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This paper concerns branching simulation for weighted Kripke structures with parametric weights.
Concretely, we consider a weighted extension of branching simulation where a single transition can
be matched by a sequence of transitions while preserving the branching behavior. We relax this no-
tion to allow for a small degree of deviation in the matching of weights, inducing a directed distance
on states. The distance between two states can be used directly to relate properties of the states within
a sub-fragment of weighted CTL. The problem of relating systems thus changes to minimizing the
distance which, in the general parametric case, corresponds to finding suitable parameter valuations
such that one system can approximately simulate another. Although the distance considers a po-
tentially infinite set of transition sequences we demonstrate that there exists an upper bound on the
length of relevant sequences, thereby establishing the computability of the distance.

1 Introduction

In recent years within the area of embedded and distributed systems, a significant effort has been made to
develop various formalisms for modeling and specification that address non-functional properties. Exam-
ples include extensions of classical Timed Automata [2] with cost and resource consumption/production
in Priced Timed Automata [6] and Energy Automata [8]. For quantitative analysis of these systems, a
generalization of bisimulation equivalence by Milner [17] and Park [19] as behavioral distances [21, 16,
1] between system, has been studied.

In parallel, parametric extensions of various formalism have been intensively studied. Instead of
requiring exact specification of e.g probabilities, cost or timing constraints, these formalisms allow for
the use of parameters representing unknown or unspecified values. This can be used to encode multiple
configurations of the same system as a system being parametric in the configurable quantities. The prob-
lem is then to find “good” parameter values such that the instantiated system (configuration) performs
as expected. For real-time systems, Parametric Timed Automata [3, 4] and Parametric Stateful Timed
CSP [5] have been developed. Parametric probabilistic models [14, 13] have also been developed as
well as parametric analysis for weighted Kripke structures [9, 10, 15]. [10] provides an efficient model-
checking algorithm for a parametric extension of real-time CTL on timed Kripke structures. [15] extends
[10] to full parameter synthesis by demonstrating that model-checking a finite subset of the entire set of
parameter values is sufficient.

In this paper we revisit (parametric) weighted Kripke structures with the purpose of lifting the be-
havioral distance defined in [11] to the parametric setting, demonstrate its fixed point characterization
and prove computability of the distance between any two systems. The distance is a generalization of a
weighted extension of branching simulation [12]. Consider the following two processes s, t both ending
in the inactive process 0:

s→5 0 and t→3 t1→2 0
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If s, t, t1 satisfy the same atomic proposition, t1 may be deemed unobservable and t may simulate s as
they both evolve into the process 0 with the same overall weight. [11] captures this situation in generality
by extending branching simulation with weights. Consider a similar scenario, where the process t is now
parametrized by the parameter p:

s→5 0 and t→p t1→2 0

If p 6= 3 we know that t can no longer simulate s. However, it should be intuitive that p = 6 is somehow
worse than p = 2 as the latter is closer to 3. Thus, instead of considering pre-orders and Boolean answers
we develop a parametric distance between states such that as the value of p approaches 3, the distance
between s and t decreases towards 0. The distance will also give us a direct relation between the prop-
erties satisfied by s and t and a distance of 0 implies that any formula satisfied by s is satisfied by t. In
this way one can reason about how “close” a given implementation is to the specification and compare
different configurations that are not necessarily able to fully simulate s.

The structure of this paper is as follows: in Section 2 we introduce preliminaries and recall results
from [11], Section 3 concerns the fixed point characterization of the distance for weighted systems, Sec-
tion 4 lifts the distance to the parametric setting and finally Section 5 concludes the paper and describes
future work.

2 Preliminaries

A weighted Kripke Structure (WKS) extends the classical Kripke structure by associating to each transi-
tion a non-negative rational transition weight.

Definition 1 (Weighted Kripke Structure). A weighted Kripke Structure is a tuple K = (S,AP,L ,→)
where S is a finite set of states, AP is a set of atomic propositions, L : S→P(AP) is a labelling function,
associating to each state a set of atomic propositions and→⊆ S×Q≥0×S is the finite transition relation.

A transition from s to s′ with weight w will be denoted by s→w s′ instead of (s,w,s′) ∈→.

Example 1. Figure 1 depicts the WKS K = (S,AP,L ,→) where S = {s,s1,s2,s3,s4, t, t1, t2}, AP =
{a,b}, L (s) = L (s1) = L (s2) = L (t) = L (t2) = {a}, L (s3) = L (s4) = L (t1) = {b} and
→= {(s,1,s1),(s,2,s2),(s1,2,s2),(s1,1,s3),(s1,3,s4),(s2,5,s4),(t,2, t1),(t,1, t2),(t2,2, t2),(t2,1, t1)}.

s1{a}

s{a}

s2{a}

s3 {b}

s4 {b}

t{a}

t1{b} t2 {a}

2 1

2

1

1

2

1

2 3

5

Figure 1: WKS K where s 6≤ t and t 6≤ s but s≤0.5 t.

