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This paper compares classical copying and quantum entanglement in natural language by consid-

ering the case of verb phrase (VP) ellipsis. VP ellipsis is a non-linear linguistic phenomenon that

requires the reuse of resources, making it the ideal test case for a comparative study of different

copying behaviours in compositional models of natural language. Following the line of research in

compositional distributional semantics set out by [6] we develop an extension of the Lambek calculus

which admits a controlled form of contraction to deal with the copying of linguistic resources. We

then develop two different compositional models of distributional meaning for this calculus. In the

first model, we follow the categorical approach of [5] in which a functorial passage sends the proofs

of the grammar to linear maps on vector spaces and we use Frobenius algebras to allow for copying.

In the second case, we follow the more traditional approach that one finds in categorial grammars,

whereby an intermediate step interprets proofs as non-linear lambda terms, using multiple variable

occurrences that model classical copying. As a case study, we apply the models to derive different

readings of ambiguous elliptical phrases and compare the analyses that each model provides.

1 Introduction

Lexical distributional models of meaning assume that the meaning of a word is given by its context, an

idea that can be operationalised by deriving vectorial word representations from corpus co-occurrence

statistics. These single-word embeddings by now are an essential part of the computational linguistics

toolkit, as they have been successfully applied in several NLP tasks (see e.g. [24, 4] for an overview).

However, the move from single-word embeddings to larger phrases and full sentences poses a number

of immediate issues. Firstly, the distributional hypothesis underlying the single-word embeddings does

not directly apply to sentences: a sentence meaning is given by more than just its contexts. Second, such

an approach would suffer from data sparsity: although there has been investigation in deriving vector

representations for adjective-noun, verb-object, and subject-verb-object combinations from a corpus,

e.g. see [16], current corpora are not able to provide enough examples to successfully represent phrases.

In this paper we discuss compositionality from the perspective of VP ellipsis, which constitutes

phrases that lack a verb phrase component that however is often marked by another constituent in the

phrase, often an auxiliary verb. Examples are “Mary drinks and Bob does too” and “Kim wears a hat

but Sandy does not”, in either case the auxiliary verb ‘does’ refers to the verb phrase occurring earlier in

the sentence. VP ellipsis provides an interesting challenge for compositional distributional semantics for

two reasons: first, it is a non-linear phenomenon, as the verb phrase is needed twice to parse the sentence

and there is no straightforward linear algebraic way to deal with the reuse of resources. Secondly, one

can easily extend the current experimental datasets of the setting [8, 14] and compute with it: VP ellipsis

is only one step further from a simple transitive sentence. The examples above are both constructed
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104 Classical Copying Versus Quantum Entanglement in Natural Language

using two subjects, an object, and a verb. This makes modelling VP ellipsis a suitable candidate for

experimental evaluation1 .

Ellipsis has been modelled both as a syntactic and a semantic problem [15] and here we approach it

from the perspective of categorical compositional distributional semantics [6, 5], in which the derivations

of a typelogical grammar are interpreted as linear maps on vector spaces. The tight connection between

syntax and semantics that one assumes in these models means that we will treat ellipsis as a phenomenon

that requires controlled copying of resources in syntax. Thus, similar to the approaches of [10, 19, 20],

we argue for the use of controlled forms of copying in a type logical system to deal with ellipsis. We then

define two compositional architectures: a quantum entangled semantics following the direct categorical

modelling of [5] where we use Frobenius algebras to interpret the copying operations, and a classical

semantics in which an intermediate step allows for classical copying by means of variable reuse in terms

of a non-linear lambda calculus.

This paper is structured as follows: in Section 2, we discuss the problem of ellipsis and argue for

the legitimacy of non-linearity in the syntactic process. We define an extension of the Lambek calculus

to deal with resource reuse in syntax in Section 3. In Sections 4 and 5, respectively, we instantiate this

calculus to a categorical and a classical model. We then apply these two different semantics to derive

different readings of elliptical phrases with structural ambiguities and conclude in Section 6.

2 Background

Loosely following [7, 11] we define ellipsis as a phenomenon in which two phrases are parallel in struc-

ture, though one of the phrases is incomplete and requires material from the other phrase to be copied in

order to make sense. In the case of verb phrase ellipsis there is usually a marker present that specifies

that material needs to be copied and moved into place. In the example of verb phrase ellipsis in Equation

1, where the elided verb phrase is marked by the auxiliary verb. Ideally, sentence 1(a) is in a bidirectional

entailment relation with 1(b), i.e. (a) entails (b) and (b) entails (a).

a “Alice drinks and Bill does too”

b “Alice drinks and Bill drinks”
(1)

A more complicated example of ellipsis and anaphora, that induces an ambiguity, is the one in Equation

2, where the ambiguous phrase (a) has two readings (b) and (c).

a “Gary loves his code and Bill does too” (ambiguous)

b “Gary loves Gary’s code and Bill loves Gary’s code” (strict)

c “Gary loves Gary’s code and Bill loves Bill’s code” (sloppy)

(2)

In a formal semantics account, the first example could be analysed with the auxiliary verb as an identity

function on the main verb of the sentence and an intersective meaning for the coordinator. Somehow the

parts need to be appropriately combined to produce the reading (b) for sentence (a):

does too : λx.x
and : λx.λy.(x∧ y)

should give drinks(alice)∧drinks(bill)

The second example would assume the same meaning for the coordinator and auxiliary but now the

possessive pronoun “his” gets a more complicated term: λx.λy.owns(x,y). The analysis then somehow

should derive two readings:

1This work is currently under review and could therefore not be included here as of yet.
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loves(gary,x)∧owns(gary,x)∧ loves(bill,x) (strict)

loves(gary,x)∧owns(gary,x)∧ loves(bill,y)∧owns(bill,y) (sloppy)

There are three issues with these analyses that a distributional semantic treatment should address: first,

one has to determine how individual word meanings are combined to form the phrase meaning (syntax).

