
B. Coecke, J. Hedges, D. Kartsaklis, M. Lewis, D. Marsden (Eds.):

2018 Workshop on Compositional Approaches

for Physics, NLP, and Social Sciences (CAPNS)

EPTCS 283, 2018, pp. 50–61, doi:10.4204/EPTCS.283.4

c© T. Bradley, M. Lewis, J. Master, B. Theilman

This work is licensed under the

Creative Commons Attribution License.

Translating and Evolving: Towards a Model of Language

Change in DisCoCat

Tai-Danae Bradley

Graduate Center, CUNY

tbradley@gradcenter.cuny.edu

Martha Lewis

ILLC, University of Amsterdam

m.a.f.lewis@uva.nl

Jade Master

Dept. Mathematics, UC Riverside

jmast003@ucr.edu

Brad Theilman

Gentner Lab, UC San Diego

btheilma@ad.ucsd.edu

The categorical compositional distributional (DisCoCat) model of meaning developed by [7] has

been successful in modeling various aspects of meaning. However, it fails to model the fact that

language can change. We give an approach to DisCoCat that allows us to represent language models

and translations between them, enabling us to describe translations from one language to another, or

changes within the same language. We unify the product space representation given in [7] and the

functorial description in [16], in a way that allows us to view a language as a catalogue of meanings.

We formalize the notion of a lexicon in DisCoCat, and define a dictionary of meanings between two

lexicons. All this is done within the framework of monoidal categories. We give examples of how to

apply our methods, and give a concrete suggestion for compositional translation in corpora.

1 Introduction

Language allows us to communicate, and to compose words in a huge variety of ways to obtain different

meanings. It is also constantly changing. The compositional distributional model of [7] describes how

to use compositional methods within a vector space model of meaning. However, this model, and others

that are similar [4, 20], do not have a built in notion of language change, or of translation between

languages.

In contrast, many statistical machine translation systems currently use neural models, where a large

network is trained to be able to translate words and phrases [21, 8]. This approach does not make use

of the grammatical structure which allows you to build translations of phrases from the translations of

individual words. In this paper we define a notion of translation between two compositional distributional

models of meaning which constitutes a first step towards unifying these two approaches.

Modeling translation between two languages also has intrinsic value, and doing so within the DisCo-

Cat framework means that we can use its compositional power. In section 3.1, we provide a categorical

description of translation between two languages that encompasses both updating or amending a lan-

guage model and translating between two distinct natural languages.

In order to provide this categorical description, we must first introduce some preliminary concepts.

In section 3.2 we propose a unification of the product space representation of a language model of [7]

and the functorial representation of [16]. This allows us to formalize the notion of lexicon in section

3.3 which had previously been only loosely defined in the DisCoCat framework. We then show how to

build a dictionary between two lexicons and give an example showing how translations can be used to

model an update or evolution of a compositional distributional model of meaning. In section 3.4 we give

a concrete suggestion for automated translation between corpora in English to corpora in Spanish.

http://dx.doi.org/10.4204/EPTCS.283.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
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2 Background

2.1 Categorical Compositional Distributional Semantics

Categorical compositional distributional models [7] successfully exploit the compositional structure of

natural language in a principled manner, and have outperformed other approaches in Natural Language

Processing (NLP) [9, 14]. The approach works as follows. A mathematical formalization of grammar is

chosen, for example Lambek’s pregroup grammars [18], although the approach is equally effective with

other categorial grammars [6]. Such a categorial grammar allows one to verify whether a phrase or a sen-

tence is grammatically well-formed by means of a computation that establishes the overall grammatical

type, referred to as a type reduction. The meanings of individual words are established using a distribu-

tional model of language, where they are described as vectors of co-occurrence statistics derived auto-

matically from corpus data [19]. The categorical compositional distributional programme unifies these

two aspects of language in a compositional model where grammar mediates composition of meanings.