To reason about behavior of WKSs, we introduce a weighted variant of the classical notion of branch-
ing simulation [12]. The basic idea is to let a transition s→5 s′ be matched by a sequence of transitions
t→2 t1→2 t2→1 t3, if t3 can simulate s′, as the accumulated weight equals 5. In addition, each interme-
diate state passed through in the matching transition sequence must be able to simulate s. In this way the
branching structure of systems is preserved. Instead of always requiring exact weight matching we allow
small relative deviations. These small deviations will in Section 3 induce a directed distance between
WKS states.
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Definition 2 (Weighted Branching ε-Simulation [11]). Given a WKS K = (S,AP,L ,→) and an ε ∈
R≥0, a binary relation Rε ⊆ S×S is a weighted branching ε-simulation relation if whenever (s, t) ∈ Rε :

• L (s) = L (t)

• for all s→w s′ there exists t→v1 t1→v2 · · · →vk tk such that ∑
k
i=1 vi ∈ [w(1−ε),w(1+ε)],(s′, tk) ∈

Rε and ∀i < k.(s, ti) ∈ Rε .

If there exists a weighted branching ε-simulation relating s to t we write s ≤ε t. If ε = 0 we write
s≤ t instead of s≤0 t. Note that in this case ∑

k
i=1 vi = w.

Example 2. Consider again Figure 1 and the pair (s, t). It is clear that t 6≤ s because of the loop t2→2 t2.
We can also observe that s 6≤ t as the transition s→2 s2 can only be matched by t →2 t1 but s2 6≤ t1 as
L (s2) 6= L (t1). If we relax the matching requirements by 50%, we get that s can be simulated by t i.e
s ≤0.5 t; s→2 s2 can be matched by t →1 t2 as [2(1− 0.5),2(1+ 0.5)] = [1,3] and 1 ∈ [1,3] (another
legal match would be t→1 t2→2 t2). Now, s2→5 s4 can be matched exactly by t2→2 t2→2 t2→1 t1. It
follows that ε ≥ 0.5 ⇐⇒ s≤ε t.

If we restrict weighted CTL to only encompass the existential quantifier and remove the next-operator
and we know that s≤ε t, then for any property φ of s, there exists a related property φ ε of t.

Definition 3 (Existential Fragment of Weighted CTL without next). The syntax of EWCT L−X is given
by the following abstract syntax:

φ ::= a | ¬a | φ1∧φ2 | φ1∨φ2 | E(φ1UIφ2),

where a ∈ AP, I = [l,u] and l,u ∈Q≥0 such that l ≤ u. For a WKS K = (S,AP,L ,→) and an arbitrary
state s∈ S, the semantics of EWCTCL−X formulae is given by a satisfiability relation, inductively defined
on the structure of formulae in EWCT L−X . For existential until; K ,s |= E(φ1UIφ2) ⇐⇒ there exists
a sequence s→w1 s1 →w2 · · · →wk sk →wk+1 . . . where sk |= φ2,∀i < k.si |= φ1 and ∑

k
i=1 wi ∈ I. Let the

ε-expansion of a formula φ = E(φ1U[l,u]φ2) be given by φ ε = E(φ ε
1 U[l(1−ε),u(1+ε)]φ

ε
2 ) where φ ε

1 and φ ε
2

are defined inductively by relaxing any interval by ε percent in both directions (just as for [l,u]).

Theorem 1. [11] Let K = (S,AP,L ,→) be a WKS. Then for all s, t ∈ S,ε ∈ R≥0:

s≤ε t iff ∀ε ′ ∈Q≥0,ε ≤ ε
′.[∀φ ∈ EWCT L−X .s |= φ =⇒ t |= φ

ε ′ ].

3 Weighted Branching Simulation Distance for WKSs

We now define a directed distance between WKS states as a least fixed point to a set of equations. The
distance from s to t, d(s, t), represents the minimal ε such that s≤ε t. Thus, if d(s, t) = 0 then s≤ t. As
the distance is based upon weighted branching ε-similarity and its relative deviation in weight matching,
it will not satisfy the triangle inequality and is therefore not a hemi-metric.

