Playing Games in the Baire Space

Benedikt Brutsch Wolfgang Thomas
RWTH Aachen University
bruetsch@automata.rwth-aachen.de thomas@automata.rwth-aachen.de

We solve a generalized version of Church’s Synthesis Pnolblaere a play is given by a sequence
of natural numbers rather than a sequence of bits; so a pky éement of the Baire space rather
than of the Cantor space. Two players Input and Output chnageal numbers in alternation to
generate a play. We present a natural model of autom&tan@mory automata”) equipped with the
parity acceptance condition, and we introduce also theespanding model ofN-memory trans-
ducers”. We show that solvability of games specified\bynemory automata (i.e., existence of a
winning strategy for player Output) is decidable, and thahis case afN-memory transducer can
be constructed that implements a winning strategy for pl@ydput.

1 Introduction

The algorithmic theory of infinite games was started in 19%iemwChurch formulated his “synthesis
problem”. This problem asked for presentation of a tramsfdion a — 3 of w-sequences over a finite
alphabet>, computable letter-to-letter and satisfying a logicalcsfieation R(a, 3). If we write o =
a(0)a(1)...,=L(0)B(1)...andset”"B=a(0)B(0)a(1)B(1)..., the specificatioiR can be captured
by the w-language

L={a"B€2z?|R(a,B)}

Church’s synthesis roblem asks: Givenatlanguaged. defined in a “logistic system”, is there a letter-
to-letter transformatiom — 3 in the format of some kind of circuit such thaff8 € L for eacha € Z%?

In descriptive set theory a related question had been stigame-theoretic terminology, regarding
games between two players called here Input and Output,edhserves as the winning condition for
Output. A playa (0)B(0)a(1)B(1)... is won by player Output if it belongs to, and a transformation
as mentioned above is then a winning strategy for Outputs&héale-Stewart games” [12] were stud-
ied in descriptive set theory focussing on the problem oémheinacy (whether one of the two players
has a winning strategy). A major result in this theory say ththe setl is Borel then the associated
Gale-Stewart game, which we denotelly), is determined [15, 16]. Church’s Problem posed a sharp-
ened question, namely, given a finite descriptior.ofo determine who wins and to exhibit a concrete
presentation of a winning strategy for the winner.

This problem was solved by Biichi and Landwebér [4] in thiofeing strong sense: If is a regular
w-language (presented, e.g., by a deterministic Mullerraaton), then the winner of the garii€l) can
be computed, and a winning strategy can be presented in timafof a finite-state machine (a Mealy
automaton).

This fundamental result has been extended in many ways,@them into the framework of infinite-
state systems. For example, Walukiewicz! [18] showed théogna of the Biichi-Landweber Theorem
for pushdown systems. It is remarkable, however, that @rmifit kind of “infinite extension” of the
Buchi-Landweber Theorem has not been addressed in thatlite, namely the case where the input
alphabet over whiclw-sequences are formed is infinite. Taking the typical casefisfite alphabet to be
T. Brihaye, B. Delahaye, L. Jezequel, N. Markey, J. Srba.(Eds

Cassting Workshop on Games for the Synthesis of ComplexeBst © B. Briutsch & W. Thomas
and 3rd International Workshop on Synthesis of ComplexiiRatars This work is licensed under the
(Cassting’16/SynCoP’16). Creative Commoris Attribution License.

EPTCS 220, 2016, pp. 13925, d0i:10.4204/EPTCS.220.2

http://dx.doi.org/10.4204/EPTCS.220.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

14 Playing Games in the Baire Space

2=1{0,1} and the typical case of an infinite alphabet taXbéwve will focus solely on the alphabét in
this paper), we are no more dealing with sequences fromu from NN,

In set-theoretic topology (and in descriptive set theohy3 is the step from the Cantor spacé 2
to the Baire spac&!. The topological classification theory of séts” NV is developed in very close
analogy to that of sets C 2 (cf. [15,[16]), and determinacy of Borel games then holds\¥dmas it does
for 2. A small difference occurs in the representation of prajecsets: In the Baire space, these can
be described as projections of closed sets, whereas in titeiGgpace one has to resort to projections of
Gs-sets.

In automata theory, however, the step to infinite alphatzetsghly non-trival. It requires automata
that work over infinite alphabets, in particuldlr Several proposals exist to introduce finite-state devices
that can process finite or infinite words over an alphabet as¢h Let us recall some of them.

A straightforward approach is to code a numbeby a word over{0,1}, such as 0 or 1™ or the
binary expansion ofm. Then we consider Banach-Mazur games in which a move by @ptansists
of a choice of a sequence of letters (from a finite alphabderahan single letters (for a recent refer-
ence on Banch-Mazur games see, e.g., [13]). So ambaym,... may be coded by the bit sequence
omotlim+igme+l i which a player contributes a word of @r 1. A disadvantage of this approach
is the fact that finite-state devices cannot check simplpaaties of ¢v-)words, for instance the equality
of successive numbers of a play.

As models of automata working directly on infinite alphabgts mention the register automata of
Kaminski and Francez[14], the data automata of Bojanczgk ¢2], and the register automata over data
words of [9] that allow equality tests between letters (engtural numbers) that occur in a word. Taking
N as the alphabet, a weakness of these models is their igaioiltheck the order between successive
letters or just the condition that a letteris followed bym+ 1 or bym— 1.

