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Petri Nets (PN) are a central, theoretically sound model for concurrent or distributed systems but, at

least in their classical definition, not expressive enough to represent dynamic reconfiguration capabil-

ities. On the other side, Rewriting Logic has proved to be a natural semantic framework for several

formal models of concurrent/distributed systems. We propose a compact, efficient Maude formal-

ization of dynamically reconfigurable PT nets (with inhibitor arcs), using as a running example the

specification of a simple, fault-tolerant manufacturing system. We discuss the advantages of such a

combined approach, as well as some concerns that it raises.

1 Introduction

Modern distributed systems operate in highly dynamic environments and have to frequently face chang-

ing operational conditions. Some system components may become temporarily or permanently unavail-

able, may appear/disappear, e.g., due to failures and/or dynamic balance policies. Self-adaptation is an

effective approach to deal with the increasing complexity and dynamism of such systems. Reconfigu-

ration capabilities are highly required by self-adaptive distributed systems as well as by other types of

system, e.g., automated systems, which function without manual intervention, and whose operations are

a part of the system control whose processes are completely automated with the help of control loops

and special logic.

Formal methods providing the ability to reason about such complex systems are highly demanded.

In particular, formal models representing both the system’s base structure/functionality and the (usually

complex) reconfiguration strategies are extremely important (e.g., to validate early design choices or to

verify the system behavior at run-time).

Petri nets (PNs) are a sound, central model of concurrent or distributed systems, but not expressive

enough to specify, in a natural way, the ability of some systems to modify their behavior/structure at

run-time. Several dynamic PN extensions have been proposed in which the enhanced expressivity is

not always supported by adequate analysis techniques. A representative of this category is the “nets

within nets” paradigm, introduced by Valk [21], that gave rise to special High-Level PNs such as [11].

As for PNs with indistinguishable tokens, we have to mention Reconfigurable PN, a family of PN-based

formalisms consisting of a marked net and a separated set of net-transformation rules specified according

to the classical, algebraic style of Graph Transformations Systems (as a double pushout) [9, 12, 8, 10, 18].

Most research has focused on trying to formulate these models as M -adhesive categories. See [16] for a

survey of dynamic PN extensions.

In this paper, we provide a formalization of “rewritable” PT nets with inhibitor arcs (a Turing-

complete PN class) in terms of rewriting-logic [15, 4], using Maude as a specification language [7].

We focus on operational, modelling aspects, by proposing an expressive and efficient framework for the
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specification/analysis of (automated) distributed systems with reconfiguration capability. With respect

to similar approaches [2, 17], in which (reconfigurable) PN classes are converted in Maude modules

to exploit the model-checking tools of Maude, our encoding provides more data abstraction to ease the

modeller task, is more compact and efficient, and promotes the definition of rewrite rules with a higher

level of flexibility. Throughout the paper, we use as a benchmark a simple, yet tricky, model of fault-

tolerant Manufacturing System. We conduct some experiments of formal verification of properties and

briefly discuss of the advantages of using a somehow hybrid modelling approach like that we propose.

The presented work should be deemed as a preliminary, however, encouraging, step towards a

Maude-based tool-set for the specification and the analysis of dynamically reconfigurable PT systems.

2 PT nets

This section collects a few definitions used in the paper. We refer to [19] for a complete description.

2.1 Multisets

A multiset (or bag) on a domain D is a map b : D → N, where b(d) is the multiplicity of d in b. We

say d ∈ b if and only if b(d) > 0. We represent a multiset as a weighted “sum” of its elements. nilD
(nil, when D is implicit) denotes the empty multiset. Let Bag[D] denote the set of bags over D, and

b1,b2 ∈ Bag[D]. The sum b1 + b2 and the difference b1 − b2 are Bag[D] elements such that ∀d ∈ D:

b1 + b2(d) = b1(d)+ b2(d); b1 − b2(d) = b1(d)− b2(d) if b1(d) ≥ b2(d), 0 otherwise. Note that − is

not associative. Similarly, relational bag-operators are defined component-wise: e.g., b1 < b2 if and only

if ∀d ∈ D : b1(d)< b2(d). With b1 <
′ b2 we mean the restriction of < to {d|d ∈ b1}.

2.2 Place/Transition (PT) Nets with Inhibitor Arcs

A PT net is a 5-tuple (P,T, I,O,H), where:

P, T are non-empty, finite sets such that P∩T = /0

I,O,H are maps T → Bag[P] such that ∀t ∈ T : I(t) 6= O(t),

P and T hold the places and the transitions, respectively. The former, drawn as circles, represent

system state-variables, whereas the latter, drawn as bars, represent events causing local state changes1.