The distance definition follows intuitively weighted branching ε-simulation. If s≤ε t then no matter
what transition s chooses, t has a matching transition sequence with a relative difference of at most ε . In
order words, for a given transition s→w s′, the goal of t is to find a matching sequence t→v1 t1 · · · →vn tn
that minimizes the relative difference

∣∣∣∑
n
i=1 vi
w −1

∣∣∣ as well as ensuring that any intermediate state ti has as
small a distance to s as possible. The strategy of s is then to find a maximal move, given the minimization
strategy of t. In the remainder of this section we assume a fixed WKS K = (S,AP,L ,→).
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Definition 4 (Weighted Branching Simulation Distance). For an arbitrary pair of states s, t ∈ S we de-
fine the weighted branching simulation distance from s to t, d(s, t), as the least fixed point (min

= ) of the
following set of equations:

d(s, t) min
=


∞ if L (s) 6= L (t)

maxs→ws′

{
mint→v1 t1···→vn tn

{
max

{ ∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ,d(s′, tn),
max{d(s, ti)| i < n}

}}}
o.w

We assume the empty transition sequence to have accumulated weight 0 and let R≥0 = {w |w ∈
R,w ≥ 0}∪ {∞} denote the extended set of non-negative reals. For any d1,d2 ∈ RS×S

≥0 let d1 ≤ d2 iff
∀(s, t) ∈ S×S.d1(s, t)≤ d2(s, t). Then (RS×S

≥0 ,≤) constitutes a complete lattice. We now define a mono-
tone function on (RS×S

≥0 ,≤) that iteratively refines the distance:

Definition 5. Let F : RS×S
≥0 → RS×S

≥0 be defined for any d ∈ RS×S
≥0 :

F (d)(s, t) =


∞ if L (s) 6= L (t)

maxs→ws′

{
mint→v1 t1···→vn tn

{
max

{ ∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ,d(s′, tn),
max{d(s, ti)| i < n}

}}}
o.w

By Tarski’s fixed point theorem [20] we are guaranteed the existence of a least (pre-)fixed point.
Thus, the weighted branching simulation distance is well-defined. Note that any transition s→w s′, t
may have an infinite set of possible transition sequence matches in the presence of cycles in the system.
To this end we demonstrate an upper bound, N, on the length of relevant matching sequences. As the set
of sequences of length at most N is finite (the WKS is finite) computability of the distance follows. The
first step is proving that any sequence exercising a loop with accumulated weight 0 can be ignored. We
refer to these cycles as 0-cycles.

Lemma 1. For a given move s→w s′, any transition sequence t →v1 t1 · · · →vn tn with a 0-cycle can be
removed without affecting the distance d(s, t).

Proof. A transition sequence with one or more 0-cycles has the exact same accumulating weight as the
corresponding sequence with no 0-cycles. Furthermore, exercising the loop (once) can only introduce
new states, leading to a potentially larger value of max{d(s, ti)| i< n}. Thus, 0-cycles can be ignored.

Given that 0-cycles can be removed, we now prove an upper bound N on the length of sequences that
affect the distance d(s, t). Thus, any sequence longer than N can be safely ignored.

Lemma 2. Given that K has no 0-cycles, it is the case that whenever s→w s′:

∃N.∀π = t→v1 t1 . . .→vn tn,n≥ N.

∃π∗ = t→u1 t ′1 . . .→um t ′m,m≤ N.

tn = t ′m ∧
∣∣∣∣∑m

i=1 ui

w
−1
∣∣∣∣≤ ∣∣∣∣∑n

i=1 vi

w
−1
∣∣∣∣∧

{t ′1, . . . , t ′m−1} ⊆ {t1, . . . , tn−1}

Proof. Let wmin =min{w |s→w s′} be the minimum weight in the WKS and let swmax =max{w |s→w s′}
be the maximum weight out of s. We now demonstrate that N ≥ 2·swmax

wmin
· |S| is sufficient. Any sequence

of length |S| must have a loop which, by assumption, cannot have accumulated weight 0. Thus, after |S|
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transitions, the accumulated weight must be at least wmin. Without loss of generality, assume that it is
exactly wmin. If the sequence exercises the loop a number of time, the accumulated weight will at some
point reach 2 · swmax . Let this sequence be π = t→v1 t1 · · · →vk tk and let x denote the number of times the
loop is exercised i.e x ·wmin ≥ 2 ·swmax . Consider now the corresponding sequence π∗ = t→u1 t ′1 · · · →ul t ′l
where the loop is removed. As ∑

k
i=1 vi≥ 2 ·swmax it follows that

∣∣∣∑
k
i=1 vi

swmax
−1
∣∣∣> 1. By assumption, removing

the loop results in a strictly lower accumulated weight implying
∣∣∣∑

l
i=1 ui

swmax
−1
∣∣∣ < ∣∣∣∑

k
i=1 vi

swmax
−1
∣∣∣. We also

directly have tk = t ′l and {t1, . . . , t ′l} ⊆ {t1, . . . , tk}. We will now derive N from the inequality x ·wmin ≥
2 · swmax . The number of times the loops is exercised must be equal to the length of the entire sequence
divided by |S| as we are sure to exercise the loop every |S| states. Thus, x = N

|S| =⇒
N
|S| ·wmin ≥ 2 · swmax

and finally,

N ≥ 2 · swmax

wmin
· |S|.