In the present paper, we work with automata which can chedk mlations of “incremental change”
between letters fro¥, called progressive grid walking automata (PGAs) and dtoed recently in [8].
They cover all properties of the Banach-Mazur coding of saegas ovelN, and they allow to check
the relation between successive letters (as far as expiegsimonadic second-order logic MSO over
(N,+1,0)). The idea is to code a letter by a column labelling of a lauktivo-dimensional grid. A word
my ... M, is coded by a grid withf columnw-words, where the value is coded by theo-word #1™ | ©
as shown in Figurgl 1. Fap-words this grid is also right-infinite.

N il
N e
#tHHFHFFF---
#+ P P PP
PP RPEF--

Figure 1: Grid representation of the sequence of letters#2 0.

A progressive grid automaton is a three-way automaton tha#itsathrough such a grid from left to
right, scanning a column in two-way mode and moving from aicwl to the next by a step to the right.
The latter feature allows to preserve a natural number V@heevaluek if the step to the right occurs
at heightk of a column). This feature amounts to a memory for valuel.irFor example the value of

B. Briitsch & W. Thomas 15

an inputm; may be handed from thieth column to the next, by stepping out of the column at height
m;, in order to check, for example, thet,1 = m +1. In the present paper we introduce a slightly
stronger variant of PGAs, calleN-memory automataand we also define a corresponding model of
transducer. These automata use tokens of three kinds, “myeisieen”, “memory update token”, and
(for transducers) “output token” to indicate valueshNof A column is scanned again in two-way mode,
but starting from the bottom, using the memory token thabésated somewhere on the column (namely
at the position where the memory update token was placeceiprigvious column), and in the current
column the memory update token is then placed for handindwee kaof N over to the next column
(where the memory token will be on this positikn The transducer’s output token is used to specify a
value fromN as the result of a computation.

Our main result will be an analogue of the Buchi-Landwebbedrem forN-memory automata:
Given a Baire space ganidL) where LC N? is defined by alN-memory automaton with parity accep-
tance condition one can decide who wins and construd{-anemory transducer that executes a winning
strategy for the winner.

The remainder of the paper is structured as follows: In tHesasguent section we present some
prerequisites on MSO-logic. In Sectibh 3 we introddéenemory automata, first as acceptorsuef
sequences oveX, and then as transducers. In Secfidn 4 we state and provedimeresult. In the
conclusion we address some perspectives and open problems.

2 Prerequisites on MSO-Logic

We assume that the reader is familiar with the basics on M®f@-l(as presented, e.g., in[17]). We
recall known results to be used in later sections.

It will be convenient to work with relational structures gnlSo we consider the structurg” =
(N, Sucg with the successor relatid®uccoverN rather than the structuf@, +1,0).

The MSO-theory of 4" is the set of all MSO-sentences that are truefin From [3] we know that
this theory is decidable.

We use two transfer results on preservation of the decitiabil MSO-theories. The first refers to
“MSO-interpretations”. A structureZ = (A,R*), say with just one binary relatioR® C A x Ais MSO-
interpretable in a structur# (possibly with different signature) if MSO-formulggx), Y (x,y) exist that
describe the structure’ in 4, in the sense that the elements satisfygrg) in % provide a copy of the
domainA in B, and the pairga, b) satisfying(x,y) in % give a copy ofR* over the copy ofA. The
following is well-known (see, e.qgl, [10]):

Proposition 1. If the structure« is MSO-interpretable in the structur® and the MSO-theory o is
decidable, then so is the MSO-theorygt

The second model transformation is the step from a strugtite a product[l,... k] x <7, thek-
fold copy of.<7. Let us consider just the case where= .4 = (N, Sucq. The domain of this product is
the set{1,...,k} x N, and we have the following relations:

e SUCC={((r,n),(r,n+1)) [re[1,...,k|, ne N}

e B ={(r,n) | ne N} (fixing membership in the-th copy of_#")

e SameNumbes {((r,n),(s,n)) [r,s€[1,....K], ne N}

In the general case of a relational structure the first item is applied to all relations that are present in

</ . Itis easy to show (see, e.d.] [1]) that the MSO-theorjlof. . k| x <7 is decidable if the MSO-theory
of &7 is decidable. We need here only the cage= _1":

16 Playing Games in the Baire Space

Proposition 2. For any k, the MSO-theory o1, ...k| x ./ is decidable.

In “monadic second-order transductions” as developed hy¢&dle (see [7]) the operations of MSO-
interpretations and dé-fold copying are combined into one.

A third result needed in a later section is concerned wititypgames over infinite game arenas. We
refer to [17] for background. We consider a parity game gia@ph structur& = (V, Py, P,E,Cy,...,C;)
whereV is the (at most countable) set of vertic®,andP; are unary predicates defining the partition
of V into the vertices of player 0 and player 1, respectively (we these names rather than Input and
Output to be in accordance with the literature on parity ganteis the edge relation, and ti@ define
a partition ofV wherev € C; means that vertex carries color (or priority).

It is well-known that the parity game ov& is determined with positional winning strategies|[11].