This allows us to derive the meaning of sentences from their grammatical structure, and the meanings

of their constituent words. The key insight that allows this approach to succeed is that both pregroup

grammars and the category of vector spaces carry the same abstract structure [7], and the same holds for

other categorial grammars since they typically have a weaker categorical structure.

The categorical compositional approach to meaning uses the notion of a monoidal category, and more

specifically a compact closed category to understand the structure of grammar and of vector spaces. For

reasons of space, we do not describe the details of the compositional distributional approach to meaning.

Details can be found in [7, 16], amongst others. We note only that instead of using a pregroup as our

grammar category, we use the free compact closed category J = C (B) generated over a set of types B,

as described in [24, 23].

3 Translating and Evolving

The categorical model has proved successful in a number of natural language processing tasks [9, 14],

and is flexible enough that it can be extended to include ambiguity [22] and changes of the semantic

category [5, 1]. These formalisms have allowed for connections between semantic meanings. By repre-

senting words as density matrices, a variant of Löwner ordering has been used to measure the degree of

entailment between two words [25, 3]. A more simple notion of similarity has been implemented in the

distributional model by using dot product [7]. However, these notions of similarity are not built into the

formalism of the model. This section defines the notion of a categorical language model which keeps

track of internal relationships between semantic meanings.

So far the implementation of these models has been static. In this section, we define a notion of

translation which comprises a first step into bringing dynamics into these models of meaning. We show

how a language model can be lexicalized, i.e. how vocabulary can be attached to types and vectors and

introduce a category of lexicons and translations between them. This allows dictionary between phrases

in one language model and the phrases in another.

3.1 Categorical Language Models and Translations

Definition 3.1. Let J be a category which is freely monoidal on some set of grammatical types. A

distributional categorical language model or language model for short is a strong monoidal functor

F : (J, ·)→ (FVect,⊗)
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If J is compact closed then the essential image of F inherits a compact closed structure. All of the

examples we consider will use the canonical compact closed structure in FVect. However, this is not a

requirement of the general approach, and other grammars that are not compact closed my be used, such

as Chomsky grammars [11] or Lambek monoids [6].

Distributional categorical language models do not encapsulate everything about a particular lan-

guage. In fact, there are many possible categorical language models for the same language and there is a

notion of translation between them.

Definition 3.2. A translation T = ( j,α) from a language model F : J → FVect to a language model

F ′ : J′ → FVect is a monoidal functor j : J → J′ and a monoidal natural transformation α : F ⇒ F ′ ◦ j.

Pictorially, ( j,α) is the following 2-cell

J
F

//

j

��

FVect

⇒

α

J′

F ′

<<
②
②
②
②
②
②
②
②
②
②
②
②
②
②

Given another language model F ′′ : J′′ → FVect and a translation T ′ = ( j′,α ′) the composite translation

is computed pointwise. That is, T ′ ◦ T is the translation ( j′ ◦ j,α ′ ◦ α) where α
′ ◦α is the vertical

composite of the natural transformations α and α
′.

Definition 3.3. Let DisCoCat be the category with distributional categorical language models as objects,

translations as morphisms, and the composition rule described above.

This category allows us to define ways of moving between languages. The most obvious application

of this is that of translation between two languages such as English and Spanish. However, the translation

could also be from a simpler language to a more complex language, which we think of as learning, and

it could be within a shared language, where we see the language evolving.

3.2 The Product Space Representation

In [7] the product space representation of language models was introduced as a way of linking gram-

matical types with their instantiation in FVect. The idea is that the meaning computations take place in

the category J ×FVect where J is a pregroup or free compact closed category. Let p be a sentence, that

is a sequence of words {wi} whose grammatical types reduce to the sentence type s. To compute the

meaning of p you:

• Determine both the grammatical type gi and distributional meaning vi in Vgi
where Vgi

is a meaning

space for the grammatical type gi.

• Using the monoidal product and tensor product, obtain the element g1 · . . . · gn ∈ J and v1 ⊗·· ·⊗
vn ∈Vg1

⊗ . . .⊗Vgn
.