Second, function words such as the coordinator ‘and’ need to be given a lexical meaning since they

should not be addressed distributionally (lexical semantics). Thirdly, the semantic representations are

all non-linear: the main verb is used twice in the first example, the noun phrases are consumed twice

or thrice in the second example. Somehow a model needs to account for how these non-linearities are

obtained (derivational semantics).

To address the first issue we define an extension of the Lambek calculus that allows for the copying

of resources by means of a controlled proof-theoretic contraction rule. The lexical semantics of the coor-

dinator (‘and’) and the possessive pronoun (‘his’) are given by using Frobenius algebras. This approach

was shown to be fruitful in previous work [12, 22]. We discuss the third issue below.

Quantum versus Classical non-linearity To set up a compositional distributional model that allows

a certain non-linearity there is a choice to be made: to stay within the existing categorical framework

[6, 5], we want to work with compact closed categories and their concrete instantiation to the category

of vector spaces and linear maps. The Frobenius algebras that have been used in previous work to deal

with relative pronouns and coordination, can also be used to allow the copying of resources, however

this will happen in a non-cartesian way in which the material that was copied, is entangled. The main

Frobenius map that is used for relative pronouns by [22, 18] expresses element wise multiplication, but

its dual map copies a vector by placing its values on the diagonal of a square matrix. In terms of a type

signature this indeed multiplies the vector space on which the map is performed, but does not allow for

the actual vector to be used in a non-entangled way. In fact, there is no linear map that can copy arbitrary

vectors in the cartesian sense [1, 9]. To see this for a concrete example, consider the phrase “Alice loves

herself” with tensors alice = ∑
i

ai~vi, and loves = ∑
jkl

c jkl(~v j ⊗~sk ⊗~vl). The interpretation of a classical

semantics (left) differs from the result of using Frobenius algebras (right):

Classical Frobenius

aliceilovesi jkalicek = ∑
i jk

aici jkak~s j aliceilovesi ji = ∑
i j

aiaici ji~s j

Within the categorical framework we could derive the sentence meaning on the right, but not the one

on the left. However, we can define a different compositional distributional model that allows for the

cartesian copying to take place. Since we do not want to fix this choice in advance, we define both

models and give a comparison in their treatment of VP ellipsis to see whether a classical non-linearity is

preferred over am entangled non-linearity.

Two Architectures The categorical framework implements compositionality directly as a functorial

passage from a syntactic category to a semantic category. The concrete model of [5] takes the Lambek

calculus as a monoidal biclosed category, which then is mapped onto the category of vector spaces and

linear maps, where the tensor product is monoidal and whose internal hom is given by the space of maps

between two vector spaces. For our case, we take an extension of the Lambek calculus with controlled

contraction which we will denote by L♦,F, and map it onto the category of vector spaces where each

space has a Frobenius algebra, written FVecFrob. In a picture, the process looks like
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Source

L♦,F

Target

FVecFrob

⌈·⌉

In order to allow classical copying behaviour in a compositional distributional model, we decompose the

categorical model of [5] into a two-step architecture: derivations and are now mapped onto terms of a

non-linear simply typed lambda calculus λNL. The second stage of the interpretation process replaces

the assumed lexical constants for words by their lexical semantics, finally resulting in a term of a lambda

calculus that models vectors and linear maps, denoted λFVecFrob
. In a picture:

Source

L♦,F

Intermediate

λNL

Target

λFVecFrob

⌊·⌋ H (·)

The effect is that we allow the cartesian behaviour of copying elements before concretisation in a vector

semantics: the meaning of a sentence now is a program that has non-linear access to word embeddings.

3 A Proof System for Controlled Copying

Our starting point for syntax is the Lambek Calculus, the noncommutative fragment of multiplicative

linear logic without units. Formulas in F are built from a set of basic formulas B and using the con-

nectives ⊗,\,/, sharing the residuation relation2 expressed in Figure 2. Moreover, we add the control

modalities ♦,�. The modalities have a purely syntactical role: instead of directly allowing the copying

of resources, the system is designed such that only a type that is labelled with a ♦ can be copied. This

prevents the overgeneration of a general contraction rule, but allows the copying of those words that have

been decorated with a ♦ type. The residuated � modality allows for the system to operate on the rest of

a ♦ decorated type without losing track of the position of the ♦. Combining ♦ with a \ or / creates the

behaviour wanted for ellipsis: an ellipsis marker will generally be annotated with a type ♦A\B, meaning

that it expects a copy of a resource of type A somewhere to its left. Once the copy is created, it is moved

into the right position to be consumed by the ellipsis marker, as expressed in Figure 1. To this end, the

modalities license access to (limited forms of) contraction and commutativity, through the use of struc-

tural rules (see Figure 2). A similar setup has shown to give an account for pronoun relativisation [17],

which in the context of distributional semantics has been worked out in [22, 18].

The structural rules can also be stipulated in equivalent axiomatic form, but for the purpose of parsing

it is more useful to consider rule form. We want to have a system that enjoys decidability: though this is

not a straightforward property in the presence of just contraction3 , our system becomes decidable easily

if we put a bound on the number of contractions in a proof.