In [19] it is shown that the winning regions of the two playare MSO-definable (by MSO-formulas
$j(x), for j = 0,1). Moreover, as we shall see, under certain conditionsttirelard proof of positional
determinacy yields an extension of this result, namely thiaeach player there is an MSO-definable
winning strategy on the respective winning region. The d@fim of a winning strategy is given by
a formulay;(x,y) for the respective playey, such that for eaclu in the winning region of playei,
there is exactly one vertexsuch that(u,v) satisfiesy;(x,y), wherev is the choice determined by the
considered winning strategy of playgrfrom u. In order to guarantee this definability, we proceed in
two steps: We show (in a later section) that for reachabijéignes over the game arenas considered here,
MSO-definable winning strategies exist, and then lift tieisult to parity games. (In a reachability game,
a play is won by Output if it reaches a given MSO-defined tasgétit some point.) We settle the second
step in the following poposition.

Proposition 3. Let G be a parity game graph over V with MSO-definable setsiofifies. The winning
regions of the two players of the associated parity game é@©hdefinable. Moreover, if in each reacha-
bility game over G with MSO-definable target set there is atOMigfinable positional winning strategy
of the winner on his/her winning region, then this also hdtutsthe considered parity game over G .

The first part of the claim is shown in [19]. For the second, wecped by induction on the number
of colors (priorities) of the game graph under consideratiollowing the standard determinacy proof
as given in[[1¥]. If there is one colaronly, the claim is trivial (since player O wins by any choige i
r is even, and player 1 wins by any choice iis odd). Assume now we have formulqié(x) defining
the winning region\X of playeri in a game withk colors, and formulagsX(x,y) defining a winning
strategy of playei overWlk with k colors. Let us treat the case whdee- 1 is even (the other works
by exchanging the players). Using the formtﬁ@\+1 definingW(',‘+1 in the considered game witt+ 1
colors (known from[[19]) we obtaiwg“(x, y) as follows. The winning regiow**1 is composed of the
attractorA = Ag(Ci11 ﬂWA‘”) of player 0 and the complement of this sem:§<+1. This complement
does not contain vertices with colkr- 1, so we have a formulqig(x,y) defining a winning strategy for
player O on this set. For the attractor, we note that it is M&@nable by a formulga(x) saying x is
in all setsX containingCy_ 1 ﬂW(‘f*l and satisfying the following closure properties”:

VZ[(ZE PATZ(E(ZZ)AX(Z)) — z€ x) A (ze PAVZ(E(zZ) = X(Z)) — z€ x)}
We now invoke the assumption on the MSO-definability of thenirig strategy of Output in the reacha-

bility game with target se@y, 1 mwok+1 over his winning region (which i8), say by the formulay(x,y).
We thus obtain an MSO-definable winning strategy of Outpleer\»wl(;(+1 by a formula saying

x € WK\ A= 8(xy) A xEA— P(XY)

B. Briitsch & W. Thomas 17

3 Automata Models for Sequences of Natural Numbers

3.1 N-Memory Automata

In this section, we introducl-memory automatavhich work on sequences of natural numbers. Such
a sequence& = apa1a ... € N? is represented by a labeled grid as illustrated in FiglireHeres each
numberg; is represented by a column: In tith column of the grid, the firsy; nodes, starting from the
bottom, are labeled with 1 and the remaining nodes are ldheidn 1. For technical reasons, a node
labeled with # is added at the bottom of every column.

Formally, thegrid representationof a sequence = agazay... € N¥ is a functiongy: N x N —
{1, L,#} labeling the positions of the grid with

ifi=0,
Ga(i,j)=q1 ifl<i<gq,
L ifi>aj.

An N-memory automaton can traverse a grid representation byngayp and down within the
current column or switching to the next column (but not thevius one). It has a finite set of states,
but is additionally equipped with memory tokerwhich marks a row of the grid, andraemory update
token which can be placed by the automaton at the end of proceastofumn and which determines
the position of the memory token on the next column.

For a formal definition, leb = {1,],—,¢} be the set of possible actions of the automaton (move up,
move down, switch to next column, place memory update token)

Definition 1 (N-Memory Automaton) AnN-memory parity automatois a tuple</ = (Q, do, A, c) where
Q is a finite set of statesoer Q is the initial stateA C Q x {1, L,#} x {0,1}? x Q x D is the transition
relation with An (Q x {#} x {0,1}2 x Q x {¢}> =0, and ¢ Q — {0,...,m} is a function assigning
priorities to the states.
We call.«# deterministic if for aII(p, a, (bl,bz)) € Qx {1, L,#} x {0,1}2, there is exactly one pair
(p,d) € Qx D such that(p,a, (b1, by), p,d) € A
A configurationof <7 is a tuple(q, h,vi, j) € Q x N4 whereq is the current statdy is the horizontal
position of the automaton (i.e., the current colunwi} the vertical position (within the current column),
andi, j are the current positions of the memory token and the menmtgte token, respectively, on the
current column. (If the memory update token is not yet plagegassume position O for it by default.)
Arun of &7 on a sequence € N is an infinite sequence = cyc1C; . .. such thaty = (gp,0,0,0,0)
is the initial configuration and for every pair of conseceateonfigurations, = (q, hy, Ve, i, j¢), Cor1 =
(qr+1,Np41,Ver1,ie+1, je+1), One of the following holds:
(9:9a (e, he), (by,b2),qera, 1) €4, andverg = v+ 1, hepa = hy, igsa =i, jera = jo, Or
(9,90 (Ve, hy), (b1,02),Gr41,4) €A, andvypa =ve— 1, hpy = hy,igpa =g, jera = jo, or
(0,90 (Ve,he), (b1, b2),0r1,—) €A, andvpg = Vg, ey =he+ 1,001 = jg, jer1 =0, or
(G 9ar (v,), (br, ba),

