
T. Brihaye, B. Delahaye, L. Jezequel, N. Markey, J. Srba (Eds.):
Cassting Workshop on Games for the Synthesis of Complex Systems
and 3rd International Workshop on Synthesis of Complex Parameters
(Cassting’16/SynCoP’16).
EPTCS 220, 2016, pp. 13–25, doi:10.4204/EPTCS.220.2

c© B. Brütsch & W. Thomas
This work is licensed under the
Creative Commons Attribution License.

Playing Games in the Baire Space

Benedikt Brütsch Wolfgang Thomas
RWTH Aachen University

bruetsch@automata.rwth-aachen.de thomas@automata.rwth-aachen.de

We solve a generalized version of Church’s Synthesis Problem where a play is given by a sequence
of natural numbers rather than a sequence of bits; so a play isan element of the Baire space rather
than of the Cantor space. Two players Input and Output choosenatural numbers in alternation to
generate a play. We present a natural model of automata (“N-memory automata”) equipped with the
parity acceptance condition, and we introduce also the corresponding model of “N-memory trans-
ducers”. We show that solvability of games specified byN-memory automata (i.e., existence of a
winning strategy for player Output) is decidable, and that in this case anN-memory transducer can
be constructed that implements a winning strategy for player Output.

1 Introduction

The algorithmic theory of infinite games was started in 1957 when Church formulated his “synthesis
problem”. This problem asked for presentation of a transformationα 7→ β of ω-sequences over a finite
alphabetΣ, computable letter-to-letter and satisfying a logical specification R(α ,β). If we write α =
α(0)α(1) . . ., β = β (0)β (1) . . . and setαˆβ =α(0)β (0)α(1)β (1) . . ., the specificationRcan be captured
by theω-language

L = {αˆβ ∈ Σω | R(α ,β)}

Church’s synthesis roblem asks: Given anω-languageL defined in a “logistic system”, is there a letter-
to-letter transformationα 7→ β in the format of some kind of circuit such thatαˆβ ∈ L for eachα ∈ Σω?

In descriptive set theory a related question had been studied in game-theoretic terminology, regarding
games between two players called here Input and Output, where L serves as the winning condition for
Output. A playα(0)β (0)α(1)β (1) . . . is won by player Output if it belongs toL, and a transformation
as mentioned above is then a winning strategy for Output. These “Gale-Stewart games” [12] were stud-
ied in descriptive set theory focussing on the problem of determinacy (whether one of the two players
has a winning strategy). A major result in this theory says that if the setL is Borel then the associated
Gale-Stewart game, which we denote byΓ(L), is determined [15, 16]. Church’s Problem posed a sharp-
ened question, namely, given a finite description ofL, to determine who wins and to exhibit a concrete
presentation of a winning strategy for the winner.

This problem was solved by Büchi and Landweber [4] in the following strong sense: IfL is a regular
ω-language (presented, e.g., by a deterministic Muller automaton), then the winner of the gameΓ(L) can
be computed, and a winning strategy can be presented in the format of a finite-state machine (a Mealy
automaton).

This fundamental result has been extended in many ways, among them into the framework of infinite-
state systems. For example, Walukiewicz [18] showed the analogue of the Büchi-Landweber Theorem
for pushdown systems. It is remarkable, however, that a different kind of “infinite extension” of the
Büchi-Landweber Theorem has not been addressed in the literature, namely the case where the input
alphabet over whichω-sequences are formed is infinite. Taking the typical case ofa finite alphabet to be

http://dx.doi.org/10.4204/EPTCS.220.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

14 Playing Games in the Baire Space

2= {0,1} and the typical case of an infinite alphabet to beN (we will focus solely on the alphabetN in
this paper), we are no more dealing with sequences from 2N but fromN

N.
In set-theoretic topology (and in descriptive set theory) this is the step from the Cantor space 2N

to the Baire spaceNN. The topological classification theory of setsL ⊆ N
N is developed in very close

analogy to that of setsL⊆ 2N (cf. [15, 16]), and determinacy of Borel games then holds forN
N as it does

for 2N. A small difference occurs in the representation of projective sets: In the Baire space, these can
be described as projections of closed sets, whereas in the Cantor space one has to resort to projections of
Gδ -sets.

In automata theory, however, the step to infinite alphabets is highly non-trival. It requires automata
that work over infinite alphabets, in particularN. Several proposals exist to introduce finite-state devices
that can process finite or infinite words over an alphabet suchasN. Let us recall some of them.

A straightforward approach is to code a numberm by a word over{0,1}, such as 0m or 1m or the
binary expansion ofm. Then we consider Banach-Mazur games in which a move by a player consists
of a choice of a sequence of letters (from a finite alphabet) rather than single letters (for a recent refer-
ence on Banch-Mazur games see, e.g., [13]). So a playm0m1m2 . . . may be coded by the bit sequence
0m0+11m1+10m2+1 . . . in which a player contributes a word of 0+ or 1+. A disadvantage of this approach
is the fact that finite-state devices cannot check simple properties of (ω-)words, for instance the equality
of successive numbers of a play.

As models of automata working directly on infinite alphabetswe mention the register automata of
Kaminski and Francez [14], the data automata of Bojanczyk etal. [2], and the register automata over data
words of [9] that allow equality tests between letters (e.g., natural numbers) that occur in a word. Taking
N as the alphabet, a weakness of these models is their inability to check the order between successive
letters or just the condition that a letterm is followed bym+1 or bym−1.