• Let r : g1 · · · · ·gn → s be a type reduction in J. There is a linear transformation M : Vg1
⊗·· ·⊗Vgn

→
Vs given by matching up the compact closed structure in J with the canonical compact closed

structure in FVect. Apply M to the vector v1 ⊗ . . .⊗ vn to get the distributional meaning of your

sentence.

The product space J ×FVect provides a setting in which the meaning computations take place but

it does not contain all of the information required to compute compositional meanings of sentences. To
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do this requires an assignment of every grammatical type to a vector space and every type reduction to

a linear transformation in a way which preserves the compact closed structure of both categories. This

suggests that there is a compact closed functor F : J → FVect lurking beneath this approach. With this in

mind we introduce a new notion of the product space representation using the Grothendieck construction

[12]. In order to use the Grothendieck construction we first need to interpret vector spaces as categories.

In this paper, we will do this in two mostly trivial ways which do not take advantage of the vector

space structure in FVect. The first way we will turn vector spaces into categories is via the discrete

functor

D : FVect→ Cat

D assigns each vector space V to the discrete category of its underlying set. For a linear transforma-

tion M : V →W , D(M) is the unique functor from D(V ) to D(W ) which agrees with M on the elements

of V .

There is another way to generate free categories from sets.

Definition 3.4. Let V be a finite dimensional real vector space. Then, the free chaotic category on V ,

denoted C(V ), is a category where

• objects are elements of V and,

• for all u,v in V we include a unique arrow d(u,v) : u → v labeled by the Euclidean distance d(u,v)
between u and v.

This construction extends to a functor C : FVect → Cat. For M : V →W , define C(M) : C(V )→ C(W )
to be the functor which agrees with M on objects and sends arrows d(u,v) to d(Mu,Mv).

The morphisms in C(V ) for a vector space V allow us to keep track of the relationships between

different words in V .

We now give a definitions of the product space representation in terms of the Grothendieck construc-

tion which depends on a choice of functor K : FVect→ Cat.

Definition 3.5. Let F : J →FVect be a language model and let K : FVect→Cat be a faithful functor. The

product space representation of F with respect to K, denoted PSK(F), is the Grothendieck construction

of K ◦F . Explicitly, PSK(F) is a category where

• an object is a pair (g,u) where g is an object of J and u is an object of K ◦F(g)

• a morphism from (g,u) to (h,v) is a tuple (r, f ) where r : g → h is a morphism in J and f : K ◦
F(r)(u)→ v is a morphism in K ◦F(h)

• the composite of (r′, f ′) : (g,u)→ (h,v) and (r, f ) : (h,v)→ (i,x) is defined by

(r, f )◦ (r′, f ′) = (r ◦ r′, f ◦ (K ◦F)(r)( f ′))

Remark 3.6. Because K is faithful, it is an equivalence of categories onto its essential image in Cat.

Because monoidal structures pass through equivalences K ◦ F : J → Im K ◦ F is a monoidal functor

where Im K ◦F denotes the essential image of K ◦F .

When K is equal to the discrete category functor D, then the product space representation is the

category of elements of F . This is a category where

• objects are pairs (g,u) where g is a grammatical type and u is a vector in F(g).

• a morphism r : (g,u)→ (h,v) is a type reduction r : g → h such that F(r)(u) = v
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In this context we can compare the product space representation in Definition 3.5 with the represen-

tation introduced in [7] to see that they are not the same. One difference is that PSD(F) only includes the

linear transformations that correspond to type reductions and not arbitrary linear transformations. This

narrows down the product space representation to a category that characterizes the meaning computa-

tions which can occur. Also, the meaning reductions in PSD(F) correspond to morphisms in the product

space representation whereas before they occurred within specific objects of the product space. Using

this definition of the product space representation, we are able to formally introduce a lexicon into the

model and understand how these lexicons are affected by translations.