In order to determine the analysis of a phrase, we have a mapping σ : Σ→ F where Σ is a list of

words. Sentencehood of a sequence of words w1, ...,wn is then determined by derivability with respect

to a distinguished sentence type s of the conjoined formula σ(w1)⊗ ...⊗σ(wn), and this generalises to

arbitrary goal formulas. In other words, whenever σ(w1)⊗ ...⊗σ(wn)→ A is derivable, we may say

that w1, ...,wn is a phrase of type A.

2Algebraically, three operations ·,←,→ on a partial order form a residuated triple iff a ≤ c← b⇔ a · b ≤ c⇔ b ≤ a→ c.

Logically, this corresponds to the two-way inference rules that we use here.
3See the discussion in Katalin Bimbó’s monograph [2] and the results of [23, 3].
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W1 ... Wi ANT Wi+1... W j AUX W j+1... Wn

C1 ... Ci A

✚
✚♦A A

Ci+1 ... C j ♦A ♦A\B C j+1... Cn

Figure 1: General strategy for ellipsis resolution in L♦,F. The antecedent is copied, and the ♦ decorated

copy is moved directly left of the marker which consumes the copy.

1A : A−→ A

f : A−→ B g : B−→C

g◦ f : A−→C

f : ♦A−→ B

▽ f : A−→�B

f : A⊗B−→C

⊲ f : A−→C/B

f : A⊗B−→C

⊳ f : B−→ A\C

g : A−→�B

▽−1g : ♦A−→ B

g : A−→C/B

⊲−1g : A⊗B−→C

g : B−→ A\C

⊳−1g : A⊗B−→C

f : (A⊗B)⊗C−→ D

α̂ l
⋄( f ) : A⊗ (B⊗C)−→ D

f : A⊗ (B⊗C)−→ D

α̂r
⋄( f ) : (A⊗B)⊗C−→ D

f : ♦A⊗A−→ B

Ĉ( f ) : A−→ B

f : A⊗ (♦B⊗C)−→ D

M̂( f ) : (♦B⊗A)⊗C−→ D

f : ♦A⊗ (♦B⊗C)−→ D

Ŝ( f ) : ♦B⊗ (♦A⊗C)−→ D

Figure 2: L⋄,F . Residuation rules; Structural postulates for controlled copying and moving (rule form).

The names of the rules are given by the term symbols in the conclusion of each rule.

3.1 Deriving Ellipsis

Let’s consider again the examples given in Section 2. An elliptical phrase like “Alice drinks and Bob does

too” requires the verb phrase to be used twice; the proof system handles this by means of the structural

rules of controlled contraction and movement. Figure 3 shows the short-hand derivation for the phrase —

skipping trivial applications of associativity — with the copy of the verb phrase highlighted in red. The

derivation follows the general pattern depicted in Figure 1, with the auxiliary verb “does too” marking

the ellipsis site and therefore typed ♦(np\s)\(np\s); requiring a copied verb from somewhere to its left,

it will return a verb. Reading the proof from bottom to top, first a contraction is applied to copy the

verb phrase, marking the copy with a control modality. Then, the copy of the verb phrase is structurally

moved rightward until it is in the right position to interact with the auxiliary ellipsis marker. It is not hard

to see, then, that this allows the meaning of the verb phrase to be multiplied, have the copied version

interact with the auxiliary to give the meaning of the whole phrase in a similar way as the meaning of the
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expanded phrase “Alice drinks and Bob drinks” would be computed.

np −→ np s −→ s

np\s −→ np\s
\

np⊗np\s −→ s
⊳−1

s −→ s

s\s −→ (np⊗np\s)\s
\

np −→ np s −→ s

np\s −→ np\s
\

♦(np\s) −→ ♦(np\s)
♦

np −→ np s −→ s

np\s −→ np\s
\

♦(np\s)\(np\s) −→ ♦(np\s)\(np\s)
\

♦(np\s)⊗ ♦(np\s)\(np\s) −→ np\s
⊳−1

np⊗ (♦(np\s)⊗ ♦(np\s)\(np\s)) −→ s
⊳−1

(s\s)/s −→ ((np⊗np\s)\s)/(np⊗ (♦(np\s)⊗ ♦(np\s)\(np\s)))
/

(s\s)/s⊗ (np⊗ (♦(np\s)⊗ ♦(np\s)\(np\s))) −→ (np⊗np\s)\s
⊲−1

(np⊗np\s)⊗ ((s\s)/s⊗ (np⊗ (♦(np\s)⊗ ♦(np\s)\(np\s)))) −→ s
⊳−1

(np⊗np\s)⊗ ((s\s)/s⊗ (♦(np\s)⊗ (np⊗ ♦(np\s)\(np\s)))) −→ s
M

(np⊗np\s)⊗ (♦(np\s)⊗ ((s\s)/s⊗ (np⊗ ♦(np\s)\(np\s)))) −→ s
M

(np⊗ (♦(np\s)⊗np\s))⊗ ((s\s)/s⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
M

( np
Alice

⊗np\s
drinks

)⊗ ((s\s)/s
and

⊗ (np
Bob

⊗ ♦(np\s)\(np\s)
does too

))−→ s
C

Figure 3: Short hand derivation for “Alice drinks and Bob does-too”. The copied verb and its subformulas

are highlighted in red. The bottom inferences copy the verb and move it to the auxiliary verb (structural

phase), after which logical rules are applied to reduce to axiom leaves (logical phase).

