v/r),Γ
∃ −−−−−−−−−−−−−−−−−

π ` ∃vA,Γ
σ i

πzyyy→

{
r ? (σ0

π0
(z · r)yyy), if i = 0,

σ i
π0
(z · r)yyy, otherwise.

π0 ` A,Γ π1 ` Ā,∆
cut−−−−−−−−−−−−−−−−−−−−−−−−

π ` Γ,∆
σ i

πxxxyyy→

{
σ i+1

π0
((σ0

π1
◦Ā σ0

π0
)yyyxxx)xxx, i < |Γ|,

σ i′+1
π1

((σ0
π0
◦A σ0

π1
)xxxyyy)yyy, i≥ |Γ|, i′ = i−|Γ|.

π0 ` A,A,Γ
c−−−−−−−−−−−−−

π ` A,Γ
σ i

πzyyy→

{
σ0

π0
zzyyy | σ1

π0
zzyyy, if i = 0,

σ i+1
π0

zzyyy, 0 < i < |Γ|.
π0 ` Γ

w−−−−−−−−−
π ` A,Γ

σ i
πzyyy→

{
cA, for i = 0,
σ i−1

π0
yyy, otherwise.

π0 ` Γ,B,A,∆
p−−−−−−−−−−−−−−−−−

π ` Γ,A,B,∆
σ i

πxxxz0z1yyy→


σ i+1

π0
xxxz1z0yyy, if i = |Γ|,

σ i−1
π0

xxxz1z0yyy, if i = |Γ|+1,
σ i

π0
xxxz1z0yyy, otherwise.

Figure 3: Production rules: xxx and yyy denote sequences of distinct variables of length |Γ| and |∆| re-
spectively; the contraction rule is the only inference introducing non-determinism; ck, ◦F and z · r are
abbreviations for terms described in Section 3.2.
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Let Γ = {A0, . . . ,An}. The type of σ i
π is given by

σ
i
π : τ

∗
A0
→ ··· → τ

∗
An
→ τAi

where τF and τ∗F are determined by the complexity of F :

• for F = ∀v1 · · ·∀vm∃w1 · · ·∃wnG with G quantifier-free,

τF = on
τ
∗
F = om;

• for F = ∃v1 · · ·∃vm∀w1 · · ·∀wnG with n > 0 and G quantifier-free,

τF = om
τ
∗
F = o→ ··· → o︸ ︷︷ ︸

m

→ on.

The order of a type ρ (and term of type ρ), ord(ρ), is defined as usual: ord(ε) = ord(o) = 0,
ord(ρ ×ρ ′) = max{ord(ρ),ord(ρ ′)} and ord(ρ → ρ ′) = max{ord(ρ)+ 1,ord(ρ ′)}. Thus for a proof
π ` Γ where Γ is a set of prenex Π2 and Σ2 formulæ, and for i < |Γ|, the order of σ i

π is no greater than 2.
In the sequel we avoid explicit mention of types when they can be inferred from context.

3.2 Production rules

Let Σ be a finite set of (typed) variable symbols. A structured λ -term over Σ is a well-typed term
constructed from ground-terms, variables and non-terminals via the term-forming operations described
above in which any freely occurring variable is an element of Σ.

The production rules for non-terminals are determined by the final rule applied to the index proof
and are presented in Figure 3. Each production rule has the form u→ u′ where the two terms are of the
same ground-type and u′ is a structured λ -term over the free variables in u. With the exception of the ∀
production rules (which are discussed below) u has the form σ i

πx0 · · ·xn which is often condensed to σ i
πxxx.

Note that the contraction rule is the only inference rule that introduces non-determinism.
The presentation of the production rules includes the following abbreviations. The symbol cA ap-

pearing in the production rule for weakening (w) denotes the sequence-term 〈c, . . . ,c〉 : ok where c : o is
some fixed constant symbol and k is the number of existential quantifiers in A.

The binary operation · appearing in the rule for existential quantifiers (∃) extends term application to
cases in which the first argument has type ε in a trivial way:

z · x =

{
z, if z : ε ,
zx, otherwise.

Its role is to compensate for the case that A is a Σ1 formula whereby τ∗∃vA = τ∗A = ε; otherwise τ∗∃vA =
o→ τ∗A and so z · r : τ∗A as required.