When K =C as in Definition 3.4 the product space representation is as follows:

• objects are pairs (g,u) where g is a grammatical type and u is a vector in F(g).

• a morphism (r,d) : (g,u)→ (h,v) is:

– a type reduction r : g → h

– a positive real number d : C ◦F(r)(u)→ v

Now, objects in PSC(F) are pairs of grammatical types and vectors, rather than vector spaces. We can

therefore see PSC(F) as a catalogue of all possible meanings associated with grammatical types. The

linear transformations available in PSC(F) are only those that are derived from the grammar category.

Proposition 3.7 (PSK(F) is monoidal). For K = C and K = D, PSK(F) is a monoidal category with

monoidal product given on objects by

(g,u)⊗ (h,v) = (g ·h,Φg,h(u⊗v))

and on morphisms by

(r, f )⊗ (r′, f ′) = (r · r′,Φg,h( f ⊗ f ′))

where Φg,h : K ◦F(g)⊗K ◦F(h) → K ◦F(g · h) is the natural isomorphism included in the data of the

monoidal functor K ◦F .

Proof. Adapted from Theorem 38 of [2].

The fact that PSK(F) is monoidal enables us to use the powerful graphical calculus available for

monoidal categories. Previously the monoidal graphical calculus has only been used to pictorially reason

about grammatical meanings. Because the elements of the product space representation represent both

the syntactic and semantic meaning, this proposition tells us that we can reason graphically about the

entire meaning of our phrase.

The product space construction also applies to translations:

Proposition 3.8 (Translations are monoidal). Let K : FVect → Cat be a fully faithful functor. Then

there is a functor PSK : DisCoCat→MonCat, where MonCat is the category where objects are monoidal

categories and morphisms are strong monoidal functors, that sends

• language models F : J → Cat to the monoidal category PSK(F)

• translations T = ( j,α) to the strong monoidal functor PSK(T ) : PSK(F) → PSK(F
′) where the

functor PSK(T ) acts as follows:

– On objects, PSK(T ) sends (g,u) to ( j(g),αgu).

– Suppose (r, f ) : (g,u) → (h,v) is a morphism in PSK(F) so that r : g → h is a reduction

in J and f : F(r)(u) → v is a morphism in F(h). Then PSK(T ) sends (r, f ) to the pair

( j(r),αh ◦ f ).

Proof. Adapted from Theorem 39 in [2].
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3.3 Lexicons

Using our definition of the product space representation, we are able to formally introduce a lexicon into

the model and describe how these lexicons are affected by translations. In what follows we fix K =C in

all product space constructions and denote PSC(F) as PS(F). We also use the notation FC for C ◦F .

Definition 3.9. Let F be a categorical language model and let W be a finite set of words, viewed as

discrete category. Then a lexicon for F is a functor ℓ : W → PS(F). This corresponds to a function from

W into the objects of PS(F).

Lexicons can be extended to arbitrary phrases in the set of words W . Phrases are finite sequences of

words v1 . . .vn ∈W ∗ where W ∗ is the free monoid on W . The function ℓ assigns to each vi ∈W the pair

(gi,vi) corresponding to its grammatical type g and its semantic meaning vi ∈ F(gi). Because W ∗ is free,

this defines a unique object in PS(F):

(g,v) :=⊗n
i=1ℓ(vi) = (g1,v1)⊗ . . .⊗ (gn,vn) = (g1 · · ·gn,v1 ⊗ . . .⊗vn)

where gi is the grammatical type of vi and vi is the semantic meaning of vi for i∈{1, ...,n}. The extension

of ℓ to W ∗ will be denoted by

l∗ : W ∗ → PS(F).