More complicated cases of ellipsis contain anaphora, and allow an interaction that leads to strict and

sloppy readings. To analyse the examples from Equation 1, the given proof system deals with the ambi-

guity by allowing a choice of resolution: either the anaphora gets resolved first, after which the resolved

verb phrase is copied (strict reading), or the unresolved verb phrase is copied and resolved once for

each subclause (sloppy reading). The two readings are derived in Figures 4, 5, 6. In the following two

sections, we give respectively a quantum and a classical interpretation to these derivations.

4 Quantum Semantics with Frobenius Algebras

In order to derive the semantics for coordination and ellipsis proposed in [12, 13], we follow the frame-

work of [5] and label the rules of our proof system with categorical morphisms in a compact closed

category endowed with Frobenius algebras. Recall that a compact closed category (CCC) is a monoidal

category, i.e. it has an associative ⊗ with unit I, and for every object there is a left and a right adjoint

with maps

Al⊗A
ε l

−−→ I
η l

−−→ A⊗Al A⊗Ar ε r

−−→ I
η r

−−→ Ar⊗A

These need satisfy the so-called yanking equations

(1A⊗ ε l
A)◦ (η

l
A⊗1A) = 1A (ε r

A⊗1A)◦ (1A⊗η r
A) = 1A

(ε l
A⊗1Al)◦ (1Al ⊗η l

A) = 1Al (1Ar ⊗ ε r
A)◦ (η

r
A⊗1Ar) = 1Ar

In a symmetric CCC, the tensor moreover is commutative, and we can write A∗ for the collapsed left and

right adjoints. Frobenius algebras are defined over the objects of a category, and we say that an object A

has a Frobenius structure when it has maps
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∆ : A→ A⊗A µ : A⊗A→ A ι : A→ I ζ : I→ A

satisfying monoidality and comonoidality for the pairs (A,µ ,ζ ) and (A,∆, ι) and the Frobenius equation

(µ⊗ idA)◦ (idA⊗δ ) = δ ◦µ = (idA⊗µ)◦ (δ ⊗ idA)

In the concrete instance of FVect, the unit I stands for the field R; identity maps, composition and tensor

product are defined as usual. Since bases of vector spaces are fixed in concrete models, there is only one

natural way of defining a basis for a dual space, so that V ∗ ∼= V . In concrete models we may collapse

the adjoints completely. The ε map takes inner products, whereas the η map (with λ = 1) introduces an

identity tensor as follows:

εV : V ⊗V → R given by ∑
i j

vi j(~ei⊗~e j) 7→ ∑
i

vii

ηV : R→V ⊗V given by λ 7→ ∑
i

λ (~ei⊗~ei)

Any finite vector space with fixed basis possesses a Frobenius structure, and so we write FVectFrob for

the category of finite dimensional vector spaces with fixed basis4. The Frobenius maps take the form

given below: ∆ takes a tensor and places its values on the diagonal of a square matrix, whereas µ extracts

the diagonal from a square matrix. The ι and ζ maps respectively sum the coefficients of a vector or

introduce a vector with the value 1 for all of its coefficients.

∆V : V →V ⊗V given by ∑
i

vi~ei 7→ ∑
i

vi(~ei⊗~ei)

ιV : V → R given by ∑
i

vi~ei 7→ ∑
i

vi

µV : V ⊗V →V given by ∑
i j

vi j(~ei⊗~e j) 7→ ∑
i

vii~ei

ζV : R→V given by λ 7→ ∑
i

λ~ei

4.1 Interpretation: Proofs and Morphisms

The interpretation of derivations as linear maps has two components: on the type level, formulas are

associated with vector spaces. On the proof level, the abstract terms of a proof become operations on

vector spaces that respect the type interpretation. On basic types, the interpretation ⌈·⌉ assigns arbitrary

vector spaces, on complex types we have

⌈A⊗B⌉= ⌈A⌉⊗⌈B⌉ ⌈A/B⌉= ⌈A⌉⊗⌈B⌉∗ ⌈A\B⌉= ⌈A⌉∗⊗⌈B⌉ ⌈♦A⌉= ⌈�A⌉= ⌈A⌉

On the level of proofs, we follow the standard interpretation given in [5, 25] to interpret the basic logic

of residuation, and add the interpretation of the control rules from Figure 2. The simplest interpretations

are identity and composition: ⌈1A⌉ = 1⌈A⌉, ⌈g◦ f ⌉ = ⌈g⌉ ◦ ⌈ f ⌉. For the residuation inferences, we take

the map ⌈ f ⌉ : ⌈A⌉⊗⌈B⌉ −→ ⌈C⌉ interpreting the premise, and define

⌈⊲ f ⌉= ⌈A⌉
1⌈A⌉⊗η⌈B⌉
−−−−−−−−→ ⌈A⌉⊗⌈B⌉⊗⌈B⌉∗

⌈ f ⌉⊗1⌈B⌉∗
−−−−−−−−→ ⌈C⌉⊗⌈B⌉∗

⌈⊳ f ⌉= ⌈B⌉
η⌈A⌉⊗1⌈B⌉
−−−−−−−−→ ⌈A⌉∗⊗⌈A⌉⊗⌈B⌉

1⌈A⌉∗⊗⌈ f ⌉
−−−−−−−−→ ⌈A⌉∗⊗⌈C⌉

4In concrete experimental models bases are always fixed.
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For the inverses, from maps ⌈g⌉ : ⌈A⌉ −→ ⌈C/B⌉, ⌈h⌉ : ⌈B⌉ −→ ⌈A\C⌉ for the premises, we define