In the present paper, we work with automata which can check such relations of “incremental change”
between letters fromN, called progressive grid walking automata (PGAs) and introduced recently in [8].
They cover all properties of the Banach-Mazur coding of sequences overN, and they allow to check
the relation between successive letters (as far as expressible in monadic second-order logic MSO over
(N,+1,0)). The idea is to code a letter by a column labelling of a labelled two-dimensional grid. A word
m1 . . .mℓ is coded by a grid withℓ columnω-words, where the valuemi is coded by theω-word #1mi⊥ω

as shown in Figure 1. Forω-words this grid is also right-infinite.

...
...

...
...

...
⊥ ⊥ ⊥ ⊥ ⊥

1 ⊥ ⊥ 1 ⊥

1 ⊥ ⊥ 1 1
1 1 ⊥ 1 1
1 1 ⊥ 1 1
· · ·

Figure 1: Grid representation of the sequence of letters 42043 . . .

A progressive grid automaton is a three-way automaton that walks through such a grid from left to
right, scanning a column in two-way mode and moving from a column to the next by a step to the right.
The latter feature allows to preserve a natural number value(the valuek if the step to the right occurs
at heightk of a column). This feature amounts to a memory for values inN. For example the value of

B. Brütsch & W. Thomas 15

an inputmi may be handed from thei-th column to the next, by stepping out of the column at height
mi, in order to check, for example, thatmi+1 = mi + 1. In the present paper we introduce a slightly
stronger variant of PGAs, calledN-memory automata, and we also define a corresponding model of
transducer. These automata use tokens of three kinds, “memory token”, “memory update token”, and
(for transducers) “output token” to indicate values ofN. A column is scanned again in two-way mode,
but starting from the bottom, using the memory token that is located somewhere on the column (namely
at the position where the memory update token was placed in the previous column), and in the current
column the memory update token is then placed for handing a value k of N over to the next column
(where the memory token will be on this positionk). The transducer’s output token is used to specify a
value fromN as the result of a computation.

Our main result will be an analogue of the Büchi-Landweber Theorem forN-memory automata:
Given a Baire space gameΓ(L) where L⊆N

ω is defined by anN-memory automaton with parity accep-
tance condition one can decide who wins and construct anN-memory transducer that executes a winning
strategy for the winner.

The remainder of the paper is structured as follows: In the subsequent section we present some
prerequisites on MSO-logic. In Section 3 we introduceN-memory automata, first as acceptors ofω-
sequences overN, and then as transducers. In Section 4 we state and prove the main result. In the
conclusion we address some perspectives and open problems.

2 Prerequisites on MSO-Logic

We assume that the reader is familiar with the basics on MSO-logic (as presented, e.g., in [17]). We
recall known results to be used in later sections.

It will be convenient to work with relational structures only. So we consider the structureN =
(N,Succ) with the successor relationSuccoverN rather than the structure(N,+1,0).

The MSO-theory ofN is the set of all MSO-sentences that are true inN . From [3] we know that
this theory is decidable.

We use two transfer results on preservation of the decidability of MSO-theories. The first refers to
“MSO-interpretations”. A structureA = (A,RA), say with just one binary relationRA ⊆ A×A is MSO-
interpretable in a structureB (possibly with different signature) if MSO-formulasϕ(x),ψ(x,y) exist that
describe the structureA in B, in the sense that the elements satisfyingϕ(x) in B provide a copy of the
domainA in B, and the pairs(a,b) satisfyingψ(x,y) in B give a copy ofRA over the copy ofA. The
following is well-known (see, e.g., [10]):

Proposition 1. If the structureA is MSO-interpretable in the structureB and the MSO-theory ofB is
decidable, then so is the MSO-theory ofA .

The second model transformation is the step from a structureA to a product[1, . . . ,k]×A , thek-
fold copy ofA . Let us consider just the case whereA = N = (N,Succ). The domain of this product is
the set{1, . . . ,k}×N, and we have the following relations:

• SUCC=
{(

(r,n),(r,n+1)
)
| r ∈ [1, . . . ,k], n∈ N

}

• Pr = {(r,n) | n∈N} (fixing membership in ther-th copy ofN)

• SameNumber=
{(

(r,n),(s,n)
)
| r,s∈ [1, . . . ,k], n∈ N

}

In the general case of a relational structureA , the first item is applied to all relations that are present in
A . It is easy to show (see, e.g., [1]) that the MSO-theory of[1, . . . ,k]×A is decidable if the MSO-theory
of A is decidable. We need here only the caseA = N :

16 Playing Games in the Baire Space

Proposition 2. For any k, the MSO-theory of[1, . . .k]×N is decidable.

In “monadic second-order transductions” as developed by Courcelle (see [7]) the operations of MSO-
interpretations and ofk-fold copying are combined into one.

A third result needed in a later section is concerned with parity games over infinite game arenas. We
refer to [17] for background. We consider a parity game graphas a structureG= (V,P0,P1,E,C1, . . . ,Cr)
whereV is the (at most countable) set of vertices,P0 andP1 are unary predicates defining the partition
of V into the vertices of player 0 and player 1, respectively (we use these names rather than Input and
Output to be in accordance with the literature on parity games), E is the edge relation, and theCi define
a partition ofV wherev∈Ci means that vertexv carries color (or priority)i.