A (distributed) state of a PT net, called marking, is defined as a bag m ∈ Bag[P].
A PT net is a kind of directed, bipartite multi-graph whose nodes are P and T . Maps I, O, H describe

the input, output, and inhibitor edges, respectively. Graphically:

Let f ∈ {I,O,H}: if k = f (t)(p) > 0, then a weight-k edge of corresponding type links p to t. The

behavior of a PT net is specified by the firing rule. We say that t ∈ T is enabled in a marking m if and

only if:

I(t)≤ m∧H(t)>′ m

If t is enabled in m it may fire, leading to m′ (we denote this m[t〉m′), where:

m′ = m+O(t)− I(t)

We call a pair (N,m), where N is a PT net and m is a marking of N, a PT-system. The interleaving

semantics of (N,m0), where m0 denotes the PT system’s initial state, is specified by the reachability

1The condition set on transitions ensure this.
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graph (RG), an edge-labelled, directed graph (V,E) whose nodes are reachable markings. The RG is

defined inductively: m0 ∈V ; if m ∈V and m[t〉m′ then m′ ∈V , m
t
−→ m′ ∈ E .

A desirable property of a system (N,m0) may be the absence of isolated places, i.e., places which

are present in m0 but not in N. In a highly dynamic context, however, we do not consider this as a strict

requirement.

3 Maude and Rewriting Logic

Maude [7] is an expressive, strictly declarative language with a sound semantics in rewriting logic [15, 4].

Maude’s statements are (possibly conditional) equations (keyword eq) and rules (keyword rl). Both

sides of a rule/equation are terms of a given kind and may contain typed variables. Both rules and

equations have a simple rewriting semantics in which instances of the lefthand side pattern are replaced

by corresponding instances of the righthand side.

A Maude functional module (keyword fmod) contains only equations and is a functional program

defining one or more operations through equations, used as simplifications. A Maude system module

(keyword mod) contains rules and possibly equations. Rules are also computed by rewriting terms from

left to right, but represent local transitions in a (concurrent) system. Although declarative in style and

with a clear logical semantics, system modules are non-functional.

In Maude, a distributed system’s state is usually represented as a kind of associative “multiset”. Rules

apply concurrently to different portions of a system, leading to a new state. Unlike for equations, there

is no assumption on the confluence of rewrites. Reactive systems may not even have any final states.

Maude features expressivity, simplicity and performance. A wide range of systems are naturally

expressible, from sequential, deterministic to highly concurrent non-deterministic ones. Maude may be

used as a formal specification language, as a programming language and as a meta-language in which

other formalisms, languages and logics can be naturally expressed. In this paper, we use Maude to

specify adaptable PT systems and their operational semantics.

Maude’s expressivity is achieved through: equational pattern matching modulo operator equational

attributes; user-definable operator syntax/evaluation strategy; sub-typing(sorting) and partiality (kinds);

generic types; reflection.

A Maude program is a logical theory, and a Maude computation is a deduction according to the

axioms specified in the program. Under certain executability conditions of modules, the mathematical

and the operational semantics coincide. We refer to [3] and [22] for functional and system modules,

respectively.

A functional module specifies an equational theory in membership equational logic [14, 3]. For-

mally, such a theory is a pair (Σ,E ∪A), where Σ is the signature, that is, the specification of all the sort,

subsort, kind2, and (overloaded) operator declarations in a functional module (plus the imported func-

tional modules if any); E is the collection of (conditional) equations and memberships declared in the

module(s), and A is the collection of equational attributes (assoc, comm, and so on) of operators (treated

as predefined equations).

The models underlying functional modules are algebras, i.e., sets of data with related operations. For

example, the model for (instantiated generic) module BAG[A] is the multisets over A with their standard

operations. The family of Σ-ground terms TΣ defines a model called Σ-algebra (TΣ(X) denotes the whole

set of terms). According to Goguen and Burstall [5], the best model of (Σ,E ∪A) is one that satisfies

2A kind is an implicit equivalence class gathering all sorts connected by the subsort partial-order relation; terms having a

kind but not a sort may be considered as undefined or errors.
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E ∪A and is both junk-free (all elements can be denoted by TΣ terms) and confusion-free (only elements

that are forced to be equal by E ∪A are identified). This model, called the initial algebra of E ∪A and

denoted TΣ/E∪A, does exist [3] and provides the denotational semantics of the Maude functional module

specifying (Σ,E ∪A). Formally, TΣ/E∪A is the quotient of TΣ in which the equivalence classes hold terms

that prove equal using E ∪A.

If the axioms E are Church-Rosser and terminating modulo A (each ground term is thus simplified in

a unique way regardless of the order in which equations apply) there is an intuitive, equivalent description

for TΣ/E∪A. The final values (canonical forms) of all ground terms form an algebra called the canonical

term algebra, denoted CANΣ/E∪A. By definition, the reduce command of Maude interpreter reduces

operators to their values in this algebra. The coincidence of the denotational and operational semantics

is expressed by TΣ/E∪A
∼=CANΣ/E∪A.