⌈⊲−1g⌉= ⌈A⌉⊗⌈B⌉
⌈g⌉⊗1⌈B⌉
−−−−−−−→ ⌈C⌉⊗⌈B⌉∗⊗⌈B⌉

1⌈C⌉⊗ ε⌈B⌉
−−−−−−−−→ ⌈C⌉

⌈⊳−1h⌉= ⌈A⌉⊗⌈B⌉
1⌈A⌉⊗⌈h⌉
−−−−−−−→ ⌈A⌉⊗⌈A⌉∗⊗⌈C⌉

ε⌈A⌉⊗1⌈C⌉
−−−−−−−−→ ⌈C⌉

For the (derived) rules of monotonicity, the case of parallel composition is immediate: ⌈ f ⊗g⌉ = ⌈ f ⌉⊗
⌈g⌉. For the slash cases, from ⌈ f ⌉ : ⌈A⌉ −→ ⌈B⌉ and ⌈g⌉ : ⌈C⌉ −→ ⌈D⌉, we obtain

⌈ f/g⌉ = ⌈ f\g⌉ =

⌈A⌉⊗⌈D⌉∗ ⌈B⌉∗⊗⌈C⌉

⌈B⌉⊗⌈C⌉∗⊗⌈C⌉⊗⌈D⌉∗ ⌈B⌉∗⊗⌈A⌉⊗⌈A⌉∗⊗⌈D⌉

⌈B⌉⊗⌈C⌉∗⊗⌈D⌉⊗⌈D⌉∗ ⌈B⌉∗⊗⌈B⌉⊗⌈A⌉∗⊗⌈D⌉

⌈B⌉⊗⌈C⌉∗ ⌈A⌉∗⊗⌈D⌉

⌈ f ⌉⊗η⌈C⌉⊗1⌈D⌉∗

1⌈B⌉⊗⌈C⌉∗⊗⌈g⌉⊗1⌈D⌉∗

1⌈B⌉⊗⌈C⌉∗⊗ ε⌈D⌉

1⌈B⌉∗⊗η⌈A⌉⊗⌈g⌉

1⌈B⌉∗⊗⌈ f ⌉⊗1⌈A⌉∗⊗⌈D⌉

ε⌈B⌉⊗1⌈A⌉∗⊗⌈D⌉

Interpretation for the associativity structural rules is immediate via the standard associativity of FVect:

⌈α̂ l
⋄ f ⌉= ⌈ f ⌉◦α−1 and ⌈α̂r

⋄ f ⌉= α ◦⌈ f ⌉. For the other structural rules, we additionally use the symmetry

maps of FVect as well as the diagonal Frobenius map ∆:

⌈Ĉ( f )⌉= ⌈A⌉
∆⌈A⌉
−−−→ ⌈A⌉⊗⌈A⌉

⌈ f ⌉
−−−→ ⌈B⌉

⌈M̂( f )⌉= (⌈B⌉⊗⌈A⌉)⊗⌈C⌉
σ⌈B⌉,⌈A⌉⊗1⌈C⌉
−−−−−−−−−−→ (⌈A⌉⊗⌈B⌉)⊗⌈C⌉

α
−−→ ⌈B⌉⊗ (⌈A⌉⊗⌈C⌉)

⌈ f ⌉
−−−→ ⌈D⌉

⌈Ŝ( f )⌉= ⌈B⌉⊗ (⌈A⌉⊗⌈C⌉)
α−1

−−−→ (⌈B⌉⊗⌈A⌉)⊗⌈C⌉
σ⌈B⌉,⌈A⌉⊗1⌈C⌉
−−−−−−−−−−→ (⌈A⌉⊗⌈B⌉)⊗⌈C⌉

⌈ f ⌉◦α
−−−−−→ D

4.2 Frobenius Semantics of Ellipsis

Setting ⌈np⌉= N,⌈s⌉= S, the proof in Figure 3 will be mapped on a morphism

N⊗ (N⊗S)⊗ (S⊗S⊗S)⊗N⊗ (N⊗S⊗N⊗S)
F
−−→ S

Let us write [ f ] for a morphism which contains f but is surrounded by identity morphisms, and let us

index it [ fAi
] to specify the map acts on the ith occurrence of the object A in an object, needed whenever

there may be an ambiguity. Then, we can write the full morphism as

F = [εN⊗ εS⊗ idS⊗ εS]◦ [εN3
]◦ [εN4⊗S5

]◦ [σN3⊗S5,N4
]◦ [σN3⊗S2,S3⊗S4⊗S5

]◦ [σN2⊗S1,N3⊗S2
]◦ [∆N2⊗S1

]
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That is, the Frobenius copying map is applied to the content of the verb tensor, after which the ‘copy’ is

then moved to the right into the position next to the space N⊗S⊗N⊗S in which the auxiliary expression

lives. We then perform contractions in the expected way. For concrete maps we will write× for the tensor

contraction defined in the previous section, and ·⊥ for the transpose of a tensor; ⊙ denotes element wise

multiplication. We can use boldface for concrete tensors to get the final concrete map

alice⊗drinks⊗and⊗bob⊗does too 7→ (alice⊙bob)⊥×drinks

And similarly, for a transitive case, one would obtain the meaning

(alice⊙bob)⊥× (drinks×beer)

For the more involved examples of Figures 5, 6 we obtain more complicated maps that make a choice

in the order of resolution of the ellipsis and the anaphoric reference. Rewriting the obtained linear map

using the ‘spider’ equation of a commutative special Frobenius algebra, the normal form for the strict

derivation, in which Gary fulfills the role of the anaphora before the ellipsis is resolved, gives

gary⊗ loves⊗his⊗ code⊗and⊗bob⊗does too 7→ µN(gary⊙bob⊙ code)iklovesi jk

That is, in the final result the two subjects and the object are multiplied element wise, after which the

resulting vector is expanded to be consumed by the verb. Note that the meaning of the phrase “Gary

loves Gary’s code and Bob loves Gary’s code” is thus the same as the meaning of “Gary loves Bob’s

code and Bob loves Bob’s code”, due to the fact that we instantiated the anaphoric element ‘his’ with

element wise multiplication.