It is well-known that the parity game overG is determined with positional winning strategies [11].
In [19] it is shown that the winning regions of the two playersare MSO-definable (by MSO-formulas

ϕ j(x), for j = 0,1). Moreover, as we shall see, under certain conditions the standard proof of positional
determinacy yields an extension of this result, namely thatfor each player there is an MSO-definable
winning strategy on the respective winning region. The definition of a winning strategy is given by
a formulaψ j(x,y) for the respective playerj, such that for eachu in the winning region of playerj,
there is exactly one vertexv such that(u,v) satisfiesψ j(x,y), wherev is the choice determined by the
considered winning strategy of playerj, from u. In order to guarantee this definability, we proceed in
two steps: We show (in a later section) that for reachabilitygames over the game arenas considered here,
MSO-definable winning strategies exist, and then lift this result to parity games. (In a reachability game,
a play is won by Output if it reaches a given MSO-defined targetset at some point.) We settle the second
step in the following poposition.

Proposition 3. Let G be a parity game graph over V with MSO-definable sets of priorities. The winning
regions of the two players of the associated parity game are MSO-definable. Moreover, if in each reacha-
bility game over G with MSO-definable target set there is an MSO-definable positional winning strategy
of the winner on his/her winning region, then this also holdsfor the considered parity game over G .

The first part of the claim is shown in [19]. For the second, we proceed by induction on the number
of colors (priorities) of the game graph under consideration, following the standard determinacy proof
as given in [17]. If there is one colorr only, the claim is trivial (since player 0 wins by any choice if
r is even, and player 1 wins by any choice ifr is odd). Assume now we have formulasϕk

i (x) defining
the winning regionWk

i of player i in a game withk colors, and formulasψk
i (x,y) defining a winning

strategy of playeri overWk
i with k colors. Let us treat the case wherek+ 1 is even (the other works

by exchanging the players). Using the formulaϕk+1
0 definingWk+1

0 in the considered game withk+1
colors (known from [19]) we obtainψk+1

0 (x,y) as follows. The winning regionWk+1
0 is composed of the

attractorA = A0(Ck+1 ∩Wk+1
0) of player 0 and the complement of this set inWk+1

0 . This complement
does not contain vertices with colork+1, so we have a formulaϕk

0(x,y) defining a winning strategy for
player 0 on this set. For the attractor, we note that it is MSO-definable by a formulaϕA(x) saying “x is
in all setsX containingCk+1∩Wk+1

0 and satisfying the following closure properties”:

∀z

[(
z∈ P0∧∃z′

(
E(z,z′)∧X(z′)

)
→ z∈ X

)
∧
(

z∈ P1∧∀z′
(
E(z,z′)→ X(z′)

)
→ z∈ X

)]

We now invoke the assumption on the MSO-definability of the winning strategy of Output in the reacha-
bility game with target setCk+1∩Wk+1

0 over his winning region (which isA), say by the formulaψ(x,y).
We thus obtain an MSO-definable winning strategy of Output overWk+1

0 by a formula saying

x∈Wk+1
0 \A→ ϕk

0(x,y) ∧ x∈ A→ ψ(x,y)

B. Brütsch & W. Thomas 17

3 Automata Models for Sequences of Natural Numbers

3.1 N-Memory Automata

In this section, we introduceN-memory automata, which work on sequences of natural numbers. Such
a sequenceα = a0a1a2 . . . ∈ N

ω is represented by a labeled grid as illustrated in Figure 1, where each
numberai is represented by a column: In theith column of the grid, the firstai nodes, starting from the
bottom, are labeled with 1 and the remaining nodes are labeled with ⊥. For technical reasons, a node
labeled with # is added at the bottom of every column.

Formally, thegrid representationof a sequenceα = a0a1a2 . . . ∈ N
ω is a functiongα : N×N →

{1,⊥,#} labeling the positions of the grid with

gα(i, j) =





if i = 0,

1 if 1 ≤ i ≤ a j ,

⊥ if i > a j .

An N-memory automaton can traverse a grid representation by moving up and down within the
current column or switching to the next column (but not the previous one). It has a finite set of states,
but is additionally equipped with amemory token, which marks a row of the grid, and amemory update
token, which can be placed by the automaton at the end of processinga column and which determines
the position of the memory token on the next column.

For a formal definition, letD = {↑,↓,→,⋄} be the set of possible actions of the automaton (move up,
move down, switch to next column, place memory update token).

Definition 1 (N-Memory Automaton). AnN-memory parity automatonis a tupleA =(Q,q0,∆,c) where
Q is a finite set of states, q0 ∈ Q is the initial state,∆ ⊆ Q×{1,⊥,#}×{0,1}2×Q×D is the transition

relation with ∆∩
(

Q×{#}×{0,1}2 ×Q×{↓}
)
= /0, and c: Q → {0, . . . ,m} is a function assigning

priorities to the states.

We callA deterministic if for all
(
p,a,(b1,b2)

)
∈ Q×{1,⊥,#}×{0,1}2, there is exactly one pair

(p,d) ∈ Q×D such that
(
p,a,(b1,b2), p,d

)
∈ ∆.

A configurationof A is a tuple(q,h,v, i, j) ∈ Q×N
4, whereq is the current state,h is the horizontal

position of the automaton (i.e., the current column),v is the vertical position (within the current column),
andi, j are the current positions of the memory token and the memory update token, respectively, on the
current column. (If the memory update token is not yet placed, we assume position 0 for it by default.)