A Maude’s system module, including the imported submodules, specifies a generalized rewrite the-

ory [15, 4], that is, a four-tuple R = (Σ,E ∪A,φ ,R) where (Σ,E ∪A) is the membership equational

theory specified by the signature, equational attributes, and equation statements in the module; φ is a

map specifying, for each operator in Σ, its frozen arguments; and R is a set of rewrite rules 3.

Intuitively, a rewrite theory specifies a concurrent system. The equational part (Σ,E ∪A) specifies

the algebraic structure of the states, formalized by the initial algebra TΣ/E∪A. The rules R (and φ ) specify

the system’s dynamics, that is, the possible concurrent transitions of the system. In our context, they

represent changes to the state/structure of a PT system. In rewriting logic, concurrent transitions be-

come rewrite proofs; since several proofs may correspond to the same computation (because of different,

equivalent interleavings), rewriting logic has an equational theory of proof equivalence [4, 15].

The initial model TR of R associates to each kind k a labeled transition system (a category) whose

states are TΣ/E∪A,k, and whose transitions take the form: [t]
[α ]
→ [t ′], with [t], [t ′] ∈ TΣ/E∪A,k, and [α ] an

equivalence class of rewrites modulo the equational theory of proof-equivalence. Different [α ] represent

different “truly concurrent” computations of the system specified by R.

The executability conditions for system modules match the notion of ground coherence between rules

and equations [22]. Assuming that E ∪A is Church-Rosser and terminating, an efficient strategy (the one

adopted by the Maude rewrite command) is to first apply the equations to get a canonical form, then

apply a rewrite rule in R. Coherence ensures that this strategy is complete, i.e., any rewrite of t ∈ TΣ with

R is also possible with t’s canonical form. Coherence is crucial because rewriting modulo an equational

theory is in general undecidable. It reduces rewriting with R modulo E ∪A to rewriting with E and R

modulo A, which is decidable given an A-matching algorithm.

Checking the confluence/termination and coherence properties of Maude modules is under the user’s

responsibility. In many cases, it is possible to prove these properties using the tools of Maude Formal En-

vironment (MFE), available at https://github.com/maude-team/MFE, most of which are currently

integrated with the Maude’s interpreter. The Maude modules listed in this paper have been proven to be

executable. Their functional part also meets two other desirable properties: i) each (equivalence class

of a) ground term has a least sort (kind); ii) the canonical form of a well-defined ground term is only

built of constructors (characterized by the ctor operator attribute). A syntactical condition (called term

pre-regularity) and Maude’s Sufficient Completeness Checker (SCC) have been used to verify properties

i) and ii), respectively.

3R rules don’t apply to frozen arguments; in the paper we do not use frozen arguments.

https://github.com/maude-team/MFE
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4 Running example: a reconfigurable, fault-tolerant MS

As an example of “rewritable” PT system, we use the model of a manufacturing system (MS) equipped

with dynamic reconfiguration capabilities to face failures affecting the production lines. Despite its sim-

plicity, this is an interesting benchmark for any formalism intended to specify highly dynamic systems.

We use a small variant (as for the reconfiguration steps) of the model introduced in [6].

The MS (Fig. 1, top) is composed of two symmetric production lines that (globally) work an even

number of raw pieces. Pairs of worked pieces are assembled to get the final artefacts. Either line may get

broken occasionally, in which case the system reconfigures itself so that it can continue working using

the line left. The reconfiguration involves some changes to the system’s topology and the transfer of

residual raw pieces staying on the faulty component to the available one (Fig. 1, bottom). If another fault

affects the reconfigured system then (after a hypothetical repair phase, not represented) the MS goes back

to its nominal configuration. The model’s parameter M ∈ N
+ defines the number of raw pieces (2 ·M)

worked during an entire production cycle. Each final artefact is immediately replaced by a pair of pieces

to be worked, what makes the system’s nominal behaviour cyclic.

Tokens flowing through the PT places represent either raw or worked pieces. The two production

lines are modelled by the symmetrical subnets { p2, t1 p4 } (line 1) and { p3, t2, p5 } (line 2). The

assembly of raw pieces is represented by transition t3. Transition t0 models the loader component, that

(initially) picks up two raw pieces at a time from a storage represented by place p1 putting them onto

the lines. Transition t4 models the immediate reload of the MS. The model includes also a very simple

specification of fault occurrence, represented by transitions t5 (for line 1) and t6 (line 2). A fault on a

line causes its immediate block, which is modelled, for example, by the inhibitor arc linking p7 to t1.

We assume that a simultaneous failure of both lines is not possible. For this reason, the transitions t5
and t6 are in symmetric structural conflict.

The PT net at the bottom of Fig. 1 clearly illustrates the changes to the MS layout that are required

so that it can work using the only available line upon a fault, preserving the expected system behaviour.