In the production rules for cut (cut), the operation ◦F abbreviates combining two non-terminals
depending on the quantifier complexity of F . Let π0 ` Γ and π1 ` ∆ be LK-proofs, and i < |Γ|, j < |∆|.
For non-terminals σ0

π0
and σ0

π1
and variable sequences xxx and yyy of length |Γ|−1 and |∆|−1 respectively,

we define

(σ0
π0
◦F σ

0
π1
)xxxyyy =


〈〉, if F is quantifier-free
λ z0 · · ·λ zm.σ

0
π0
〈z0, . . . ,zm〉xxx, if F = ∀v0 · · ·∀vmG and G ∈ Σ1,

σ0
π0
(λ z0 · · ·λ zm.σ

0
π1
〈z0, . . . ,zm〉yyy)xxx, if F = ∃v0 · · ·∃vmG and G ∈Π1.
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Observe that according to the typing introduced earlier, the production rules listed in Figure 3 are well-
typed (by definition, the axiom case applies only when A is quantifier-free whence all relevant types are
identical).

Before we proceed with the definition of language it is important to address the universal introduction
rule ∀. In its stated form, Gπ is context-sensitive as the reduction depends on the form of at least one
argument. A context-free grammar can be obtained by formulating the production rules using projection
functions for pair-types:

σ
n
π zyyy→ (σn

π0
(p1z)yyy)[α 7→ p0z]. (1)

Doing so, however, will in general expand the language of the grammar: if T is a term that non-
deterministically rewrites to r0 ?T0 and r1 ?T1 (and the four terms are pairwise distinct) then substituting
T for z in (1) yields four combinations of terms, compared with just two available from the ∀ production
rule. Nevertheless, this increase will be always finite.

3.3 Language

A derivation in the grammar is a sequence of structured λ -terms containing non-terminals obtained by
applying a sequence of grammar production rules and β -reductions. For a well-typed term u (possibly
containing non-terminals), L(u) denotes the set of terms derivable from u to which no further rules may
be applied. We write u∼ u′ if L(u) = L(u′).

Given a sequence-term T = 〈t1, . . . , tk〉 : ok of structured first-order terms, let T ∗ denote the result
of evaluating all explicit substitutions occurring in T , forming a sequence of first-order terms. Fix a
sequent Γ = ∃vvv0A0, . . . ,∃vvvkAk of prenex Σ1 formulæ wherein for each i ≤ k, Ai is quantifier-free and
∃vvvi abbreviates a block of existential quantifiers of length ai. Let π ` Γ be an LK-proof with cuts of
complexity at most prenex Π2/Σ2. The language of π , denoted L(π), is the set of pairs (i,T ∗) such that
i ≤ k and T : oai is a structured sequence-term free of non-terminal symbols derivable from the term
σ i

π〈〉 · · · 〈〉. The next lemma demonstrates that the choice of starting symbol is canonical.

Lemma 3.1. If π ` A,Γ and A is prenex Σ1 then for all terms u0, . . . ,u|Γ| of the appropriate type we have
σ i

πu0 · · ·u|Γ| ∼ σ i
π〈〉u1 · · ·u|Γ|.

Since the production rules are naturally acyclic (rewriting a non-terminal σ i
π introduces only non-

terminals indexed by strict sub-proofs of π), we deduce

Lemma 3.2. For any regular proof π , L(π) is finite.

As a consequence of Lemma 3.2 the language of a proof π can be viewed as inducing an expansion
of its end-sequent, obtained by replacing each formula ∃vvviAi by the corresponding disjunction

∨
{Ai(ttt) |

(i, ttt) ∈ L(π)}.

Theorem 3.3. If π ` Γ is an LK-proof of a prenex Σ1 sequent in which all cuts are prenex Π2 and Σ2
formulæ then the expansion of Γ induced by L(π) is a tautology.

The proof of this theorem (and the more general statement in Theorem 1.1) is covered in Section 4
below by establishing that the language of a proof is preserved through most cut reduction steps. In the
(base) case that all cuts in π are on quantifier-free formulæ, we observe that the grammar rules merely
associate to each weak quantifier in the end-sequent the witnesses as they appear in π .
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4 Language preservation

Let π π ′ express that π ′ is obtained from π by the application of a reduction rule in Figure 2 to a sub-
proof of π . In the present section we determine for which reduction steps π  π ′ we have: (i) language
inclusion: L(π) ⊇ L(π ′); and (ii) language equality: L(π) = L(π ′). Language inclusion will suffice to
derive the main theorem; equality allows a more fine-grained study of the Herbrand content of proofs as if
π0 and π1 are proofs that can be connected by a sequence of forward and backward language-preserving
reduction steps then L(π0) = L(π1).