For the sloppy derivation (“Gary loves Gary’s code and Bob loves Bob’s code”) the situation is more

problematic; the normal form for the meaning of the sloppy phrase is identical to the strict reading:

gary⊗ loves⊗his⊗ code⊗and⊗bob⊗does too 7→ µN(gary⊙bob⊙ code)iklovesi jk

So not only do the readings have a symmetric meaning, the two different readings get the same semantics.

The only way to mend this would be to change the lexical meaning of the anaphora ‘his’ for an operator

other than element wise multiplication, though we suspect similar problems will arise.

5 Classical Semantics with Lambdas and Tensors

In this section, we develop a two-step semantics: first, we map the sentences to a non-linear lambda

calculus, and from there to vectors and tensors. The meaning of a sentence now is a program with non-

linear access to word embeddings. As depicted in the diagrammatic plan in Section 2, we deploy the

same proof theory as in the one-step setup above, but rather than mapping types to vector spaces and

proofs to linear maps, we map respectively to types and terms of a non-linear lambda calculus, after

which a second translation steps replaces lexical constants associated with words by (terms modelling)

concrete vectors and linear maps. In the next two subsections we work out these two steps.

5.1 Derivational Semantics: Lambdas and Constants

In the first step of the interpretation process, we map types and proofs onto types and terms of a non-

linear simply typed lambda calculus with products. Similar to subsection 5.2, we define an arbitrary

interpretation on basic types ⌊.⌋, and define on complex types

⌊A⊗B⌋= ⌊A⌋×⌊B⌋ ⌊A/B⌋= ⌊A⌋ → ⌊B⌋ ⌊A\B⌋= ⌊A⌋ → ⌊B⌋ ⌊♦A⌋= ⌊�A⌋= ⌊A⌋
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For the proofs, we can interpret identity and composition straightforwardly by λx.x and λx.N (M x) for

M and N the terms of the subproofs, respectively. The binary residuation rules correspond to application

and abstraction depending on the direction in which the rule is applied, whereas unary residuation does

not change the terms at all

⌊⊲M⌋= λx y.M 〈x,y〉 ⌊⊳M⌋= λy x.M 〈x,y〉 ⌊▽M⌋= M

⌊⊲−1N⌋= λ 〈x,y〉.(N x) y ⌊⊳−1N⌋= λ 〈x,y〉.(N y) x ⌊▽−1N⌋= N

The derived monotonicity rules get the interpretation below:

⌊M⊗N⌋= λ 〈x,y〉.〈M x,N y〉 ⌊M\N⌋= λ f x.N ( f (M x)) ⌊M/N⌋= λ f x.M ( f (N x))

The associativity rules behave as an identity since associativity is implicit in lambda terms.

⌊α̂ l
⋄(M)⌋= λ 〈x,y,z〉.M 〈x,y,z〉 ⌊α̂r

⋄(M)⌋= λ 〈x,y,z〉.M 〈x,y,z〉

The non-linear behaviour enters with the interpretation for the structural rules for movement and copying:

⌊Ĉ(M)⌋= λx.M 〈x,x〉 ⌊M̂(M)⌋= λ 〈y,x,z〉.M 〈x,y,z〉 ⌊Ŝ(M)⌋= λ 〈y,x,z〉.M 〈x,y,z〉

In this first step of interpretation, the words of a phrase are assigned constants in a term that is built up

by translating the proof term using above translation. For the sample derivation of Figure 3, the logical

phase computes only reductions; the subproof of the type

(np⊗np\s)⊗ ((s\s)/s⊗ (np⊗ (♦(np\s)⊗ ♦(np\s)\(np\s)))) −→ s

gives an abstract term

λ 〈subj1,verb,coord,subj2,verb
∗,aux〉.(coord ((aux verb∗) subj2))(verb subj1)

and the structural phase repositions the copy verb∗ next to the verb, after which the contraction rule

identifies the variables associated with them, unifying verb and verb∗:

λ 〈subj1,verb,coord,subj2,aux〉.(coord ((aux verb) subj2))(verb subj1)

We get the final abstract proof term for the proof in Figure 3 by applying the term above to the constants

for the words in the sentence:

(and ((dt drinks) bob))(drinks alice) : s (3)

5.2 Lexical Semantics: Lambdas and Tensors

We complete the vector semantics by adding the second step in the interpretation process, which is the

insertion of lexical entries for the assumptions/constants occurring in a proof term. In this step we face

the issue that interpretation directly into a vector space is not an option given that there is no copying map

that is linear, while at the same time lambda terms don’t seemingly reflect vectors. However, following

[21] we can model vectors using a lambda calculus as shown in the subsection below.
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5.2.1 Lambdas and Tensors

Vectors can be seen as functions from natural numbers to the values in the underlying field, allowing

us to represent them naturally as lambda terms. For any dimensionality n, we assume a basic type

In, representing a finite index set (in concrete models the number of index types will be finite). The

underlying field, in our case the real numbers R, is given by the type R.

The type of a vector in R
n is now V n = In→ R, the type of an n×m matrix is Mn×m = In→ Im→ R.