The marking of the PT system at the top represents the initial state, whereas that of the PT system at the

bottom reflects the situation just after a fault occurrence: we may imagine (as explained later on) that M

residual raw pieces on line 1 (place p2) have been moved to line 2 (place p3). Two major concerns that

will be addressed in the next section are how to formally specify the MS reconfiguration(s) described in

Fig. 1 and the condition(s) under which it occurs.

Although PT nets with inhibitor arcs are a Turing-powerful formalism, their limited expressivity

doesn’t help in representing scenarios like that described (unless you enormously complicate the model).

In the rest of the paper, we show how Maude can be used as a formal framework (in combination with

PT) to overcome these drawbacks.

5 Encoding Rewritable PT systems in Maude

In this section, we review the Maude formalization of PT systems with dynamic reconfiguration capabil-

ities. The full list of Maude source files is available at https://github.com/lgcapra/rewpt. Only

one (system) module refers to a specific model, all the others should be seen as reusable components.

The reusable part is built of a set of functional modules specifying the PT system signature and some

structural equivalences (the signature’s main module is PT-SYS) and a system module (PT-EMU) which

describes the system dynamics (firing rule). The main Maude modules are listed in the Appendix A.

The Maude formalization relies on two generic functional modules, BAG{X} and MAP+{X,Y}, listed

https://github.com/lgcapra/rewpt
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Figure 1: The MS and its adaptation upon a fault on line 1 (a fault on line 2 is managed analogously).

in the Appendix B. The parameters of these generic types (all satisfying the built-in Maude trivial theory

TRIV4) correspond to the bag’s support and to the map’s domain and codomain.

Differently from [20, 17], bags on a set are not merely represented as the free commutative monoid

on that set. Despite its elegance and simplicity, such a formalization is unsuitable for bags with many rep-

etitions. Our formalization is more convenient and practical, providing the {_._, _+_, _[_] _-_, _<=_,

_>’_, set} operators (the first two constructors). In particular, the overloaded, commutative/associative

sum makes it possible to intuitively represent a bag in a compact way, e.g., 3 . a + 10 . b. Note

the use of Maude advanced features, such as operator equational attributes, precedence and gathering (a

term like 3 . a - 1 . a + 1 . a is parsed as: 3 . a - (1 . a + 1 . a) ≡ 1 . a), and the

otherwise equation attribute, which permits a straightforward, efficient definition of difference, rela-

tional and lookup (_[_]) operators. The set operator sets up a multiplicity for an element overwriting

the older one. Setting a zero-multiplicity corresponds to removing an element.

The module MAP+ defines a map as a “set” of entries, built with the associative/commutative operator

_,_. Sort Entry, whose only constructor is the operator _|->_, is a subsort of Map. The constant

undefined of the kind [Y$Elt] (corresponding to the sort Y$Elt) represents an undefined association.

The overloaded operator insert adds a new key-value pair to a map, consistently updating the map

4Maude uses views to instantiate the formal type-parameters (Maude theories) of a generic module to concrete types (mod-

ules). We only report an example of theory and view, because they are very intuitive.
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in the event the key is already present. Notice the use of matching and of the otherwise attribute to

distinguish these two cases easily. The auxiliary operation hasMapping checks whether a key actually

has an associated entry in a map. The lookup operator is represented by _[_]. With respect to the built-in

MAPmodule of Maude, MAP+ has two significant extensions: as in the built-in module, the constructor _,_

doesn’t guarantee (for the sake of efficiency) the uniqueness of keys in a map; a conditional membership

equation (using an auxiliary predicate), however, assigns a term of kind [Map] the sort Map only if it

doesn’t contain duplicated keys. The overloaded operator remove, instead, withdraws a given key from

the map. We have defined bags apart, rather than as particular maps, for efficiency and readability.

PT system signature. The Maude signature of PT systems strictly follows the definition given in

Sect. 2, so that passing from a formalization to the other is straightforward. The nodes of a PT net

are trivially defined (see module TRAN) as terms with a subscript, e.g., t(1). The PLACE module is

analogously defined. A richer definition is possible, as discussed later. The module IMATRIX provides

a compact representation for the incidence matrix of a PT net transition, syntactically represented as a

triplet (according to the three types of edges) of bags on the set of places through the [_,_,_] construc-

tor. IMATRIX imports BAG in a protected way (i.e., without introducing junks/confusion) by renaming

some sorts/operators for readability. Two auxiliary operators are defined, to remove a given place from

the transition incidence matrix and to check the adjacency of the transition to a place (the predicate in).

The central module PT-SYS defines the PT system signature. It builds on MAP+ and IMATRIX, both

imported in a protected way, with some sort/operator renaming. In particular the parameterized sort

Map{Tran,Imatrix} is renamed Net. That is, a PT net is syntactically expressed as a set of entries built

of transitions and (local) incidence matrices. This formalization is very intuitive and allows structural

changes to a system to be efficiently and consistently specified. A PT system term is a simple juxtapo-

sition (empty constructor __) of a Net term and a BagP term (the latter representing a PT net marking).