Ve, hy Urt1,0) €A, andvps = vy, hyg =hy, i =ig, jora = v,

1 ifip= 1 ifi,=v
where blz{ Mle=Ve, and bzz{ T le=Ve,

0 otherwise 0 otherwise

indicate whether the memory token and the memory updat@&tokepectively, are at the current vertical
positionv,.

18 Playing Games in the Baire Space

A run rTis accepting ifmax(lnf(c(n))) is even. A sequence € N¥ is accepted by if the run of

&7 on its grid representatiogy is accepting.

For example, the singleton languafE234...} is recognized by a deterministi-memory automa-
ton that works as follows: It checks that there is exactly birethe first column, and moves the memory
update token to the row 1. After switching to the next colurttie, memory token now marks row 1.
The automaton goes up to that row and checks that there isexae 1 above that position. Then it
moves the memory update token to the position above the nyetoken and switches to the next col-
umn, and so on. The states assumed in this process have golwece€2the checking process fails, color
1is assumed. A variation of this idea shows the recogniialoif the w-languageN*1N*2N*3N*. . ..

The languagéa € N? | a is unboundedlis recognized by a determinisfi&-memory automaton that
moves the memory update token to the position of the topmosktHe current column if that position is
higher than the current position of the memory token. Aftgr move of the memory update token, the
automaton goes to a state with the even priority 2, otherteigestate with priority 1.

We give three further examples of languages recognized-lnemory automata (without proof):

1 {mommp... M1 =m+1 or my=m-—1}

2. {mopmmy...| m1 even iffm odd}

3. {mpmump... | M2 = myi+ 1 if My 1 even
Mpit2 = My — 1 if Mpi11 odd }

Thus,N-memory automata can recognize some interestiignguages ovel. The ability to com-
pare successive (and also “distant”) letters and to defiopgsties of unboundedness seems to be a
feature that is missing in known models of automata over tpleadetN. Let us note that in the con-
text of temporal logic, a related idea appearslin [5]; howeliere equality and incremental change
of values fromN is restriced to occurrences within a bounded (time-)irgtervso a language such as
N*1N*2N*3N*... (as mentioned above) is not covered.

An alternative version oN-memory automata can be defined by abstracting from the sigpis
one column and representing the steps from one column togkieame by MSO-formulas. In this
description we use the product struct@ex .4~ with domainQ x N as defined in Sectidd 2.

An automaton with this logical specification of the trarsis, which we calMSON-memory au-
tomaton is of the form.« = (Q,qo, (¢ ((p,X), V. (q,z)))p.qEQ,c). (This notation indicates a formula
¢ (r,s,t) with Py(r) andPy(s).) The following condition should be satisfied: Starting tate p with
memory token on position after processing the input numhbmr the automaton will reach statpwith
memory token on the new positiohiff Q x 4" = ¢[(p,i),m,(q,])]. 4 we call such a step of the
automaton anacro transition

If the MSON-memory automaton is deterministic (as in the present paiem for every(p,i) and
m, there is exactly onéq, j) such thaQ x 4" = ¢[(p,i),m,(q, j)].

Proposition 4. For everyN-memory automaton, an equivalent M8@memory automaton can be con-
structed.

The proof is straightforward but tedious regarding the itietd he idea is to describe the segments
of a computation on a given column letter from one placemétie@memory update token to the next.
This computation segment can visit a given position of tivemicolumn only< |Q| times; otherwise a
repetition of configurations occurs and the computatiorsdas terminate. Hence such a run segment
can be described by an existential MSO-formula W@l existential set quantifiers. The processing of

Istrictly speakingmis not an element o x N; by abuse of notation we write to denote the elemefitp, m).

B. Briitsch & W. Thomas 19

a column is a sequence of such computation segments, ertdhmgy@oint where the automaton switches
to the next column, so it is captured by the transitive clesafrthe segment computations. It is easy to
express this invoking the definability of transitive closim MSO.

Furthermore, let us list some properties (not needed bélowever) that are proved similarly 10 ﬂﬁ].

Remark 1. 1. The emptiness problem fiNSrmemory automata over words fra¥i and the emptiness
problem forN-memory parity automata ové¥® are decidable.

2. This fails when the automata are equipped with two menukgns (and memory update tokens).

3.2 N-Memory Transducers

We use deterministiN-memory automata to represent winning conditions in Gadsv8rt games in
the Baire space. To represent strategies in such gamestragliceN-memory transducers, which are
defined in close analogy ®N-memory automata, with two modifications: Firstly, therents priority
function as used for the parity acceptance condition (sineere not dealing with infinite runs). Sec-
ondly, there is an additional token, tbeatput tokenused to indicate a natural number that is produced
as output after reading a word of natural numbers as giveut sgrjuence.