In general, we may represent an arbitrary tensor with dimensions n,m, ..., p by T n×m...×p = In→ Im →
...→ Ip→ R. We will leave out the superscripts denoting dimensionality when they are either irrelevant

or understood from the context.

By reference to index notation for linear algebra, we write v i as vi whenever it is understood that i is

of type I. We moreover assume constants for the basic operations of a vector space: 0 : R,1 : R,+ : R→
R→ R, · : R→ R→ R with their standard interpretation. Standard operations can now be expressed:

Name Symbol Lambda term

Matrix transposition ·T λmi j.m ji : M→M

Matrix multiplication ×1 λmvi.∑
j

mi j · v j : M→V →V

Cube multiplication ×2 λcvi j.∑
k

ci jk · vk : C→V →M

Element wise multiplication ⊙ λuvi.ui · vi : V →V →V

5.2.2 Lexical substitution

To obtain a concrete model for a phrase, we need replace the constants c in a proof term by their vectorial

representation. This is done by means of a lexicon of semantic terms, that induces a homomorphism H

on terms. Table 1 below gives the substitutions for a contraction-based and an additive-multiplicative

model respectively. Translating the abstract proof term from Equation 3 using the contraction-based

model means reducing the term below to give the final, classical meaning:

(λP.λQ.P⊙Q ((λx.x (λv.drinks×1 v)) bob))((λv.(drinks×1 v)) alice)

→β (λP.λQ.P⊙Q ((λv.drinks×1 v) bob))((λv.(drinks×1 v)) alice)

→β (λP.λQ.P⊙Q (drinks×1 bob))(drinks×1 alice)

→β (drinks×1 bob)⊙ (drinks×1 alice)

As an alternative, we can instantiate the multiplicative-additive model as well, in which the transitive

sentences are obtained by adding the individual word embeddings, but the overall result is got by multi-

plying the two sentence vectors. The final meaning now is

(drinks+alice)⊙ (drinks+bob)
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w σ(w) H1(w) H2(w) T (w)

cn n cn cn V

adj np/n λv.(adj×1 v) λv.(adj+ v) VV

adv (np\s)\(np\s) λM.M λM.(adv+M) (VV )VV

itv np\s λv.(itv×1 v) λv.(itv+ v) VV

tv (np\s)/np λuv.(tv×2 v)×1 u λuv.(tv+ v+u) VVV

coord (s\s)/s λP.λQ.P⊙Q λP.λQ.(P⊙Q) VVV

quant (s/(np\s))/n λvZ.Z(quant×1 v) λvZ.Z(quant+ v) V (VV )V

Table 1: Translation that sends abstract terms to a tensor-based model using tensor contraction (column

3) or addition (column 4) as the main operation. In both models the coordinator is interpreted using

element wise multiplication. Note that adj, itv, tv and quant denote vectors under H2.

The general description for a simple elliptical phrase that comes out of this is

M(alice,drinks) ∇ M(bob,N(drinks))

where M is a general model for an intransitive sentence, and N is a model that could potentially modify

the verb tensor. Similarly, the recipe for a transitive elliptical phrase like “Alice drinks beer and Bob does

too” will be

M(alice,drinks,beer) ∇ M(bob,N(drinks),beer)

For the sloppy/strict readings involving anaphora, we give the sloppy and strict interpretation in a

contraction-based model of the sentence “Gary loves his code and Bill does too”:

(gary×1 loves×2 (gary⊙ code))⊙ (bob×1 loves×2 (bob⊙ code)) (strict)

(gary×1 loves×2 (gary⊙ code))⊙ (gary×1 loves×2 (bob⊙ code)) (sloppy)

So we see that in a classical semantics we can distinguish the two readings and moreover they do not

coincide with phrases in which subjects and objects are swapped.

6 Discussion, Conclusion, Further Work

In this paper we incorporated a proper notion of copying into a compositional distributional model of

meaning to deal with some selected cases of ellipsis and anaphora. We developed two different con-

crete vector semantics for an extension of the Lambek Calculus with control modalities that allow for

the copying of resources: in the first semantics we followed the categorical framework of [5] and de-

rived sentence meanings similar to the proposal of Kartsaklis [13], but found that for ambiguous cases

of ellipsis the meaning of the unambiguous interpretations coincide. In the second semantics, we took

a two-step approach by translating proofs to terms of a non-linear lambda terms, that then get concre-

tised in several different models. Here we retain the different semantics for different interpretations of

ambiguous elliptical phrases. Some initial experiments have shown, however, that the two frameworks
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give comparable results in a similarity task involving ellipsis, suggesting that the entangled semantics

serve as a good linear approximation of a non-linear phenomenon.5 . To complete this work in the fu-

ture, we would like to carry out a large scale experiment to compare the linear approximative model of

the categorical framework, and the classical semantics using non-linear lambda terms. Furthermore, we

would like to experiment with the kind of derivational ambiguities that arise in the elliptical setting with