For convenience, the module provides three operators on the sort Net that correspond to the maps I,O,H
of the PT net formal definition, and three predicates matching well-known conditions: enabled checks

for the enabling condition of a PT net transition in a certain marking; dead (which builds on enabled)

checks that a PT system is dead, i.e., no transition is enabled in the associated marking; in checks that

a place belongs to a PT system (to the net and/or the associated marking). Note that the co-domains of

__, enabled, and In, Out, Inh are kinds ([System], [BagP], and [Bool], respectively), i.e., these are

somehow partial operations. As for __, the reason is that the net of a PT system must not be empty

(constant emptyN): a membership axiom specifies those terms having sort System. As for the others, the

subtle reason is that they are defined only for Tran operands belonging to the specified PT net (system).

Thus, enabled(net m0,t(1)) results in false if t(1) belongs to net and is not enabled in m0.

The module PT-SYS includes two equations specifying structural equivalences between PT nets. One

eliminates transitions having a null effect, according to the definition in Sect. 2. The other eliminates

transitions structurally dead, because linked to a place by an input edge and by an inhibitor edge of non

lesser weight. The commented equation would remove isolated places from a PT system (as we said, this

is not mandatory).

PT system dynamics. The generic (system) module PT-EMU specifies the PT system operational se-

mantics. The module’s parameter must satisfy the Maude theory PTSYSTH, that requires two zero-arity

operators describing a marking and a net. A conditional rewrite rule, syntactically much like the def-

inition in Sect. 2, specifies the PT system firing rule. Notice the use (in the rule’s condition) of the

conjunction associative connective /\ and of a matching equation (t := t’) which makes the rule com-
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pact and efficient to apply. The free variables I, O, H, N’ (two of which used in the rule’s right-hand side)

are instantiated by matching the left-hand side of the matching equation against the canonical ground

term bound to variable N (that occurs on the rule’s left-hand side).

Rewritable PT systems. The model-dependent part consists of a single Maude (system) module im-

porting PT-SYS and satisfying the Maude theory PTSYSTH, which is (in part) mechanically derived from

a PT system (N,m0). The module RWPT-FMS, e.g., comes from the PT system in Fig. 1-top, describing

the FMS nominal behavior. Two equations assign terms net, m0 the expressions encoding the PT net

N and the initial marking m0, respectively. These expressions are obtained by arbitrarily defining two

bijections φP : P →{0, . . . , |P|−1}, φT : T →{0, . . . , |T |−1} (in our example, implicitly defined by sub-

scripts of PT nodes). For the rest, the encoding of N (which consists of directly encoding the functions

I,O,H into a net term, i.e., a set of entries T:Tran -> Q:Imatrix ) and m0 (as a BagP term) turns out

to be straightforward (we skip the details).

Note the use of zero-arity, sort Nat operator M in RWPT-FMS, that allows the module to be syntactically

parametric in the initial marking of place p1.

The remaining part of the module contains a (possibly empty) set R of rewrite rules specifying struc-

tural/state changes that may occur during the evolution of the system initially matched by the value of

term net m0. With respect to similar approaches [17], where rewrite rules strictly follow, both syntac-

tically and semantically, the paradigm of algebraic GTS (based, e.g., on DPO rules) and require quite

complex consistency checks (e.g., to verify the respect of gluing conditions), our Maude-based speci-

fication fosters a much more flexible, free-style, though rigorous, formalization of (rule-based) system

transformations.

We can classify rewrite rules according to the kind of TΣ(X),k terms in rule left- and right-hand sides:

Place, Tran, BagP, Imatrix, Net, System. Except for rules of System type, all the other rules are

local, that is, they act on one or more portions of a term describing a PT system. This is perfectly

coherent with the operational semantics, intrinsically distributed, of rewriting logic, ensuring a lot of

flexibility, but may have undesirable effects. A rule of BagP type, e.g., may touch both the marking and

some local incidence matrix of a System.

The system module RWPT-FMS specifies two System-level (conditional) rewrite rules that model the

system transformations described in Fig. 1. Both rule r1 (nominal=>faulty) and rule r2 (faulty=>nominal)

are symmetric, i.e., refer to any of the two lines. In other words, each rule folds two ordinary rules. In rule

r1, this is achieved by the matching of rule’s left-hand pattern(s), which contains some variables (by con-

vention, denoted by capital letters): for example, variable P3 is instantiated to either ground value p(2)

or p(3), depending on whether a fault occurred on line 1 or line 2 (the opposite, as for variable P2). In

rule r2, the two matching equations in the rule’s condition make the free variables P2, P3 be instantiated

one to p(2) and the other to p(3), depending on which line is broken. The condition of rule r1 ensures

that the transformation nominal=>faulty may take place when there are no residual “worked” pieces on

the faulty line awaiting the assembly. Residual raw pieces on that line are then contextually moved to the

working line (the marking of place bound to P3 is cleared and that of place bound to P2 increased corre-

spondingly). The last clause of rule r2’s condition makes the back-transformation faulty=>nominal may

take place when the system (which operates in a degraded way) enters a deadlock, upon another fault

breaking the only line left: this happens when in the (broken) line there is at most one piece “worked”

and all the other pieces still raw (the total of pieces is 2 ·M). In order for the system to safely restart