The structure of our proof grammars is such that to deduce inclusion or equality it suffices to analyse
the reduction steps locally:

4.1 Cut permutation

We begin by considering the instances of the binary inference reduction that permute two cuts. Suppose
π  π ′ are the two proofs

π0

F,G,Γ

π1

F̄ ,∆
cut−−−−−−−−−−−−−−−−−−−−−

G,Γ,∆

π2

Ḡ,Λ
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

π ` Γ,∆,Λ

π0

F,G,Γ

π2

Ḡ,Λ
cut−−−−−−−−−−−−−−−−−−−−−

F,Γ,Λ

π1

F̄ ,∆
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

π ′ ` Γ,∆,Λ

(2)

Lemma 4.1. For π and π ′ in (2), if either F or G is Σ2 then L(π) = L(π ′).

Lemma 4.1 covers all cases of permuting two cuts that suffice for establishing Theorem 1.1. In the
case both F and G are (genuine) Π2 formulæ, the language of the grammars need not be preserved:

Lemma 4.2. There are instantiations of π and π ′ in (2) such that L(π) and L(π ′) are incomparable.

4.2 Contraction reduction

Consider the proofs

π0

F,F,Γ
c−−−−−−−

F,Γ

π1

F̄ ,∆
cut−−−−−−−−−−−−−−−−−−−−

π ` Γ,∆

π0

F,F,Γ

π1

F̄ ,∆
cut−−−−−−−−−−−−−−−−−−−−−

F,Γ,∆

π∗1

F̄ ,∆
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,∆
c∗ −−−−−−−−−−

π ′ ` Γ,∆

(3)

Lemma 4.3. For π and π ′ in (3), if F is Σ2 then L(π) = L(π ′).

As in the previous case, language inclusion does not hold in general when reducing a contraction.
Specifically, if (i) F is a genuine Π2 formula i.e. F = ∀v0 · · ·∀vk∃wG for some Σ1 formula G, and (ii)
there are contractions on F̄ in the subproof π1 then the languages L(π) and L(π ′) can be incomparable.
We do, however, have

Lemma 4.4. For π and π ′ in (3), if F is Π2 and there are no contractions on F̄ in the sub-proof π1 then
L(π ′)⊆ L(π).
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4.3 Quantifier reduction

Lemma 4.5. For π and π ′ in (4) we have L(π) = L(π ′).

π0

F(v/α),Γ
∀ −−−−−−−−−−−−
∀vF,Γ

π1

F̄(v/t),∆
∃ −−−−−−−−−−−
∃vF̄ ,∆

cut−−−−−−−−−−−−−−−−−−−−−−−−
π ` Γ,∆

π
[α 7→t]
0

F(v/t),Γ

π1

F̄(v/t),∆
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

π ′ ` Γ,∆

(4)

4.4 Quantifier permutation

Consider permuting a universal quantifier with a cut:

π0

A(v/α),Γ,F
∀ −−−−−−−−−−−−−−−
∀vA,Γ,F

π1

∆, F̄
cut−−−−−−−−−−−−−−−−−−−−−−−−

π ` ∀vA,Γ,∆

π0

A(v/α),Γ,F

π1

∆, F̄
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−

A(v/α),Γ,∆
∀ −−−−−−−−−−−−−−−−

π ′ ` ∀vA,Γ,∆

(5)

Lemma 4.6. For π and π ′ in (5) we have L(π ′)⊆ L(π).

4.5 Remaining reductions

The remaining rules are straightforward to analyse and all induce language equality except for weakening
reduction for which we have language inclusion.

5 Conclusion

To each proof in first order logic with prenex Π2/Σ2 cuts we associate a formal grammar abstracting
the semantic aspect of cut elimination and classify the cut reduction and permutation rules according to
whether or not the language of the grammar is preserved under these rules. The ultimate goal of the
study is to extend this classification to arbitrary classes of cut-formulæ.

The grammars utilised in this paper have a number of advantages over previous language-theoretic
approaches for proofs with Π2/Σ2 cuts [1, 2]. We can now deal with non-simple proofs (i.e. proofs
admitting contractions on universal formulæ) as well as blocks of like quantifiers. Furthermore, unlike
the grammars devised in [1, 2], derivations are not restricted by equality constraints (or rigidity require-
ments). As a result, preservation of language over the cut reduction steps reduces more or less to mere
computation. Also notable is the fact that the production rules of the grammar given here are both acyc-
lic and unidirectional relative to the associated proof: each production rule rewrites a non-terminal in
favour of non-terminals labelled by strict sub-proofs. Finally, the new grammars make the appearance of
non-confluence in cut-elimination more transparent.
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