Theorem 2 (Computability). For two states s, t ∈ S, the weighted branching simulation distance is com-
putable.

Proof. Lemma 2 provides an upper bound on the length of transition sequence that we need to consider
in the computation of d(s, t) for any states s, t ∈ S under the assumption that there are no 0-cycles.
By Lemma 1 we know that any 0-cycles can be removed without affecting the distance. Thus when
computing the distance we know for the sub-expression

min
t→v1 t1···→vn tn

{
max

{ ∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ,d(s′, tn),
max{d(s, ti)| i < n}

}}

that n≤ 2·swmax
wmin

· |S|. As the WKS has a finite number of states and a finite transition relation, only a finite
number of sequences of finite length exist. Thus we can modify the distance function to only consider
these without affecting the computed distance. Thus, the distance must at some point converge as only a
finite number of relative distances on the form

∣∣∣∑
n
i=1 vi
w −1

∣∣∣ exists.

We leave the exact complexity of computing d(s, t) open but note that deciding d(s, t) = 0 is NP-
complete [11].

Example 3. Consider again Figure 1 and the computation of d(s, t). For the transition s→1 s1 only
one sequence is considered instead of the entire infinite set arising from the loop; t →1 t2. As

∣∣3
1 −1

∣∣>∣∣1
1 −1

∣∣, even the sequence that only exercises the loop once is worse than just transitioning to t2 directly.
This happens because the accumulated matching weight exceeds the weight being matched and the same
states are involved in both sequences. Therefore any sequence involving the loop can be ignored. Note
that we in this example consider fewer sequences than implied by the upper bound given in Lemma 2.
For s→1 s1 the bound would be 2·2

2 · 8 = 16 but it should be clear that the loop can be safely ignored.
For the transition s→2 s2, there are two relevant matching sequences; t→1 t2 and t→1 t2→2 t2. Thus,

d(s, t) min
= max


max

{∣∣1
1 −1

∣∣ ,d(s1, t2)
}
,

min

{
max

{∣∣1
2 −1

∣∣ ,d(s2, t2)
}
,

max
{∣∣3

2 −1
∣∣ ,d(s2, t2),d(s, t2)

} }
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It is easily shown that d(s2, t2) = 0 as s2→5 s4 can be matched exactly by t2→2 t2→2 t2→1 t1. Thus,

d(s, t) min
= max

{
1
2
,d(s1, t2),d(s, t2)

}
where

d(s1, t2)
min
= max


max

{∣∣2
2 −1

∣∣ ,d(s2, t2)
}
,

max
{∣∣1

1 −1
∣∣ ,d(s3, t1)

}
,

max
{∣∣3

3 −1
∣∣ ,d(s1, t2),d(s4, t1)

}
 and d(s, t2)

min
= max

{
max

{∣∣2
1 −1

∣∣ ,d(s2, t2)
}
,

max
{∣∣2

2 −1
∣∣ ,d(s2, t2)

} } .

As s4 6→, s3 6→ and t1 6→ it follows that d(s4, t1) = d(s3, t1) = 0, hence

d(s1, t2)
min
= max

{
1
2
,d(s1, t2)

}
.

The least solution to this equation is 1
2 hence d(s1, t2) = d(s, t) = 1

2 . From Example 2 we know that s≤ε t
for any ε ≥ 0.5 i.e for any ε ≥ d(s, t).

Now that we have established the computability of the distance we prove its relation to weighted
branching ε-simulation.
Theorem 3. For two states s, t ∈ S and ε ∈ R≥0:

d(s, t)≤ ε iff s≤ε t

Proof. ( =⇒ ) For this direction we prove that Rε = {(s, t) |s, t ∈ S,d(s, t)≤ ε} is a weighted branching
ε-simulation relation. Suppose (s, t) ∈ Rε . Then d(s, t)≤ ε and by the fixed point property of d,

d(s, t) = max
s→ws′

{
min

t→v1 t0···→vn tn

{
max

{ ∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ,
max{d(s′, tn)}∪{d(s, ti)|i < n}

}}}
We immediately have that for any transition s→w s′ there exists a matching transitions sequence t →v1

t0 · · · →vn tn such that
∣∣∣∑

n
i=1 vi
w −1

∣∣∣ ≤ ε , d(s′, tn) ≤ ε and ∀i < n.d(s, ti) ≤ ε . Thus, by definition of Rε ,
for any transition s→w s′ there exists a sufficient matching sequence from t such that (s′, tn) ∈ Rε and
(s, ti) ∈ Rε for any i < n.