(after a global repair), M raw pieces are moved from that line to the one newly (re-)introduced (M tokens

are withdrawn from the place bound to P2 and added to the place bound to P3).
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A library of base transformations. In the running example, we use two monolithic, non-trivial rewrite

rules, each implementing a transformation of the system as a whole. Beside being complex, such an

approach may be impractical when dealing with realistic adaptive systems, where changes are gradual,

local and follow a strategy (procedure). Using our formal framework, you can define rewrite rules of

varying granularity and locality, with both simplicity and great flexibility. To further ease the modeling

task, however, we provide a minimal (extensible) set of base net-transformations specified by simple

operators. The (functional) module PT-RWLIB collects two main operators (others are implicitly provided

by modules BAG, MAP+, IMATRIX). setw allows one to update the weight of any edge in a PT net. For

convenience, the edge type is specified as fourth argument of the operator: three constants of sort Atype

are available for that. New edges/nodes may be added to a net using setw. Edges may be also removed

with setw, using a zero-weight. This may indirectly cause the erasure of nodes that removed edges are

incident to. The operator remove withdraws a place from a net. The homonym operator of MAP+ may be

used to remove a transition from a net. Using BAG operators (e.g., set) we may freely modify the marking

of a PT system and (local) incidence matrices, add/remove places, and so on. Module PT-RWLIB defines

also an operator w to easily introspect the edge weight. This operator implements a partial function, as

some of the operators of module PT-SYS.

For example, assume that the MS switches from one of the configurations shown in Fig. 1 to the other

as a result of a sequence of small, local changes to the system’s structure/state, carried out upon a fault

occurrence. In this scenario, a thing to eventually do is to stop loading raw pieces into the MS. This is

implemented by the (commented) rewrite rule r3 in RWPT-FMS (requiring module PT-RWLIB). Using the

operator setw, a new empty input place (p(9)) is linked to transition t(0) (the loader) to temporarily

disable it. The rule’s condition ensures that place p(0) is empty (i.e., a fault has occurred) and p(9) is

not yet in the system. This rewrite step may be used in both the transformations described in Fig. 1.

5.1 Base notions and properties of rewritable PT systems

In this section, we provide an essential theoretical basis for the Maude formalization of rewritable PT

systems through a few intuitive notions and properties. We refer to the canonical form of ground terms,

that does exist and, if a term is well-defined (i.e., has an associated least sort), is built of constructors,

since Maude modules satisfy the executability conditions (end of Section 2).

Property 1 (correspondence between PT systems and well-defined terms). A PT system S = (N,m) has

an associated ground term of sort System, vice-versa, a ground term of sort System represents a PT

system (up to isomorphism5).

We have described how to get a System term from S = (N,m). Vice versa, we observe that a canoni-

cal term of sort System is built (by definition of PT-SYS and MAP+) of (n m), with n being a non-empty

set of entries T:Tran -> Q:Imatrix (without duplicate-keys) with the first two components (in, out)

of each local incidence matrix unequal, and m a bag of places. By the way, the property above sets

a bijection, denoted ψ (a pair ψP,ψT ), between (classes of isomorphic) PT systems and well-defined

System terms.

Let r be a rewrite rule, t, t ′ two ground terms of kind k. The notation t
r(σ)
→ t ′ means that 1) the rule’s

lefthand side u ∈ TΣ(X),k matches t (i.e., there is a ground substitution σ such that σ(u) = t)6, 2) t is

rewritten to t ′ using r, σ .

5S and S′ are isomorphic iff there are a two bijections φp : P → P′, φt : T → T ′, preserving the edges and the initial markings.
6σ nay be empty is u is a ground term; if r is a conditional rule σ may involve free variables introduced by matching

equations used in the rule’s condition.
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Given a PT system S = (N,m0), let RWPT-S represent a system module (satisfying PTSYSTH) in which

the term (net m0) encodes S, R be the set of rewrite rules defined in RWPT-S, and S-EMU the module

PT-EMU whose parameter is instantiated (via an obvious view) to RWPT-S.

The interleaving semantics of a rewritable PT system specified by module RWPT-S is expressed

naturally by the labelled transition system, denoted RWLTS, which is built from the initial term/state

(net m0).

Definition 1 (State-transition system of RWPT-S). Let R′ = R∪{firing}. RWLTS is an edge-labelled,

directed graph (VRWS
,ERWS

) inductively defined:

(net m0) ∈VRWS
; if s ∈VRWS

and s
r(σ)
→ s′ then: s′ ∈VRWS

, s
r(σ)
→ s′ ∈ ERWS

.