Thus, we define an extended set of actiéhs: {1,4,—,¢,0}, and the transition relation is now
of the formA C Q x {1, L, #} x {0,1}3 x Q x D. In a transition of the fornip, a, (by,by,b3),q,0), the
output token is placed at the current vertical position.

We will only be interested in deterministid-memory transducers, where for éb, a, (by, by, b3)) €
Q x {1, L,#} x {0,1}3, there is exactly one paip,d) € Q x D such that(p,a, (b1, bz, bs), p,d) € A.

An N-memory transducer works like &memory automaton, but it distinguishes between input
and output columns. After processing a given input colurhawitches to an output column, which is
unlabeled except for the tokens (initially just the memaen). The position of the output token upon
moving to the next column then indicates the output numbdredtpoint.

By processing input and output columns in alternation, thesducer produces an output sequence
B = epe16063. .. € N? for a given input sequenae = apa;aa3.. . . € N, yielding the playagepaie1as. . ..

4 Solving Games in the Baire Space

Our aim here is to prove the following result:

Theorem 1. For a Baire space gamg(L) where LC N is defined by a deterministi§-memory parity
automatong, one can

e decide who win§ (L), and
e construct a winning strategy for the winner realized byNsmemory transducer.

In order to show the theorem, we proceed in two steps, foligna pattern as known from the
classical solution of Church’s Problem in the Cantor space.

1. Convert the automaton into a parity game with designatat \&ertex.
(In contrast to the classical setting, the game arena wilhfagite here.)

2. Solve the parity game (finding the winner and computing enorgless winning strategy).

2A more detailed study df-memory automata — including a systematic analysis of céoproperties and the inequivalence
between the deterministic and the non-deterministic medelthe subject of a forthcoming paper by P. Landwehr and the
authors.

20 Playing Games in the Baire Space

In the first subsection we deal with the first step and the dectigbout the winner, in the subsequent
subsection we present the construction of the desiredduass.

4.1 Deciding the Winner

To transform the given deterministié-memory automatony, recognizingL € NY, into a game arena,
we first construct an equivalent MS®-memory automatony’. We assume that the state tan be
partitioned into set§)y andQ; such that all macro transitions fro@y lead toQ; and vice versa. This
can always be achieved using two copies of the original sktte

Now we construct a game aref@, with domainQ x N, the relations as defined in Sectidn 2 for
Q x ./, and the additional edges

(p,)) (.)
according to the macro transitions of’. In the following, we call a tupl€p,i) as it occurs here a
“configuration”.

N w AN
O-30 5050 — ==

|
-
o
E

O-30 5050 — ==

|
-
o
E

O30 -0 —50 — ==

o |
oo B
oo B
oo B
N R A

0 92 O3 04 05 O 07 Og
Q

Lemma 1. G, is MSO-interpretable in G .4 .

The proof is straightforward by describing the edge refetiof G, in Q x .#". Thus we obtain the
following proposition.
Proposition 5. The MSO-theory of G is decidable.

We now can decide the winner bfL). For this we use the first claim of Proposition 3 (Secfion 2):
Describe the initial vertexqop, 0) of G, by a formulagiyi:(X), and letgoui(x) be a formula defining the
winning region of Player Output. We check whether

G 3IxX(Winit (X) A dou(X))

4.2 Constructing a Transducer

We treat here the case that the winner is Player Output. Wenfast to apply Propositioh] 3 (Section
[Z). So we have to show that the assumption of Propodifion &datg reachability games holds for the
games considered here, namely that an MSO-definable wirstiategy for Output (over his winning
region) exists for a reachability game ov&y, with MSO-definable target set. Then, applying Proposi-
tion[3, we know that in the parity game ov@r,, an MSO-definable winning strategy exists for Player
Output on his winning region. In the second step we use tebistdeobtain the desired transducer.

B. Briitsch & W. Thomas 21

4.2.1 MSO-Definable Winning Strategies in Reachability Garas

We show the following, referring to the game ardhg introduced above.

Proposition 6. In every reachability game over Gwith an MSO-definable target set F, Player Output
has an MSO-definable positional winning strategy on his imignnegion.

We show this claim by a transformation of the reachabilityngeoverG,, with target sef into
a pushdown reachability gam# over an extended domaid x G, for some finiteP. A transition
(p,i) — (g,) in G, (via some input numbem) will be dissolved into a sequence of steps over the
pushdown arena?, proceeding from stack content #b stack content #1in steps each of which
changes the stack only by 1. Some complications arise frerfattt that a transition frorfp,i) to (q, j)
depends on an input valuefrom the infinite domairN. As we shall see, we can handle this using finite
information aboumwhen the target valugis “near” to 0 ori; otherwise the target valuewill be “near”
to m, and the stack will be changed accordingly.

As a preparation we need an obvious fact on the behaviouealdberministic automatow’:

Lemma 2. There is a bound B such that from configuratigmi) with input m, the automator? will
reach an exit configuratiofiq, j) where the distance of j @ or i or m is bounded by B.