(⇐= ) Let

d∗(s, t) =
{

ε if s≤ε t
∞ otherwise

We now prove that d is a pre-fixed point of F i.e F (d∗)(s, t)≤ d∗(s, t) for any pair (s, t) ∈ S. If s 6≤ε t
then d∗(s, t) = ∞ and there is nothing to prove. If s ≤ε t then for any transition s→w s′ there exists a
matching sequence t→v1 t0 · · · →vn tn such that ∑

n
i=1 vi ∈ [w(1−ε),w(1+ε)], s′ ≤ε tn and s≤ε ti for any

i < n. We can now argue that

max
s→ws′

{
min

t→v1 t0···→vn tn

{
max

{ ∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ,
max{d∗(s′, tn)}∪{d∗(s, ti)|i < n}

}}}
≤ ε

as ∑
n
i=1 vi ∈ [w(1− ε),w(1 + ε)] is equivalent to

∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ≤ ε , s′ ≤ε tn implies d∗(s′, tn) = ε and
similarly d∗(s, ti) = ε for any i < n. As d∗ is a pre-fixed point of F and d∗(s, t) = ε it must be the case
that d(s, t)≤ ε as d is the smallest pre-fixed point of F .
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Combining Theorem 1 and Theorem 3 we immediate get a relation between the distance from one
state s to another state t and their EWCT L−X properties:

d(s, t)≤ ε iff ∀ε ′ ∈Q≥0,ε ≤ ε
′.[∀φ ∈ EWCT L−X .s |= φ =⇒ t |= φ

ε ′ .

4 Weighted Branching Simulation Distances for Parametric WKSs

We now extend WKS with parametric weights. The lifted parametric distance will be from a WKS to a
parametric system and is represented as a parametric expression that can be evaluated to a rational by a
parameter valuation. If one abstracts multiple configurations of the same system as one parametric sys-
tem and calculate the parametric distance, evaluating the distance with respect to a parameter valuation
then corresponds to calculating the exact distance from a specific configuration (given by the valuation)
to the WKS. Thus, instead of working with multiple WKS configurations, one can use a parametric
system and compute the parametric distance once.

A parametric weighted Kripke structure (PWKS) extends WKS by allowing transitions to have para-
metric weights. Let P = {p1, . . . , pn} be a fixed finite set of parameters. A parameter valuation is a
function mapping each parameter to a non-negative rational; v : P→Q≥0. The set of all such valuation
will be denote by V .

Definition 6 (Parametric Weighted Kripke Structure). A parametric weighted Kripke structure is a tuple
KP = (S,AP,L ,→), where S is a finite set of states, AP is a set of atomic propositions, L : S→P(AP)
is a mapping from states to sets of atomic propositions and →⊆ S×P ∪Q≥0× S the finite transition
relation.

Unless otherwise specified, we assume a fixed PWKS KP = (S,AP,L ,→) in the remainder of this
section. One can instantiate a PWKS to a WKS by applying a parameter valuation. A PWKS thus
represents an infinite set of WKSs.

Definition 7. Given a parameter valuation v ∈ V , we define the instantiated WKS of KP under v to be
K v

P = (S,AP,L ,→v) where

→v= {(s,v(p),s′) | (s, p,s′) ∈→, p ∈P}∪{(s,w,s′) | (s,w,s′) ∈→,w ∈Q≥0}

For a state s in KP let s[v] be the corresponding state in the WKS K v
P and let≤ε be lifted to disjoint

unions of WKSs in the natural way.
Given a WKS state s, a PWKS state t and ε ≥ 0 we now state three interesting problems:

1. Does there exist a v ∈ V such that s≤ε t[v]?

2. Can we characterize the set of “good” parameter valuation V = {v |v ∈ V ,s≤ε t[v]}?

3. Can we synthesize a valuation v ∈ V that minimizes ε for s≤ε t[v]?

We will show how to solve (2) by fixed point computations. The result will be a set of linear inequal-
ities over parameters and ε which has as solution a set of parameter valuations. Instead of considering a
concrete ε ∈ R≥0, one can let ε be an extra parameter. Thus, (1) and (3) can be solved by first solving
(2) and applying e.g Z3 [18] and νZ [7] or similar tools to solve the inequalities and search for solutions
that minimize ε .