A run of A on a sequenceα ∈N
ω is an infinite sequenceπ = c0c1c2 . . . such thatc0 = (q0,0,0,0,0)

is the initial configuration and for every pair of consecutive configurationscℓ = (qℓ,hℓ,vℓ, iℓ, jℓ), cℓ+1 =
(qℓ+1,hℓ+1,vℓ+1, iℓ+1, jℓ+1), one of the following holds:

•
(
q,gα (vℓ,hℓ),(b1,b2),qℓ+1,↑

)
∈ ∆, andvℓ+1 = vℓ+1, hℓ+1 = hℓ, iℓ+1 = iℓ, jℓ+1 = jℓ, or

•
(
q,gα (vℓ,hℓ),(b1,b2),qℓ+1,↓

)
∈ ∆, andvℓ+1 = vℓ−1, hℓ+1 = hℓ, iℓ+1 = iℓ, jℓ+1 = jℓ, or

•
(
q,gα (vℓ,hℓ),(b1,b2),qℓ+1,→

)
∈ ∆, andvℓ+1 = vℓ, hℓ+1 = hℓ+1, iℓ+1 = jℓ, jℓ+1 = 0, or

•
(
q,gα (vℓ,hℓ),(b1,b2),qℓ+1,⋄

)
∈ ∆, andvℓ+1 = vℓ, hℓ+1 = hℓ, iℓ+1 = iℓ, jℓ+1 = vℓ,

where b1 =

{
1 if iℓ = vℓ,

0 otherwise
and b2 =

{
1 if jℓ = vℓ,

0 otherwise

indicate whether the memory token and the memory update token, respectively, are at the current vertical
positionvℓ.

18 Playing Games in the Baire Space

A run π is accepting ifmax
(

Inf
(
c(π)

))
is even. A sequenceα ∈ N

ω is accepted byA if the run of

A on its grid representationgα is accepting.
For example, the singleton language{1234. . .} is recognized by a deterministicN-memory automa-

ton that works as follows: It checks that there is exactly one1 in the first column, and moves the memory
update token to the row 1. After switching to the next column,the memory token now marks row 1.
The automaton goes up to that row and checks that there is exactly one 1 above that position. Then it
moves the memory update token to the position above the memory token and switches to the next col-
umn, and so on. The states assumed in this process have color 2; once the checking process fails, color
1 is assumed. A variation of this idea shows the recognizability of the ω-languageN∗1N∗2N∗3N∗

The language{α ∈N
ω |α is unbounded} is recognized by a deterministicN-memory automaton that

moves the memory update token to the position of the topmost 1of the current column if that position is
higher than the current position of the memory token. After any move of the memory update token, the
automaton goes to a state with the even priority 2, otherwiseto a state with priority 1.

We give three further examples of languages recognized byN-memory automata (without proof):

1. {m0m1m2 . . . | mi+1 = mi +1 or mi+1 = mi −1}

2. {m0m1m2 . . . | mi+1 even iffmi odd}

3. {m0m1m2 . . . | m2i+2 = m2i +1 if m2i+1 even

m2i+2 = m2i −1 if m2i+1 odd }

Thus,N-memory automata can recognize some interestingω-languages overN. The ability to com-
pare successive (and also “distant”) letters and to define properties of unboundedness seems to be a
feature that is missing in known models of automata over the alphabetN. Let us note that in the con-
text of temporal logic, a related idea appears in [5]; however there equality and incremental change
of values fromN is restriced to occurrences within a bounded (time-)interval – so a language such as
N
∗1N∗2N∗3N∗ . . . (as mentioned above) is not covered.

An alternative version ofN-memory automata can be defined by abstracting from the stepswithin
one column and representing the steps from one column to the next one by MSO-formulas. In this
description we use the product structureQ×N with domainQ×N as defined in Section 2.

An automaton with this logical specification of the transitions, which we callMSON-memory au-
tomaton, is of the formA = (Q,q0,

(
ϕ((p,x),y,(q,z))

)
p,q∈Q,c). (This notation indicates a formula

ϕ(r,s, t) with Pp(r) andPq(s).) The following condition should be satisfied: Starting in state p with
memory token on positioni, after processing the input numberm, the automaton will reach stateq with
memory token on the new positionj iff Q×N |= ϕ [(p, i),m,(q, j)]. 1 We call such a step of the
automaton amacro transition.

If the MSO-N-memory automaton is deterministic (as in the present paper), then for every(p, i) and
m, there is exactly one(q, j) such thatQ×N |= ϕ [(p, i),m,(q, j)].

Proposition 4. For everyN-memory automaton, an equivalent MSO-N-memory automaton can be con-
structed.

The proof is straightforward but tedious regarding the details. The idea is to describe the segments
of a computation on a given column letter from one placement of the memory update token to the next.
This computation segment can visit a given position of the given column only≤ |Q| times; otherwise a
repetition of configurations occurs and the computation does not terminate. Hence such a run segment
can be described by an existential MSO-formula with|Q|2 existential set quantifiers. The processing of

1Strictly speaking,m is not an element ofQ×N; by abuse of notation we writem to denote the element(q0,m).