The lemma is clear by the fact that between the marked posifia, m in a column the automaton
&/ is processing one-letter input words. On such words of seffity large lengttB, the automatony
will assume a periodic behaviour and hence would violatetimalition that a unique valugis reached
upon termination.

According to the lemma, the configuration upon leaving amwilcan be represented by a tuple
(g,t,k) € Qx {“0","I" ,“M” } x {—B,...,B}, which we call arexit combination For example, the tuple
(g,“l” ,2) would indicate that the column is left in stajevith the memory update token on position 2.
Note that the sdE of exit combinations is finite.

A second remark refers to the periodic behaviour of the detestic automaton’ on words over a
singleton alphabet. Such word segments occur between #itops 0, the memory token positiopand
the input positiorm. The states assumed by occur periodically. There is a finite prefix lengthand
a period length (which can be taken d8)|!) such that given any starting stapeat positioni, the state
of <7 at positioni —k or i + K is fixed by the number if0, {5 + ¢] which is identical tck whenk < ¢, or
otherwise inj¢p+ 1,40+ ¢] and with same remainder modul@sk. Call this number the (%, ¢)-status
of k” (or just statusof k).

Note that for anyp € Q, i,m € N, the corresponding exit combination is determined by th&ust
of i, the status ofm, the status ofi —m|, and whethei < m (we refer to the last three items as the
relative statuf mwith respect ta). Writing Sfor the set of individual status informations, and Gor
the information whether < mor not, we obtain a finite (and effectively computable) ielaR C S* x
{0,1} x E consisting of those tuples where the last component ism@ted by the first four components.

We now give a sketch of the proof of Proposition 6. We define shdawn arena? where, intu-
itively, the height of the stack indicates the current posibf the memory token. The control states of
the pushdown system indicate the current spaté <« and also the status of the current stack height.

Consider a configuration of the pushdown system where thie sta is p and the height of the
stack, representing the memory token position, (and its status is stored in the control state). The
current player, say Output, can now choose a tugldk where the first component ofis the status of.
This amounts to a decision about the numimghat Player Output wants to play in the original game: it

22 Playing Games in the Baire Space

fixes the relative status ofi with respect ta (and thus the exit combination representing the behavior of
&7 on a column of heightn).

In the following steps of the pushdown game, Player Outplitmadify the stack content to represent
the new memory token positionaccording to the exit combinatiathat is determined by his choice of
r. If eis of the form(g,“0” , k), he can empty the stack and then increase its heidhtfor a combination
e=(q,"l" k), the height of the stack (currently representipg increased/decreased kylf eis of the
form (g,“M” ,K), the player can either increase of decrease the height aftéick& step by step. While
the stack is modified, the relative status of the currentkskeight with respect to is tracked in the
control state of the pushdown system. Whenever the curegghhof the stack is a numben with the
previously chosen relative status (given f)ythe player can finally increase/decrease the heighk, by
which determines the new memory token position.

Now we can apply the fact that attractor strategies in pushdeachability games are definable by
finite automata (se€[6]) — and hence in MSO-lofic.

Proposition 7. Positional winning strategies in pushdown reachabilityrggs with MSO-definable target
set can be implemented by deterministic finite automataimgaa given pushdown configuration and
yielding as output the pushdown rule to be applied next.

In this result, the choice of the next move is fixed by the naroéthe pushdown rule to be applied.
In MSO-logic, we obtain thus formulag,(x) that are true if for positiox = (p,i) the rule to be applied
is h. Itis easy to transform these MSO-formulas into a single M8@nula x (x,y) which fixesy as the
element reached fromby applying the unique rulk whereyi(X) is true.

In the last step, we have to combine the finitely many stepsptdiyger in &7 forming altoghether a
macro transition ofe7 into a single step, and we have to transfer the MSO-defimaluifithe strategy
from the aren® x G, (i.e.,P x Q x .#") of the pushdown game to the struct@ex .+,

To combine the intermediate steps forming a macro tramsitiee apply the (MSO-definable) transi-
tive closure to the strategy formujg(x,y) for the player under consideration, with the requiremeat th
an exit configuration is finally reached, yielding another@®rmulax’(x,y).

To obtain an MSO-definable strategy over the original af@na/’, it suffices to note that the finitely
many tuples of8® x {0,1} x E can be coded in a finite label alphabet and that the statusnaton of
numbers is definable in MSO-logic.

4.2.2 From MSO-Definability of Strategies to Transducers

Proposition 8. Given an MSO-definable winning strategy of Player Outpubaparity game on G,
there is anN-memory transducer realizing a winning strategylifL (<7)).

Assume Player Output wirs(L(.«7)). By Propositiori B, we have an MSO-formupdx, y) defining
a winning strategy on his winning regi®b; of G.,. For the construction of the transducer, we will use
the following lemma.

Lemma 3. For a given MSO-formulap(x,y) over Qx .4 and given pq € Q, we can construct a
deterministic finite automato#;q, whose input is a column (i.e., a word) that is unlabeled pikéer
tokens at positions, j (memory token and memory update token), that terminatdsttaat accepts iff

Qx A = ¢[(p,i), (g,])]-

3In [B], also parity games are mentioned; for easier presientave consider reachability games and apply Propodiitot 3
the step to parity games.