Example 4. Consider Figure 2. From Example 2 we know that s≤0.5 t[v] if v(p) = 1. Both v(p) = 0 and
v(p) = 2 imply s≤1 t[v]. It turns out that v(p) = 1 is the valuation that minimizes ε for s≤ε t[v].
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s1{a}
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s3 {b}

s4 {b}
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Figure 2: A WKS (left) and a PWKS (right)

When lifting the distance to the parametric setting, we consider disjoint unions of systems and require
that only the simulating system can be parametric. Let KP = (SP ,AP,LP ,→P) be a PWKS and
K = (S,AP,L ,→) a WKS. If we were to validate a given parameter valuation we could simply apply
the valuation to the PWKS and use F directly to decide if the distance is below some ε . As we want a
full characterization of the good parameter valuation we will instead represent the distance as a function
from a pair of states to a function that returns a weighted distance when a parameter valuation is applied;
d : S× SP → (V → R≥0). We let the set of such function be denoted by D and define an ordering as
follows; for any d1,d2 ∈D let d1 ≤ d2 iff ∀s ∈ S, t ∈ SP ,v ∈ V : d1(s, t)(v)≤ d2(s, t)(v). Let ≡ denote
the set of pairs of semantic equivalent states. Then (D ,≤) constitutes a complete lattice and we can
define a monotone function on (D ,≤) that iteratively refines the distance:

Definition 8. Let F : D →D be defined for any d ∈D :

F (d)(s, t) =


∞ if L (s) 6= L (t)

maxs→ws′

{
mint→v1 t1···→vn tn

{
max

{ ∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ,d(s′, tn),
max{d(s, ti)| i < n}

}}}
o.w

Again, by Tarski’s fixed point theorem [20] we are guaranteed a least fixed point, denoted by dmin.
The problem is now that the ordering ≤ implies a universal quantification over the entire infinite set
of parameter valuations; thus, checking if a fixed point is reached is highly impractical. Instead of
representing the distance as a function in valuations we will define it as a parametric expression that
captures the distance function syntactically. For any two states s, t we associate an syntactic expression
Es,t such that the solution set to the inequality Es,t ≤ ε characterizes the set of good parameter valuations
i.e applying a parameter valuation to Es,t yields a concrete weighted distance. The syntactic elements for
the expressions can be derived directly from F ; we need syntax for describing minimums of maximums
of basic elements

∣∣ v
w −1

∣∣ and ∞ where w is rational and v a linear expression in the parameters. Hence,
we define the following abstract syntax:

E1,E2 ::= ∞ |
∣∣∣ v
w
−1
∣∣∣ | MIN{E1,E2} | MAX{E1,E2}

where w∈Q≥0 and v is on the form ∑
n
i=0 ai pi+b s.t ai ∈N for all i< n and b∈Q≥0. We extend parameter

valuations to expressions in the obvious way and denote by JEK(v) the value of E under v ∈ V . Similar
to disjunctive normal form for logical formulae, we assume all expression to be a MIN of MAX’s of basic
elements

∣∣ v
w −1

∣∣or ∞. To convert an expression, note that for any v ∈ V

JMAX{MIN{E1,E2},E3}K(v) = JMIN{MAX{E1,E3},MAX{E2,E3}}K(v)

The set of expression on this normal form will be denoted by E . Now the distance functions can be
defined as functions associating to a pair of states a parametric expression; dE : S×SP → E . The set of
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syntactic distance function will be denoted by DE and the syntactic iterator capturing dmin is defined as
follows:

Definition 9. Let FE : DE →DE be defined for any dE ∈DE :

FE (dE )(s, t)=


∞ if L (s) 6= L (t)

MAXs→ws′

{
MINt→v1 t1···→vn tn

{
MAX

{ ∣∣∣∑
n
i=1 vi
w −1

∣∣∣ ,dE (s′, tn),

MAX{dE (s, ti)| i < n}

}}}
o.w

We will now define an ordering on elements from DE , by first ordering elements from E .

Definition 10. The syntactic ordering vE⊆ E ×E is defined inductively on the structure of E :∣∣∣∣∑n
i=1 ai pi +b

w
−1
∣∣∣∣vE ∞ always∣∣∣∣∑n

i=1 ai pi +b
w

−1
∣∣∣∣vE

∣∣∣∣∑n
i=1 a′i pi +b′

w
−1
∣∣∣∣ iff

{
∀i.ai ≤ a′i∧b≤ b′ if b′

w ,
b
w ≥ 1

∀i.ai = a′i∧b = b′ otherwise

MAX{E1.1, . . . ,E1.n} vE MAX{E2.1, . . . ,E2.m} iff ∀i.∃ j.E1.i vE E2. j

MIN{E1.1, . . . ,E1.n} vE MIN{E2.1, . . . ,E2.m} iff ∀ j.∃i.E1.i vE E2. j

Let ≡E be the set of pairs of syntactically equivalent expressions. We now extend the ordering to
distance functions:

Definition 11. The syntactic ordering on distance functions vE is defined for any d1
E ,d

2
E ∈DE :

d1
E vE d2

E iff ∀s, t ∈ S.d1
E (s, t)vE d2

E (s, t).