B. Brütsch & W. Thomas 19

a column is a sequence of such computation segments, ending at the point where the automaton switches
to the next column, so it is captured by the transitive closure of the segment computations. It is easy to
express this invoking the definability of transitive closure in MSO.

Furthermore, let us list some properties (not needed below,however) that are proved similarly to [8].2

Remark 1. 1. The emptiness problem forN-memory automata over words fromN∗ and the emptiness
problem forN-memory parity automata overNω are decidable.

2. This fails when the automata are equipped with two memory tokens (and memory update tokens).

3.2 N-Memory Transducers

We use deterministicN-memory automata to represent winning conditions in Gale-Stewart games in
the Baire space. To represent strategies in such games, we introduceN-memory transducers, which are
defined in close analogy toN-memory automata, with two modifications: Firstly, there isno priority
function as used for the parity acceptance condition (sincewe are not dealing with infinite runs). Sec-
ondly, there is an additional token, theoutput token; used to indicate a natural number that is produced
as output after reading a word of natural numbers as given input sequence.

Thus, we define an extended set of actionsD̂ = {↑,↓,→,⋄,�}, and the transition relation is now
of the form∆ ⊆ Q×{1,⊥,#}×{0,1}3×Q× D̂. In a transition of the form(p,a,(b1,b2,b3),q,�), the
output token is placed at the current vertical position.

We will only be interested in deterministicN-memory transducers, where for all
(
p,a,(b1,b2,b3)

)
∈

Q×{1,⊥,#}×{0,1}3, there is exactly one pair(p,d) ∈ Q× D̂ such that
(
p,a,(b1,b2,b3), p,d

)
∈ ∆.

An N-memory transducer works like anN-memory automaton, but it distinguishes between input
and output columns. After processing a given input column, it switches to an output column, which is
unlabeled except for the tokens (initially just the memory token). The position of the output token upon
moving to the next column then indicates the output number atthat point.

By processing input and output columns in alternation, the transducer produces an output sequence
β = e0e1e2e3 . . .∈N

ω for a given input sequenceα = a0a1a2a3 . . .∈N
ω , yielding the playa0e0a1e1a3

4 Solving Games in the Baire Space

Our aim here is to prove the following result:

Theorem 1. For a Baire space gameΓ(L) where L⊆ N
N is defined by a deterministicN-memory parity

automatonA , one can

• decide who winsΓ(L), and

• construct a winning strategy for the winner realized by anN-memory transducer.

In order to show the theorem, we proceed in two steps, following a pattern as known from the
classical solution of Church’s Problem in the Cantor space.

1. Convert the automaton into a parity game with designated start vertex.
(In contrast to the classical setting, the game arena will beinfinite here.)

2. Solve the parity game (finding the winner and computing a memoryless winning strategy).

2A more detailed study ofN-memory automata – including a systematic analysis of closure properties and the inequivalence
between the deterministic and the non-deterministic model– is the subject of a forthcoming paper by P. Landwehr and the
authors.

20 Playing Games in the Baire Space

In the first subsection we deal with the first step and the decision about the winner, in the subsequent
subsection we present the construction of the desired transducer.

4.1 Deciding the Winner

To transform the given deterministicN-memory automatonA , recognizingL ∈ N
N, into a game arena,

we first construct an equivalent MSO-N-memory automatonA ′. We assume that the state setQ can be
partitioned into setsQ0 andQ1 such that all macro transitions fromQ0 lead toQ1 and vice versa. This
can always be achieved using two copies of the original stateset.

Now we construct a game arenaGA with domainQ×N, the relations as defined in Section 2 for
Q×N , and the additional edges

(p, i)
m
−→ (q, j)

according to the macro transitions ofA ′. In the following, we call a tuple(p, i) as it occurs here a
“configuration”.

...
...

...
...

...
...

...
...

q1 q2 q3 q4 q5 q6 q7 q8

Q

0

1

2

3

4

...

N

Lemma 1. GA is MSO-interpretable in Q×N .
The proof is straightforward by describing the edge relations ofGA in Q×N . Thus we obtain the

following proposition.
Proposition 5. The MSO-theory of GA is decidable.

We now can decide the winner ofΓ(L). For this we use the first claim of Proposition 3 (Section 2):
Describe the initial vertex(q0,0) of GA by a formulaψinit(x), and letϕOut(x) be a formula defining the
winning region of Player Output. We check whether

GA |= ∃x
(
ψinit(x)∧ϕOut(x)

)

4.2 Constructing a Transducer

We treat here the case that the winner is Player Output. We first want to apply Proposition 3 (Section
2). So we have to show that the assumption of Proposition 3 regarding reachability games holds for the
games considered here, namely that an MSO-definable winningstrategy for Output (over his winning
region) exists for a reachability game overGA with MSO-definable target set. Then, applying Proposi-
tion 3, we know that in the parity game overGA , an MSO-definable winning strategy exists for Player
Output on his winning region. In the second step we use this fact to obtain the desired transducer.

B. Brütsch & W. Thomas 21

4.2.1 MSO-Definable Winning Strategies in Reachability Games

We show the following, referring to the game arenaGA introduced above.

Proposition 6. In every reachability game over GA with an MSO-definable target set F, Player Output
has an MSO-definable positional winning strategy on his winning region.