B. Briitsch & W. Thomas 23

This automaton is obtained as follows: For a form@ilx,y) overQ x .47, we can construct corre-
sponding formulagp,(X,y') over 4 such that4" |= ¢y li, j] iff Qx 4" = ¢[(p,i),(q,])]. To obtain
such a formula, each second-order variabla ¢ is replaced by dQ|-tuple of second-order variables
(Xq)aeq (seell1]).

Then the resulting MSO-formula can be translated into ativatgnt Biichi automaton, which in turn
can be converted into an NFA that accepts or rejects immeddiaftter the last of the two tokens in the
column has been read, depending on whether the Biichi atdorman reach an accepting loop on the
unlabeled rest of the column. This NFA can be determinizeddiyng the desired automatdﬂ?q.

Using Lemma[3, we can now construct the transducer as claimfeapositiori 8. Note that the for-
mula@ (x,y) defining a winning strategy fixes a unique update for a corditippm (p,i) to a configuration
(g, j). For the output of the transducer we have to find a numbguch that(p,i) U (g,) is a possible
transition in the game grapB,,. The transducer will go through the possible valuesnpby placing
the output token successively on positiad,@,.... In each case, say with the output token on position
m, it works like <7 to find from start configuratiofip,i) the new configuratioriq, j). Now %gq is used
to check whether the move (@, j) is in accordance with the winning strategy. If this is theecahe
current value ofmis the desired output.

In more detail: Assume that the transducer has processatpandolumn and has just switched to
the subsequent output column, in statend with the memory token at positionStarting with the output
token on position 0, the transducer now proceeds as folltvgsmulates theN-memory automatomny
(including the placements of the memory update token) ogdhenn #1" L “, wherem (initially m= 0)
is the current position of the output token.

At some point,e7 would switch to the next column. L¢tbe the position of the memory update token
and letq be the state of# at that point. The transducer now invokes the automﬁ&pdescribed in
Lemmd3 to check whethéq, j) is the correct target position according to the strateggmly ¢ (x,y).

If this is the case (i.efﬁr?q accepts) then the transducer terminates processing thentaolumn (and
moves to the next input column). Otherwise, it moves theuiuttgken one position upwards and repeats
the steps above. At some point, the correct target configaréd, j) will be found, so the transducer
will eventually produce the desired output number.

5 Summary and Perspectives

We have introducedN-memory automata as a natural model of automata over theténéifphabetN,
and in this framework we have obtained an algorithmic sotutf Church’s synthesis problem. It seems
to be the first algorithmic solvability result on games in Badre space.

Let us address some open issues:

1. Find a more direct construction for the decision of thenginand the winning strategy. We have
invoked decidability results on MSO-theories.

2. Related to the first issue, a complexity analysis shoulsulpplied — this is missing in the present
paper.

3. One may wonder whether a logical framework of game spatiifics can be developed, replacing
the presentation in terms df-memory automata. This, however, seems difficult, sincecthags
of w-languages recognized BN~memory automata has only poor logical closure properf@s (
instance, already closure under intersection fails).

24 Playing Games in the Baire Space

4. How can one strengthen the modeNoimemory automaton, still keeping decidability results as
needed to obtain an algorithmic solution of Church’s sysithproblem?

5. Replace plays ovéX by plays ovez* for finite .

6. A related problem is to find such results relying on dedidglnf the MSO-theory of the infinite
binary tree rather than ¢, Sucg.

References

[1] Achim Blumensath, Thomas Colcombet & Christof Lodir29(08): Logical theories and compatible opera-
tions In Jorg Flum, Erich Gradel & Thomas Wilke, editoisogic and Automata: History and Perspectives
[in Honor of Wolfgang Thomas[Texts in Logic and Game Amsterdam University Press, pp. 73-106.

[2] Mikotaj Bojahczyk, Claire David, Anca Muscholl, ThomaSchwentick & Luc Segoufin (2011):
Two-variable logic on data words ACM Transactions on Computational Logit2(4), p. 27,
doi{10.1145/1970398.1970403.

[3] J. Richard Biichi (1966)On a Decision Method in Restricted Second Order ArithmelticErnest Nagel,
Patrick Suppes & Alfred Tarski, editor®roceedings of the 1960 International Congress on Logi¢chde
ology and Philosophy of Scienc&tudies in Logic and the Foundations of Mathemadids Elsevier, pp.
1-11, doj:10.1016/S0049-237X(09)70564-6.

[4] J. Richard Buchi & Lawrence H. Landweber (1968plving Sequential Conditions by Finite-State Strategies
Transactions of the American Mathematical Socl88, pp. 295-311, d0i:10.2307/1994916.