As the syntactic expression computed by FE for any pair of states (s, t) is merely syntactically
representing the functions computed by F for the same pair of states, the two concepts are closely
related. For any expression dE ∈ DE let d ∈ D be the associated semantic function. Then it is the
case that the syntactic ordering of expressions implies the same semantic ordering of the associated
semantic functions. Furthermore, iteratively updating the distances as parametric expressions by FE is
semantically equivalent to computing the distances as functions by F .

Lemma 3. For any d1
E ,d

2
E ∈DE and n ∈ N:

1. d1
E vE d2

E =⇒ d1 ≤ d2.

2. JF n
E (d

1
E )(s, t)K(v) = F n(d1)(s, t)(v).

We will now demonstrate an upper bound on the relevant matching transition sequences for the
syntactic computations in FE , given that all loops have at least one strictly positive non-parametric
weight. This is similar to assuming no 0-cycles in the weighted case (Lemma 2).

Lemma 4. Let K = (S,AP,L ,→) be a WKS with state s ∈ S such that s→w s′ and let
KP = (SP ,AP,LP ,→P) be a PWKS with the following property:

• There exists a wmin > 0 such that for any valuation, the accumulated weight of every loop in KP

is at least wmin (strongly cost non-zeno).
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Then for any t ∈ SP :

∃N.∀π = t→P
v1

t1 . . .→P
vn

tn,n≥ N.

∃π∗ = t→P
u1

t ′1 . . .→P
um

t ′m,m≤ N.

tn = t ′m ∧
∣∣∣∣∑m

i=1 ui

w
−1
∣∣∣∣vE

∣∣∣∣∑n
i=1 vi

w
−1
∣∣∣∣∧

{t ′1, . . . , t ′m−1} ⊆ {t1, . . . , tn−1}

Proof. Let the maximum weight out of s be swmax . Any sequence of length |SP | must have a loop which,
by assumption, cannot have accumulated weight 0 w.r.t any parameter valuation. Thus, the accumulated
weight w.r.t any valuation is at least wmin. Without loss of generality we assume it to be exactly wmin.
Exercising the loop a number of times will at some point result in the accumulated weight being greater
than 2 · swmax w.r.t any valuation. Let this sequence be π∗ = t →P

v1
t1 · · · →P

vk
tk and let x denote the

number of times the loop is exercised i.e x ·wmin ≥ 2 · swmax . Let ∑
k
i=1 vi = ∑

n
i=1 ai pi +b. Then it is clear

that b
swmax

> 1. Now consider the corresponding non-looping sequence π1 = t →P
u1

t ′1 · · · →P
ul

t ′l and let

∑
l
i=1 ui = ∑

n
i=1 a′i pi +b′. We would like it to be the case that∣∣∣∣∑n

i=1 a′i pi +b′

w
−1
∣∣∣∣vE

∣∣∣∣∑n
i=1 ai pi +b

w
−1
∣∣∣∣

but it might be the case that b′
swmax

< 1. Consider a third sequence π = t →P
x1

t ′′1 · · · →P
xm

t ′′m, being π∗

modified to exercise the loop one more time and let ∑
m
i=1 xi =∑

n
i=1 a′′i pi+b′′. Now we know that b′′

swmax
> 1

as b′′ > b′ and furthermore
∣∣∣∑

n
i=1 a′i pi+b′

w −1
∣∣∣ vE

∣∣∣∑
n
i=1 a′′i pi+b′′

w −1
∣∣∣ , tk = t ′′m and {t ′1, . . . , tk} ⊆ {t ′′1 , . . . , t ′′m}.

We can now derive N. For π∗ we have the inequality x ·wmin ≥ 2 · swmax and by Lemma 2 this leads to the
bound 2·swmax

wmin
· |SP |. As π is at most |SP | longer than π∗ we get

N ≥ 2 · swmax

wmin
· |SP |+ |SP |

Note that the bound also holds for the semantic function F as the syntactic ordering implies the
semantic ordering (Lemma 3).

We can now limit FE to only consider sequences of length N, assuming that the PWKS is strongly
cost non-zeno. We apply this fact to prove that we will after a finite number of iterations of FE have
discovered two syntactically equivalent expressions. As syntactic equivalence implies semantic equiva-
lence of the associated functions, we get by Lemma 3 that dmin can be computed by repeated application
of both F and FE is a finite number of steps.

Lemma 5. There exists n < m such that F n
E (d

0
E )≡E F m

E (d0
E ).

Proof. Let
F n

E (d
0
E )(s, t) = MIN{MAX{E1.1, . . . ,E1.k} , . . . ,MAX{Em.1, . . . ,Em.n}} .