By default, the Maude interpreter’s search command explores the state-space associated with an

initial term by executing one-step rewrite rules in a fair, breadth-first way, therefore, coherent with the

definition above.

RWPT-S includes the ordinary behaviour of the PT system S.

Property 2 (RG inclusion). RWLTS contains a sub-graph isomorphic to RGS.

It directly follows from the fact that, by definition, for any transition t and for any marking m of S:

m[t〉m′ if and only if ψP(m)
firing(σ)
−→ ψP(m

′), with σ(T) = ψT (t) (T is the variable used in rule firing

of module PT-EMU).

Notice that, in the event of badly defined/used rules, we may reach undefined (error) states, despite

the initial system (net m0) is well-defined. For example, the rule
crl : (N, T |-> [I, 1 . P, nilP], T’ |-> [1 . P, O, nilP]) S =>

(N, T |-> [ I, O, nilP]) S if I[P] = 0 /\ O[P] = 0 /\ S[P] = 0 .

that aggregates two transitions connected by an intermediate empty place not linked to any other transi-

tions, rewrites the System ground term

(t(1) |-> [1 . p(1),1 . p(2),nilP], t(2) |-> [1 . p(2),1 . p(1),nilP]) nilP

into: (emptyN nilP), an undefined term of kind [System] (due to the equations of functional module

PT-SYS).

Definition 2 (Well-defined RWPT-S). RWPT-S specifies a well-defined rewritable PT system if and only if

all reachable states in VRWS
are terms of sort System.

Rule validation. The module RWPT-FMS is well-defined. In general, however, ensuring the well-

definiteness of Maude system modules specifying rewritable systems may not be simple. There are

two approaches, shortly discussed in the following, each with different possible implementations.

One consists of defining (structurally) valid rewrite rules, and works also in the event the system

state-space is infinite.

Definition 3 (Valid rewrite rule). r ∈ R is valid if and only if, for any ground term s of sort System, if

s
r(σ)
→ s′ then s′ is of sort System.

Each Maude rewrite rule crl [r] : s => s’ if cond, where cond is the (possibly empty) rule’s

condition and s, s’ ∈ TΣ(X),System, may be rephrased as a valid rule using the built-in sort predicate

crl [vr] s => s’ if cond /\ s’ :: System

The weak spot of this elegant and efficient solution is that it may shadow bad design choices. As an

alternative, we might define rewrite rules exclusively composed of safe net-operators. For example, the

operator setw, defined in module PT-RWLIB, always results in a term of sort Net, possibly emptyN (for

the sake of flexibility). The operator setwS, which builds on setw, also guarantees that the resulting

term is a non-empty PT net (note the mixed use of owise equation attribute and a matching equation).
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6 Property Verification

In this section, we briefly address some tools that are available to formally verify the properties of a

Maude-based specification of rewritble PT systems, and we present a few experimental data. The goal is

not to contend with well-established model-checkers based on PN and/or related formalisms, but to show

some potential benefits of the methodology proposed to specify dynamically reconfigurable systems.

A Maude system module (which specifies a rewrite theory) provides an executable formal model

of a distributed system. Under appropriate conditions, we can check that this model satisfies some

properties, or obtain counterexamples. This kind of model-checking analysis is quite general and builds

on the search command, which allows one to explore (following a breadth-first strategy) the reachable

state-space in different ways. For example, using bounded model-checking, if the system state-space is

huge (or even infinite), or model-checking of infinite-state systems through abstractions. Under finite

reachability assumptions, we might more efficiently model check any linear time temporal logic (LTL)

property of a system module using the LTL Maude modules. We here focus on a simple, yet helpful,

model-checking capability, namely, the model checking of invariants using the search command.

One invariant we might like to verify about a rewritable PT system is deadlock freedom. A straight-

forward way to check this property is to issue the search command below, which searches for any final

states of our running example starting from the initial PT system configuration.

Maude> search in FMS-EMU : net m0 =>! X:System .

It gives no solution, meaning that the self-adaptive MS is deadlock-free7 . Table 1 reports some data

about the performance of this command, as the system size varies. The experiments were carried out on

a Intel Core i7-6700 equipped with 32 GB of RAM.

Another interesting search concerns the existence of dead states inside the different configurations

(the nominal one and the two symmetric, faulty ones) that the system enters during its evolution. The

command to issue is ( * means “in zero or more steps”, dead is the predicate defined in module PT-SYS):

Maude> search in FMS-EMU : net m0 =>* X:System such that dead(X:System) .