Example 3.10. Let J = C ({n,s}) be the free compact closed category on the grammatical types of nouns

and sentences. Then, for the phrase u = Rose likes Rosie, a lexicon for F gives the unique element

ℓ(u) = (g,u) = (n,Rose)⊗ (nrsnl , likes)⊗ (n,Rosie)

In PS(F), the grammar type nrsnl reduces to s via the morphism r = εn 1s εn and so we get a reduction

(n,Rose)⊗ (nrsnl , likes)⊗ (n,Rosie)
(r,F(r))
−→ (s,Rose likes Rosie)

To fully specify a translation between two lexicons it is not necessary to manually match the words

in each corpora. This is because a relation between the phrases in the corpora can be derived from a

translation between the language models.

Definition 3.11. Let ℓ : W → PS(F) and m : V → PS(G) be lexicons and let T be a translation from F to

G. Then, the F-G dictionary with respect to T is the comma category

(PS(T )◦ ℓ∗) ↓ m∗

denoted by DictT . Since W and V are discrete categories, (PS(T )◦ℓ∗) ↓ m∗ is a set of triples (p,(r,d),q)
where p ∈W ∗, q ∈V ∗ and (r,d) : (PS(T )◦ ℓ)(p)→ m(q) is a morphism in PS(G). Explicitly, let

ℓ(p) = (g,p) and m(q) = (g′,q)

then (r,d) is

• a type reduction r : j(g)→ g′ in the grammar category J

• a morphism d in C ◦G(g′). Recall from Definition 3.4 that this corresponds to a real number

d(p′,q) denoting the distance between p′ and q in G(g′). Here, p′ is the vector that results from

applying the translation and any grammatical reductions. Namely, p′ = (C ◦G(r) ◦αg)p i.e., we

firstly translate the vector p into PS(F ′), then apply the linear map corresponding to the reduction

r, and finally send the resulting vector to its corresponding object in the chaotic category.
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DictT and allows us to keep track of the distances between phrases in W to phrases in W ′ in a

compositional way; similarities between phrases are derived from similarities between the constituent

words.

Let k be a positive real number. Then define DictT,k to be the relation which pairs two words in DictT

if the distance d between their semantic meanings is less than or equal to k. The purpose of this is to say

that we are interested in pairs of words and phrases which do not have to be identical, but whose meaning

is sufficiently close.

Example 3.12 (Syntactic simplification). We give an example of a translation from a language with

several noun types, accounting for singular ns and plural np nouns to a language with one noun type.

To start, suppose W ∗ is the free monoid on the set {Rosie, wears, boots, shoes, bikini} and set V = W .

Suppose B = {ns,np,n,s} and B′ = {n,s} so that J = C (B) and J′ = C (B′), and let T = ( j,α) be

a translation from F to F ′, where the language model F has F(n) = N and F(ns) = F(np) = N ′ where

N ∼= R
3 is generated by {boots,shoes,bikini} and N ′ = N ×R where the extra dimension records the

quantity conveyed by the noun. Let F(s) = S be a one-dimensional space spanned by 1, which denotes

surprise. For the purposes of this example we will normalize all non-zero values in S to the vector 1.

This gives only two attainable values in S; s = 1 meaning that the sentence is surprising, and s = 0

meaning that the sentence is not surprising. The language model F ′ agrees with F on both n and s, that

is F ′(n) = N and F ′(s) = S. The functor j is given by j(n) = j(ns) = j(np) = n and j(s) = s and finally,

the components of α are by the identity on every space except for N ′ where it is defined as the canonical

projection onto the first three coordinates.

W ∗ W ∗

PS(F) PS(F ′)

ℓ ℓ′

PS(T )

defined as follows:

W PS(F)

Rosie (ns,(2,5,3,1)
T )

boots (np,(1,0,0,2)
T )

a boot (np,(1,0,0,1)
T )

wears









nr
msnl

m,









1 1 1 0

−1 −1 −1 0

1 1 1 0

−2 −2 −1 1

















ℓ

W PS(F ′)

Rosie (n,(2,5,3)T )

boots (n,(1,0,0)T )

wears



nrsnl ,





1 1 1

−1 −1 −1

1 1 1









ℓ′

where we use nm to denote either of ns or np. The type of wears is polymorphic - it can take singular,

plural, or mass nouns as subject and object. Here, we consider types with singular or plural arguments.
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The functor PS(T ) uses j and α to assign a tuple on the right to each to each tuple on the left, i.e.