anaphora.
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A Proofs

np−→ np

♦np−→ ♦np
♦

np −→ np s −→ s

np\s −→ np\s
\

np −→ np

(np\s)/np −→ (np\s)/np
/

(np\s)/np⊗np −→ np\s
⊲−1

np −→ ((np\s)/np)\(np\s)
⊳

n−→ n

np/n −→ (((np\s)/np)\(np\s))/n
/

♦np\(np/n) −→ ♦np\((((np\s)/np)\(np\s))/n)
\

♦np⊗♦np\(np/n) −→ (((np\s)/np)\(np\s))/n
⊳−1

(♦np⊗♦np\(np/n))⊗n −→ ((np\s)/np)\(np\s)
⊲−1

(np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n) −→ np\s
⊳−1

np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)) −→ s
⊳−1

np −→ np

♦np −→ ♦np
♦

n −→ n

np −→ np s −→ s

np\s −→ np\s
\

np −→ np

(np\s)/np −→ (np\s)/np
/

(np\s)/np⊗np −→ np\s
⊲−1

np −→ ((np\s)/np)\(np\s)
⊳

np/n −→ (((np\s)/np)\(np\s))/n
/

♦np\(np/n) −→ ♦np\((((np\s)/np)\(np\s))/n)
\

♦np⊗♦np\(np/n) −→ (((np\s)/np)\(np\s))/n
⊳−1

(♦np⊗♦np\(np/n))⊗n −→ ((np\s)/np)\(np\s)
⊲−1

(np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n) −→ np\s
⊳−1

np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)) −→ s
⊳−1

np⊗ (♦np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n))) −→ s
M

(♦np⊗np)⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)) −→ s
M

np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)) −→ s
C

〈x,〈y,〈〈z,u〉,v〉〉〉 : (x⋉ (y⋊ ((z⋉u)⋊ v))) 〈x,〈y,〈u,v〉〉〉 : (x⋉ (y⋊ ((x⋉u)⋊ v)))

Figure 4: Derivation of “x loves Gary his code” (left) and “x loves his code” (right)
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Gary
np ⊗ (

loves

(np\s)/np⊗ (
his

♦np\(np/n)⊗
code
n ))−→ s s −→ s

s\s −→ (np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))\s
\

....
Bill
np⊗ (

loves

(np\s)/np⊗ (
his

♦np\(np/n)⊗
code
n ))−→ s

(np\s)/np⊗ (♦np\(np/n)⊗n) −→ np\s
⊳

♦(loves(np\s)/np⊗ (♦np\(np/n)⊗n)) −→ ♦(np\s)
♦

np −→ np s −→ s

np\s −→ np\s
\

♦(np\s)\(np\s) −→ ♦((np\s)/np⊗ (♦np\(np/n)⊗n))\(np\s)
\

♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ ♦(np\s)\(np\s) −→ np\s
⊳−1

np⊗ (♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ ♦(np\s)\(np\s)) −→ s
⊳−1

(s\s)/s −→ ((np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))\s)/(np ⊗ (♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ ♦(np\s)\(np\s)))
/

(s\s)/s⊗ (np⊗ (♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ ♦(np\s)\(np\s))) −→ (np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))\s
⊲−1

(np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))⊗ ((s\s)/s ⊗ (np⊗ (♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ ♦(np\s)\(np\s)))) −→ s
⊳−1

(np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))⊗ ((s\s)/s ⊗ (♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ (np⊗ ♦(np\s)\(np\s)))) −→ s
M

(np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))⊗ (♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ ((s\s)/s⊗ (np⊗ ♦(np\s)\(np\s)))) −→ s
M

(np⊗ (♦((np\s)/np⊗ (♦np\(np/n)⊗n))⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n))))⊗ ((s\s)/s ⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
M

(np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))⊗ ((s\s)/s ⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
C

Figure 5: Sloppy reading of gary’s code. “loves his code” is copied to the two main subproofs, where each one is resolved with their respective

noun phrase argument (left: Gary, right: Bill).
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....
Gary
np ⊗ (

loves

(np\s)/np⊗ ((
Gary

♦np⊗
his

♦np\(np/n))⊗
code
n ))−→ s s −→ s

s\s −→ (np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)))\s
\

....
Bill
np⊗ (

loves

(np\s)/np⊗ ((
Gary

♦np⊗
his

♦np\(np/n))⊗
code
n ))−→ s

(np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n) −→ np\s
⊳

♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)) −→ ♦(np\s)
♦

np −→ np s −→ s

np\s −→ np\s
\

♦(np\s)\(np\s) −→ ♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))\(np\s)
\

♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ ♦(np\s)\(np\s) −→ np\s
⊳−1

np⊗ (♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ ♦(np\s)\(np\s)) −→ s
⊳−1

(s\s)/s −→ ((np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)))\s)/(np ⊗ (♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ ♦(np\s)\(np\s)))
/

(s\s)/s⊗ (np⊗ (♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ ♦(np\s)\(np\s))) −→ (np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)))\s
⊲−1

(np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)))⊗ ((s\s)/s ⊗ (np⊗ (♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ ♦(np\s)\(np\s)))) −→ s
⊳−1

(np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)))⊗ ((s\s)/s ⊗ (♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ (np⊗ ♦(np\s)\(np\s)))) −→ s
M

(np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)))⊗ (♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ ((s\s)/s⊗ (np⊗ ♦(np\s)\(np\s)))) −→ s
M

(np⊗ (♦((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n))))⊗ ((s\s)/s ⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
M

(np⊗ ((np\s)/np⊗ ((♦np⊗♦np\(np/n))⊗n)))⊗ ((s\s)/s ⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
C

(np⊗ (♦np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n))))⊗ ((s\s)/s⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
M

((♦np⊗np)⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))⊗ ((s\s)/s⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
M

(np⊗ ((np\s)/np⊗ (♦np\(np/n)⊗n)))⊗ ((s\s)/s⊗ (np⊗ ♦(np\s)\(np\s))) −→ s
C

Figure 6: Strict reading of gary’s code. First, “Gary” is copied and resolved with “loves his code”, after which “loves Gary his code” is copied

to the two main subproofs (left: Gary, right: Gary).
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