From the definition of ≡E we directly get MAX and MIN expressions behave like sets. Duplicates can
be ignored i.e MAX{E1,E2,E2}≡E MAX{E1,E2}, MIN{MAX{E1,E2},MAX{E1,E2}}≡E MIN{MAX{E1,E2}}
and the ordering of elements does not matter; MAX{E1,E2} ≡E MAX{E2,E1}. By Lemma 4 we can limit
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the transition sequences to length N. This implies that only a finite number of basic elements
∣∣ v

w −1
∣∣

exist when iteratively applying FE . As one can only construct a finite number of unique sets from a finite
set of elements, the number of syntactically unique expressions (w.r.t≡E ) is finite. Therefore, there must
exist a m > n such that F n

E (d
0
E )≡E F m

E (d0
E ).

We can now demonstrate computability of the distance.

Theorem 4 (Computability). There exists a natural number n such that for all states s ∈ S, t ∈ SP and
all valuations v ∈ V

JF n(d0
E )(s, t)K(v) = dmin(s, t)(v).

Proof. By Lemma 5, there exists n < m such that F n
E (d

0
E ) ≡E F m

E (d0
E ). By Lemma 3 we thus get

semantic equivalence F n(d0)≡F m(d0) and as F is monotonic on (D ,≤) we have for all i s.t n≤ i≤m
that F i(d0)≡F m(d0). Thus, F n(d0) is a fixed point found after a finite number of steps and is captured
syntactically by F n

E (d
0
E ). The check for equivalence (≡E ) can therefore be used to capture a semantic

fixed point syntactically. The fixed point must also be the least fixed point. To see this, suppose towards
a contradiction that it is not the least fixed point. Then there exists a k < n such that F k(d0) = dmin but
by the fixed point property of dmin and the monotonicity of F we immediately get F k(d0) ≡F n(d0)
which contradicts our assumption that F n(d0) is not the least fixed point of F .

By computing the syntactic fixed point we thus get a syntactic expression F n
E (d

0
E )(s, t) = Es,t for

each pair of states s, t such that the solution set to Es,t ≤ ε characterizes the set of “good” parameter
valuations.

Example 5. Consider the WKS and PWKS from Figure 2. To compute Es,t , let di
E (s, t) = F i

E (d
0
E )(s, t).

We now show how the distance from s to t is updated after each iteration.

d1
E (s, t) = MAX

{
MAX

{∣∣1
1 −1

∣∣ ,d0
E (s1, t2)

}
,

MAX
{∣∣3

2 −1
∣∣ ,d0

E (s1, t2),d0
E (s, t2)

} }

d2
E (s, t) = MAX

{
MAX

{∣∣1
1 −1

∣∣ ,0} ,
MAX

{∣∣3
2 −1

∣∣ ,0, 1
2

} }

d3
E (s, t) = MAX


1
2 ,
∣∣ p

1 −1
∣∣ ,

MIN
{∣∣ p

5 −1
∣∣ , ∣∣∣ p+2

5 −1
∣∣∣ , ∣∣∣ p+4

5 −1
∣∣∣} ,

MIN
{∣∣ p

3 −1
∣∣ , ∣∣∣ p+2

3 −1
∣∣∣}


d4

E (s, t) = d3
E (s, t)

We immediately see that any solution to Es,t ≤ ε is bounded from below by 1
2 . This implies that there

exists no valuation v ∈ V such that s≤ε t[v] for ε < 1
2 . If we consider the valuation vmin(p) = 1 we get

that JEs,tK(vmin) =
1
2 i.e vmin is the valuation that induces the minimal distance d(s, t[vmin]) =

1
2 .

5 Conclusion and Future Work

We have characterized the distance from [11] between weighted Kripke structures (WKS) as a least fixed
point. The distance between any pair of states can thus be computed by first assuming the distance
between any pair to be 0 and then applying a step-wise refinement of the distance. The computability
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of the distance is guaranteed as a finite number of the (potentially) infinite transition sequences of the
system is sufficient. This we proved by demonstrating an upper bound on the relevant sequences. We
furthermore lifted the distance to parametric WKS (PWKS), where transition weights can be parametric.
The parameters can be used to abstract multiple configurations of the same system as one parametric
system. In this case the distance is from a WKS to a PWKS and is concretely a parametric expression
that one can evaluate to get an exact distance from the WKS to a specific WKS instance of the PWKS. The
question is then which configuration (parameter valuation) is “best” i.e minimizes the induced distance.
For computability we again demonstrate an upper bound on the length of relevant distances. To do this
we assume all cycles to be cost non-zeno i.e any loop must include a transition with a positive rational
weight.

For future work, the actual complexity of computing the distance is open. From [11] we know
that checking whether the distance is 0 is NP-complete but the general complexity of checking whether
the distance is less than some ε ∈ R≥0 is open. One could also investigate whether the distance has a
polynomial approximation scheme.
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