PS(F) PS(F ′)

(ns,(2,5,3,1)
T ) (n,(2,5,3)T )

(np,(1,0,0,2)
T ) (n,(1,0,0)T )









nr
msnl

m,









1 1 1 0

−1 −1 −1 0

1 1 1 0

−2 −2 −1 1



















nrsnl,





1 1 1

−1 −1 −1

1 1 1









PS(T )

In particular, each item on the right hand side is of the form (PS(T )◦ ℓ)(u) where u is an element of W .

Now, in F , we have:

Rosie wears boots = F(εn ·1s · εn)(Rosie⊗wears⊗boots)

= (εn ⊗1s ⊗ εn)

















2

5

3

1









⊗









1 1 1 0

−1 −1 −1 0

1 1 1 0

−2 −2 −1 1









⊗









1

0

0

2

















= 0, i.e. unsurprising

On the other hand,

Rosie wears a boot = F(εn ·1s · εn)(Rosie⊗wears⊗a boot)

= (εn ⊗1s ⊗ εn)

















2

5

3

1









⊗









1 1 1 0

−1 −1 −1 0

1 1 1 0

−2 −2 −1 1









⊗









1

0

0

1

















=−1 = 1 after normalization, i.e. surprising

We translate Rosie wears boots by computing

(PS(T )◦ ℓ)(Rosie wears boots) = PS(T )((ns,Rosie)⊗ (nr
msnl

m,wears)⊗ (np,boots)

= (( j(ns),αns
(Rosie))⊗ ( j(nr

msnl
m),αnr

msnl
m
(wears))⊗ ( j(np),αnp

(boots))

=



n,





2

5

3







⊗



nrsnl ,





1 1 1

−1 −1 −1

1 1 1







⊗



n,





1

0

0







= (PS(T )◦ ℓ)(Rosie wears a boot)

and applying the relevant reduction morphisms, we obtain:

Rosie wears boot′ = F ′(εn ·1s · εn)(Rosie′⊗wears′⊗boot′)

= (εn ⊗1s ⊗ εn)









2

5

3



⊗





1 1 1

−1 −1 −1

1 1 1



⊗





1

0

0







= 0, i.e. unsurprising

To translate the sentence Rosie wears a boot we perform the same matrix multiplication to obtain a value

of 0 as well. In the language model F , these two sentences had distinct meanings. However, because F ′

cannot detect the quantity of a noun, their translations are both unsurprising.
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This example shows how we can map a language with one grammatical structure onto another with a

differing grammatical structure. In this case we have simplified the grammar, but we could also provide

a translation ( j,α) that maps the simpler grammar into the more complex grammar by identities and

inclusion. The phenomenon of grammatical simplification is one that has been observed in various

languages [27, 17]. This provides us with the beginnings of a way to describe these kinds of language

evolution.

3.4 Translating Between English and Spanish

In this section we construct a partial translation from English and Spanish. The relationship between

English grammar and Spanish grammar is not functional; there are multiple types in Spanish that a

single type in English should correspond to and vice versa.

Let JE = C ({aE ,nE}) be the grammar category for English and let JS = C ({aS,nS}) be the grammar

category for Spanish. In English, adjectives multiply on the left to get a reduction

r : aEnE → nE

and in Spanish adjectives multiply on the right to get a reduction

q : nSaS → nS

Suppose there is a strict monoidal functor j : JE → JS which makes the assignment j(aE) = aS. We

also wish to map the reduction r to the reduction q. This requires that j(aE nE) = nSaS. By monoidality

this means that j(aE) = nS and j(nE) = aS. A monoidal functor cannot capture this relationship because

it must be single valued. However, if we choose to only translate either adjectives or nouns we can

construct a translation.