We show this claim by a transformation of the reachability game overGA with target setF into
a pushdown reachability gameP over an extended domainP×GA for some finiteP. A transition
(p, i) → (q, j) in GA (via some input numberm) will be dissolved into a sequence of steps over the
pushdown arenaP, proceeding from stack content #1i to stack content #1j in steps each of which
changes the stack only by 1. Some complications arise from the fact that a transition from(p, i) to (q, j)
depends on an input valuem from the infinite domainN. As we shall see, we can handle this using finite
information aboutmwhen the target valuej is “near” to 0 ori; otherwise the target valuej will be “near”
to m, and the stack will be changed accordingly.

As a preparation we need an obvious fact on the behaviour of the deterministic automatonA :

Lemma 2. There is a bound B such that from configuration(p, i) with input m, the automatonA will
reach an exit configuration(q, j) where the distance of j to0 or i or m is bounded by B.

The lemma is clear by the fact that between the marked positions 0, i,m in a column the automaton
A is processing one-letter input words. On such words of sufficiently large lengthB, the automatonA
will assume a periodic behaviour and hence would violate thecondition that a unique valuej is reached
upon termination.

According to the lemma, the configuration upon leaving a column can be represented by a tuple
(q, t,k) ∈ Q×{“0” , “I” , “M” }×{−B, . . . ,B}, which we call anexit combination. For example, the tuple
(q, “I” ,2) would indicate that the column is left in stateq with the memory update token on positioni+2.
Note that the setE of exit combinations is finite.

A second remark refers to the periodic behaviour of the deterministic automatonA on words over a
singleton alphabet. Such word segments occur between the positions 0, the memory token positioni, and
the input positionm. The states assumed byA occur periodically. There is a finite prefix lengthℓ0 and
a period lengthℓ (which can be taken as|Q|!) such that given any starting statep at positioni, the state
of A at positioni −k or i +k is fixed by the number in[0, ℓ0+ ℓ] which is identical tok whenk≤ ℓ0 or
otherwise in[ℓ0+1, ℓ0+ ℓ] and with same remainder moduloℓ ask. Call this number the “(ℓ0, ℓ)-status
of k” (or just statusof k).

Note that for anyp ∈ Q, i,m∈ N, the corresponding exit combination is determined by the status
of i, the status ofm, the status of|i −m|, and whetheri < m (we refer to the last three items as the
relative statusof mwith respect toi). Writing Sfor the set of individual status informations, and 0,1 for
the information whetheri < m or not, we obtain a finite (and effectively computable) relation R⊆ S3×
{0,1}×E consisting of those tuples where the last component is determined by the first four components.

We now give a sketch of the proof of Proposition 6. We define a pushdown arenaP where, intu-
itively, the height of the stack indicates the current position of the memory token. The control states of
the pushdown system indicate the current statep of A and also the status of the current stack height.

Consider a configuration of the pushdown system where the state of A is p and the height of the
stack, representing the memory token position, isi (and its status is stored in the control state). The
current player, say Output, can now choose a tupler ∈ Rwhere the first component ofr is the status ofi.
This amounts to a decision about the numberm that Player Output wants to play in the original game: it

22 Playing Games in the Baire Space

fixes the relative status ofmwith respect toi (and thus the exit combination representing the behavior of
A on a column of heightm).

In the following steps of the pushdown game, Player Output will modify the stack content to represent
the new memory token positionj according to the exit combinatione that is determined by his choice of
r. If e is of the form(q, “0” ,k), he can empty the stack and then increase its height tok. For a combination
e= (q, “I” ,k), the height of the stack (currently representingi) is increased/decreased byk. If e is of the
form (q, “M” ,k), the player can either increase of decrease the height of thestack step by step. While
the stack is modified, the relative status of the current stack height with respect toi is tracked in the
control state of the pushdown system. Whenever the current height of the stack is a numberm with the
previously chosen relative status (given byr), the player can finally increase/decrease the height byk,
which determines the new memory token position.

Now we can apply the fact that attractor strategies in pushdown reachability games are definable by
finite automata (see [6]) – and hence in MSO-logic.3

Proposition 7. Positional winning strategies in pushdown reachability games with MSO-definable target
set can be implemented by deterministic finite automata reading a given pushdown configuration and
yielding as output the pushdown rule to be applied next.

In this result, the choice of the next move is fixed by the nameh of the pushdown rule to be applied.
In MSO-logic, we obtain thus formulasψh(x) that are true if for positionx= (p, i) the rule to be applied
is h. It is easy to transform these MSO-formulas into a single MSO-formulaχ(x,y) which fixesy as the
element reached fromx by applying the unique ruleh whereψh(x) is true.

In the last step, we have to combine the finitely many steps of aplayer inP forming altoghether a
macro transition ofA into a single step, and we have to transfer the MSO-definability of the strategy
from the arenaP×GA (i.e.,P×Q×N) of the pushdown game to the structureQ×N .

To combine the intermediate steps forming a macro transition, we apply the (MSO-definable) transi-
tive closure to the strategy formulaχ(x,y) for the player under consideration, with the requirement that
an exit configuration is finally reached, yielding another MSO-formulaχ ′(x,y).

To obtain an MSO-definable strategy over the original arenaQ×N , it suffices to note that the finitely
many tuples ofS3×{0,1}×E can be coded in a finite label alphabet and that the status information of
numbers is definable in MSO-logic.

4.2.2 From MSO-Definability of Strategies to Transducers

Proposition 8. Given an MSO-definable winning strategy of Player Output in the parity game on GA ,
there is anN-memory transducer realizing a winning strategy inΓ(L(A)).