[5] Claudia Carapelle, Shiguang Feng, Alexander Kartzow &rklis Lohrey (2015)Satisfiability of ECTL*
with Tree Constraints In Lev D. Beklemishev & Daniil V. Musatov, editorsComputer Science - The-
ory and Applications - 10th International Computer ScieS8geposium in Russia, CSR 2015, Listvyanka,
Russia, July 13-17, 2015, Proceedinfecture Notes in Computer Sciene&39, Springer, pp. 94-108,
doi{10.1007/978-3-319-20297+%

[6] Arnaud Carayol & Matthew Hague (2014Regular Strategies in Pushdown Reachability GamesJoél
Ouaknine, Igor Potapov & James Worrell, editoReachability Problems - 8th International Workshop, RP
2014, Oxford, UK, September 22-24, 2014. Proceedibgsture Notes in Computer Scier8é62, Springer,
pp. 58-71, ddi:10.1007/978-3-319-1143%:2

[7] Bruno Courcelle & Joost Engelfriet (2012)Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic ApproachEncyclopedia of Mathematics and its Applicatict38, Cambridge Uni-
versity Press, d0i:10.1017/CB0O9780511977619.

[8] Christopher Czyba, Christopher Spinrath & Wolfgang as (2015)Finite Automata Over Infinite Alpha-
bets: Two Models with Transitions for Local Chande Igor Potapov, editorDevelopments in Language
Theory - 19th International Conference, DLT 2015, Liverh&K, July 27-30, 2015, Proceedingkecture
Notes in Computer Scien@4.68, Springer, pp. 203-214, doi:10.1007/978-3-319-R1606.

[9] Stéphane Demri & Ranko Lazic (2009)TL with the freeze quantifier and register automa#eCM Trans.
Comput. Log10(3), doi:10.1145/1507244.1507246.

[10] Heinz-Dieter Ebbinghaus, Jorg Flum & Wolfgang Thon(a894): Mathematical logic (2. ed-)Undergrad-
uate Texts in Mathematics, Springer, d0i:10.1007/9783742355-7.

[11] E. Allen Emerson & Charanijit S. Jutla (1991)ree Automata, Mu-Calculus and Determinacy (Extended
Abstract) In: 32nd Annual Symposium on Foundations of Computer Scierge,J8an, Puerto Rico, 1-4
October 199]IEEE Computer Society, pp. 368—-377, d0i:10.1109/SFCH.1185392.

[12] D. Gale & F.M. Stewart (1953): Infinite games with perfect information In: Contributions to
the Theory of GamesAnn. Math. Studies, Princeton Univ. Press, Princeton,.,Npp. 245-266,
doii10.1515/9781400881970-014.

http://dx.doi.org/10.1145/1970398.1970403
http://dx.doi.org/10.1016/S0049-237X(09)70564-6
http://dx.doi.org/10.2307/1994916
http://dx.doi.org/10.1007/978-3-319-20297-6_7
http://dx.doi.org/10.1007/978-3-319-11439-2_5
http://dx.doi.org/10.1017/CBO9780511977619
http://dx.doi.org/10.1007/978-3-319-21500-6_16
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1007/978-1-4757-2355-7
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1515/9781400881970-014

B. Briitsch & W. Thomas 25

[13] Erich Gradel & Simon LeRenich (2012Banach-Mazur Games with Simple Winning StrategiadPatrick
Cégielski & Arnaud Durand, editor€omputer Science Logic (CSL'12) - 26th International Wirdgs/21st
Annual Conference of the EACSL, CSL 2012, September 3-6226bntainebleau, FrancélPIcs 16,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp53819, doi:10.4230/LIPIcs.CSL.2012.305.

[14] Michael Kaminski & Nissim Francez (1994 Finite-Memory Automata Theoretical Computer Science
134(2), pp. 329-363, d0i:10.1016/0304-3975(94)90242-9.

[15] Alexander S. Kechris (1995 lassical Descriptive Set Theor§@raduate Texts in Mathematit$6, Springer
New York, New York, NY, doi:10.1007/978-1-4612-4190-4.

[16] Yiannis N. Moschovakis (2009): Descriptive set theory 155, American Mathematical Soc.,
doi{10.1090/surv/155.

[17] Wolfgang Thomas (1997): Languages, Automata, and Logic In Grzegorz Rozenberg & Arto
Salomaa, editors: Handbook of Formal LanguagesSpringer Berlin Heidelberg, pp. 389-455,
doi{10.1007/978-3-642-591267%

[18] Igor Walukiewicz (2001)Pushdown Processes: Games and Model-Checltirfgrmation and Computation
164(2), pp. 234—-263, d0i:10.1006/inco.2000.2894.

[19] Igor Walukiewicz (2002)Monadic second-order logic on tree-like structur@&ieoretical Computer Science
275(1-2), pp. 311-346, dpi:10.1016/S0304-3975(01)0L85

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.305
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1007/978-1-4612-4190-4
http://dx.doi.org/10.1090/surv/155
http://dx.doi.org/10.1007/978-3-642-59126-6_7
http://dx.doi.org/10.1006/inco.2000.2894
http://dx.doi.org/10.1016/S0304-3975(01)00185-2

	1 Introduction
	2 Prerequisites on MSO-Logic
	3 Automata Models for Sequences of Natural Numbers
	3.1 N-Memory Automata
	3.2 N-Memory Transducers

	4 Solving Games in the Baire Space
	4.1 Deciding the Winner
	4.2 Constructing a Transducer
	4.2.1 MSO-Definable Winning Strategies in Reachability Games
	4.2.2 From MSO-Definability of Strategies to Transducers

	5 Summary and Perspectives