Example 3.13 (Translation at the phrase level). In this example we choose to translate the fragment of

English and Spanish grammar which includes nouns but not adjectives. We can also translate intransitive

verbs from English to Spanish while keeping the functor between grammar categories single-valued.

Let JEn = C ({nE ,sE}) be the free compact closed category on the noun and sentence types in En-

glish and let JS be the isomorphic category C {nS,sS} generated by the corresponding types in Spanish.

Consider distributional categorical language models

FEn : JEn → Cat and FSp : JSp → Cat

for English and Spanish respectively. Consider a fragment of these languages consisting of only nouns

and intransitive verbs. Let FEn(n) = NEn, FEn(s) = SEn, FSp(n) = NSp and FSp(s) = SSp. Lexicons for the

two languages can be populated by learning representations from text.

To specify the translation PS(T ) we set j to be the evident functor which sends English types to their

corresponding type in Spanish. To define a natural transformation α : FEn → FSp ◦ j it suffices to define

α on the basic grammatical types which are not the nontrivial product of any two other types. Because

α is a monoidal natural transformation, we have that αgh = αg ⊗αh for every product type gh.

If there were only one grammatical type g, then the language models would have no grammatical

content and the translation would consist of a single linear transformation between words in English to

words in Spanish. Learning this transformation is in fact a known method for implementing word-level

machine translation, as outlined in [21, 13].
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However, in general we need the natural transformation α to commute with the type reductions in

C ({nE ,sE}). Indeed, consider dogs ∈ NEn, run ∈ NEn ⊗ SEn, perros ∈ NSp, corren ∈ NSp ⊗ SSp. We

require that

NEn⊗NEn⊗SEn

α
n·nl ·s

��

εNEn
⊗1En

// SEn

αs

��

NSp ⊗NSp⊗SSp
εNSp

⊗1Sp

// SSp

commutes i.e. that if we first reduce dogs⊗ run to obtain dogs run and then translate to perros corren,

we get the same as if we translate each word first, sending dogs⊗ run to perros⊗ corren and then re-

duce to perros corren. Because these meaning reductions are built using dot products, this requirement

is equivalent to the components of α being unitary linear transformations. In general, a linear transfor-

mation learned from a corpora will not be unitary. In this case we can replace αg with the unitary matrix

which is closest to it. This is a reasonable approximation because translations should preserve relative

similarities between words in the same language.

4 Future Work

We have defined a category DisCoCat which contains the categorical compositional distributional se-

mantics of [7] as objects and ways in which they can change as morphisms. We then outlined how

this category can be used to translate, update or evolve different distributional compositional models of

meaning.

There is a wide range of future work on this topic that we would like to explore. Some of the possible

directions are the following:

• In this paper, we failed to construct a complete translation from English to Spanish using the def-

initions in this paper. The difficulty arose from the lack of a functional relationship between the

two languages. To accommodate this, translations between language models can be upgraded by

replacing functors with profunctors. This would include replacing the grammar transformation j

with a monoidal profunctor between the grammar categories. Because relationships between se-

mantic meanings are also multi-valued we plan on replacing the components of the natural trans-

formation with profunctors as well.

• This model can be improved to take advantage of the metric space structure of vector spaces

to form dictionaries in a less trivial way. This would give a more intelligent way of forming

translation dictionaries between two languages

• Whilst we have taken care to ensure that the category of language models we use is monoidal, we

have not yet taken advantage of the diagrammatic calculus that is available to us. This is something

we would like to do in future work.

• We can better understand how language users negotiate a shared meaning space as in [26], by mod-

eling this as translations back and forth between agents. This will enhance the field of evolutionary

linguistics by giving a model of language change that incorporates categorial grammar.

• We would like to use the methods here to implement computational experiments by creating com-

positional translation matrices for corpora in two different languages. These models of translation

may also be used to make the previous computational experiments such as[10] [15] more flexible.
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