Assume Player Output winsΓ(L(A)). By Proposition 3, we have an MSO-formulaϕ(x,y) defining
a winning strategy on his winning regionWOut of GA . For the construction of the transducer, we will use
the following lemma.

Lemma 3. For a given MSO-formulaϕ(x,y) over Q×N and given p,q ∈ Q, we can construct a
deterministic finite automatonC ϕ

pq, whose input is a column (i.e., a word) that is unlabeled except for
tokens at positions i, j (memory token and memory update token), that terminates and that accepts iff
Q×N |= ϕ [(p, i),(q, j)].

3In [6], also parity games are mentioned; for easier presentation we consider reachability games and apply Proposition 3for
the step to parity games.

B. Brütsch & W. Thomas 23

This automaton is obtained as follows: For a formulaϕ(x,y) overQ×N , we can construct corre-
sponding formulasϕ ′

pq(x
′,y′) overN such thatN |= ϕ ′

pq[i, j] iff Q×N |= ϕ [(p, i),(q, j)]. To obtain
such a formula, each second-order variableX in ϕ is replaced by a|Q|-tuple of second-order variables
(Xq)q∈Q (see [1]).

Then the resulting MSO-formula can be translated into an equivalent Büchi automaton, which in turn
can be converted into an NFA that accepts or rejects immediately after the last of the two tokens in the
column has been read, depending on whether the Büchi automaton can reach an accepting loop on the
unlabeled rest of the column. This NFA can be determinized, yielding the desired automatonC ϕ

pq.
Using Lemma 3, we can now construct the transducer as claimedin Proposition 8. Note that the for-

mulaϕ(x,y) defining a winning strategy fixes a unique update for a configuration(p, i) to a configuration
(q, j). For the output of the transducer we have to find a numberm such that(p, i)

m
−→ (q, j) is a possible

transition in the game graphGA . The transducer will go through the possible values ofm, by placing
the output token successively on position 0,1,2, In each case, say with the output token on position
m, it works like A to find from start configuration(p, i) the new configuration(q, j). Now C

ϕ
pq is used

to check whether the move to(q, j) is in accordance with the winning strategy. If this is the case, the
current value ofm is the desired output.

In more detail: Assume that the transducer has processed an input column and has just switched to
the subsequent output column, in statep and with the memory token at positioni. Starting with the output
token on position 0, the transducer now proceeds as follows:It simulates theN-memory automatonA
(including the placements of the memory update token) on thecolumn #1m⊥ω , wherem (initially m= 0)
is the current position of the output token.

At some point,A would switch to the next column. Letj be the position of the memory update token
and letq be the state ofA at that point. The transducer now invokes the automatonC

ϕ
pq described in

Lemma 3 to check whether(q, j) is the correct target position according to the strategy given byϕ(x,y).
If this is the case (i.e.,C ϕ

pq accepts) then the transducer terminates processing the current column (and
moves to the next input column). Otherwise, it moves the output token one position upwards and repeats
the steps above. At some point, the correct target configuration (q, j) will be found, so the transducer
will eventually produce the desired output number.

5 Summary and Perspectives

We have introducedN-memory automata as a natural model of automata over the infinite alphabetN,
and in this framework we have obtained an algorithmic solution of Church’s synthesis problem. It seems
to be the first algorithmic solvability result on games in theBaire space.

Let us address some open issues:

1. Find a more direct construction for the decision of the winner and the winning strategy. We have
invoked decidability results on MSO-theories.

2. Related to the first issue, a complexity analysis should besupplied – this is missing in the present
paper.

3. One may wonder whether a logical framework of game specifications can be developed, replacing
the presentation in terms ofN-memory automata. This, however, seems difficult, since theclass
of ω-languages recognized byN-memory automata has only poor logical closure properties (for
instance, already closure under intersection fails).

24 Playing Games in the Baire Space

4. How can one strengthen the model ofN-memory automaton, still keeping decidability results as
needed to obtain an algorithmic solution of Church’s synthesis problem?

5. Replace plays overN by plays overΣ∗ for finite Σ.

6. A related problem is to find such results relying on decidability of the MSO-theory of the infinite
binary tree rather than of(N,Succ).

References

[1] Achim Blumensath, Thomas Colcombet & Christof Löding (2008):Logical theories and compatible opera-
tions. In Jörg Flum, Erich Grädel & Thomas Wilke, editors:Logic and Automata: History and Perspectives
[in Honor of Wolfgang Thomas], Texts in Logic and Games2, Amsterdam University Press, pp. 73–106.

[2] Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick & Luc Segoufin (2011):
Two-variable logic on data words. ACM Transactions on Computational Logic12(4), p. 27,
doi:10.1145/1970398.1970403.

[3] J. Richard Büchi (1966):On a Decision Method in Restricted Second Order Arithmetic. In Ernest Nagel,
Patrick Suppes & Alfred Tarski, editors:Proceedings of the 1960 International Congress on Logic, Method-
ology and Philosophy of Science, Studies in Logic and the Foundations of Mathematics44, Elsevier, pp.
1–11, doi:10.1016/S0049-237X(09)70564-6.

[4] J. Richard Büchi & Lawrence H. Landweber (1969):Solving Sequential Conditions by Finite-State Strategies.
Transactions of the American Mathematical Society138, pp. 295–311, doi:10.2307/1994916.

[5] Claudia Carapelle, Shiguang Feng, Alexander Kartzow & Markus Lohrey (2015):Satisfiability of ECTL*
with Tree Constraints. In Lev D. Beklemishev & Daniil V. Musatov, editors:Computer Science - The-
ory and Applications - 10th International Computer ScienceSymposium in Russia, CSR 2015, Listvyanka,
Russia, July 13-17, 2015, Proceedings, Lecture Notes in Computer Science9139, Springer, pp. 94–108,
doi:10.1007/978-3-319-20297-67.

[6] Arnaud Carayol & Matthew Hague (2014):Regular Strategies in Pushdown Reachability Games. In Joël
Ouaknine, Igor Potapov & James Worrell, editors:Reachability Problems - 8th International Workshop, RP
2014, Oxford, UK, September 22-24, 2014. Proceedings, Lecture Notes in Computer Science8762, Springer,
pp. 58–71, doi:10.1007/978-3-319-11439-25.

[7] Bruno Courcelle & Joost Engelfriet (2012):Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications138, Cambridge Uni-
versity Press, doi:10.1017/CBO9780511977619.

[8] Christopher Czyba, Christopher Spinrath & Wolfgang Thomas (2015):Finite Automata Over Infinite Alpha-
bets: Two Models with Transitions for Local Change. In Igor Potapov, editor:Developments in Language
Theory - 19th International Conference, DLT 2015, Liverpool, UK, July 27-30, 2015, Proceedings., Lecture
Notes in Computer Science9168, Springer, pp. 203–214, doi:10.1007/978-3-319-21500-6 16.

[9] Stéphane Demri & Ranko Lazic (2009):LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log.10(3), doi:10.1145/1507244.1507246.

[10] Heinz-Dieter Ebbinghaus, Jörg Flum & Wolfgang Thomas(1994):Mathematical logic (2. ed.). Undergrad-
uate Texts in Mathematics, Springer, doi:10.1007/978-1-4757-2355-7.

[11] E. Allen Emerson & Charanjit S. Jutla (1991):Tree Automata, Mu-Calculus and Determinacy (Extended
Abstract). In: 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4
October 1991, IEEE Computer Society, pp. 368–377, doi:10.1109/SFCS.1991.185392.

[12] D. Gale & F.M. Stewart (1953): Infinite games with perfect information. In: Contributions to
the Theory of Games, Ann. Math. Studies, Princeton Univ. Press, Princeton, N.J., pp. 245–266,
doi:10.1515/9781400881970-014.

http://dx.doi.org/10.1145/1970398.1970403
http://dx.doi.org/10.1016/S0049-237X(09)70564-6
http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.1007/978-3-319-20297-6_7
http://dx.doi.org/10.1007/978-3-319-11439-2_5
http://dx.doi.org/10.1017/CBO9780511977619
http://dx.doi.org/10.1007/978-3-319-21500-6_16
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1007/978-1-4757-2355-7
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1515/9781400881970-014

B. Brütsch & W. Thomas 25

[13] Erich Grädel & Simon Leßenich (2012):Banach-Mazur Games with Simple Winning Strategies. In Patrick
Cégielski & Arnaud Durand, editors:Computer Science Logic (CSL’12) - 26th International Workshop/21st
Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, LIPIcs 16,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 305–319, doi:10.4230/LIPIcs.CSL.2012.305.

[14] Michael Kaminski & Nissim Francez (1994):Finite-Memory Automata. Theoretical Computer Science
134(2), pp. 329–363, doi:10.1016/0304-3975(94)90242-9.

[15] Alexander S. Kechris (1995):Classical Descriptive Set Theory. Graduate Texts in Mathematics156, Springer
New York, New York, NY, doi:10.1007/978-1-4612-4190-4.

[16] Yiannis N. Moschovakis (2009): Descriptive set theory. 155, American Mathematical Soc.,
doi:10.1090/surv/155.

[17] Wolfgang Thomas (1997): Languages, Automata, and Logic. In Grzegorz Rozenberg & Arto
Salomaa, editors: Handbook of Formal Languages, Springer Berlin Heidelberg, pp. 389–455,
doi:10.1007/978-3-642-59126-67.

[18] Igor Walukiewicz (2001):Pushdown Processes: Games and Model-Checking. Information and Computation
164(2), pp. 234–263, doi:10.1006/inco.2000.2894.

[19] Igor Walukiewicz (2002):Monadic second-order logic on tree-like structures. Theoretical Computer Science
275(1-2), pp. 311–346, doi:10.1016/S0304-3975(01)00185-2.

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.305
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1007/978-1-4612-4190-4
http://dx.doi.org/10.1090/surv/155
http://dx.doi.org/10.1007/978-3-642-59126-6_7
http://dx.doi.org/10.1006/inco.2000.2894
http://dx.doi.org/10.1016/S0304-3975(01)00185-2

	1 Introduction
	2 Prerequisites on MSO-Logic
	3 Automata Models for Sequences of Natural Numbers
	3.1 N-Memory Automata
	3.2 N-Memory Transducers

	4 Solving Games in the Baire Space
	4.1 Deciding the Winner
	4.2 Constructing a Transducer
	4.2.1 MSO-Definable Winning Strategies in Reachability Games
	4.2.2 From MSO-Definability of Strategies to Transducers

	5 Summary and Perspectives