There are six solutions (for any M), two for each configuration of the system. For example, for M = 50,

we get (for readability, in the following excerpt of the command’s output, we use the term net to denote

the system’s nominal configuration instead of the much longer canonical form)

Solution 1 (state 133541)

states: 133542 rewrites: 16647633 in 65130ms cpu

X:System --> (t(0) |-> [1 . p(1),1 . p(3),nilP], t(2) |-> [1 . p(3),1 . p(5),

1 . p(8)], t(3) |-> [2 . p(5),1 . p(6), nilP], t(4) |-> [1 . p(6),2 . p(1),

nilP], t(6) |-> [1 . p(0),1 . p(8),nilP]) 1 . p(8) + 100 . p(3)

Solution 2 (state 133542)

states: 133543 rewrites: 16647811 in 65140ms cpu

X:System --> (t(0) |-> [1 . p(1),1 . p(2),nilP], t(1) |-> [1 . p(2),1 . p(4),

1 . p(7)], t(3) |-> [2 . p(4),1 . p(6), nilP], t(4) |-> [1 . p(6),2 . p(1),

nilP], t(5) |-> [1 . p(0),1 . p(7),nilP]) 1 . p(7) + 100 . p(2)

Solution 3 (state 142860)

states: 142861 rewrites: 17841539 in 68140ms cpu

X:System --> (t(0) |-> [1 . p(1),1 . p(2),nilP], t(1) |-> [1 . p(2),1 . p(4),

7Using the MAUDE LTL modules we might even check that the initial state is a home-state, i.e., the system is cyclic.



42 Maude implementation of Rewritable PN

Table 1: Performance of search command as M varies

M # states # rewrites time (ms)

3 350 35730 44

5 1232 130539 153

10 8932 995724 1192

20 84007 9737494 36090

50 2186132 261564504 862536

1 . p(7)], t(3) |-> [2 . p(4),1 . p(6), nilP], t(4) |-> [1 . p(6),2 . p(1),

nilP], t(5) |-> [1 . p(0),1 . p(7),nilP]) 1 . p(4) + 1 . p(7) + 99 . p(2)

Solution 4 (state 142865)

states: 142866 rewrites: 17842109 in 68140ms cpu

X:System --> (t(0) |-> [1 . p(1),1 . p(3),nilP], t(2) |-> [1 . p(3),1 . p(5),

1 . p(8)], t(3) |-> [2 . p(5),1 . p(6),nilP], t(4) |-> [1 . p(6),2 . p(1),

nilP], t(6) |-> [1 . p(0),1 . p(8),nilP]) 1 . p(5) + 1 . p(8) + 99 . p(3)

Solution 5 (state 1083022)

states: 1083023 rewrites: 143322169 in 781220ms cpu

X:System --> net 1 . p(8) + 50 . p(3) + 50 . p(4)

Solution 6 (state 1084477)

states: 1084478 rewrites: 143524908 in 782130ms cpu

X:System --> net 1 . p(7) + 50 . p(2) + 50 . p(5)

We may suppose a generic form for the six states above in which expressions M, 2 ·M, 2 ·M − 1

should be used in place of values 50, 100, 99, respectively.

As a last example of use of search, we check whether the system correctly evolves from an inner

deadlock: the command below lists the system states reachable in one-step from a dead state which

refers to the system’s nominal configuration after line 2 gets faulty (for M = 10).

Maude> search net 1 . p(8) + 10 . p(3) + 10 . p(4) =>1 X:System .

Solution 1 (state 1)

states: 2 rewrites: 23 in 0ms cpu

X:System --> (t(0) |-> [1 . p(1),1 . p(2),nilP], t(1) |-> [1 . p(2),1 . p(4),

1 . p(7)], t(2) |-> [1 . p(3),1 . p(5),1 . p(8)], t(3) |-> [2 . p(4),1 . p(6),

nilP], t(4) |-> [1 . p(6),2 . p(1),nilP], t(5) |-> [1 . p(0),1 . p(7),nilP])

1 . p(0) + 10 . p(2) + 10 . p(4)

As you can see, the system enters a degraded configuration in which only line 1 is working and the raw

pieces left on the faulty line (a half of the total) have been moved on line 1.

6.1 Exploiting PT nets structural analysis

In a somehow hybrid modelling framework like that proposed, we can benefit from the tools/techniques

available for both formalisms. For example, structural analysis of Petri nets may be an interesting, really
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Table 2: P- and T-semiflows of the PT nets specifying the MS (Fig. 1)

nominal behavior faulty behavior

pin1

pin2

pin3

tin1

p1 + 2*p6 + 2*p2 + 2*p4

p1 + 2*p6 + 2*p3 + 2*p5

p0 + p7 + p8

t0 + t1 + t2 + t3 + t4

pin′1
pin′2

tin′1

p1 + 2*p6 + p3 + p5

p0 + p8

2*t0 + 2*t2 + t3 + t4

efficient alternative/complement to state-space inspection techniques, when the system state-space is

huge and performances degrade (as shown in Table 1). Furthermore, structural analysis doesn’t depend

on the initial marking of a PT system, so we may use it to get some kind of parametric outcomes. Let us

show an application of semiflows on this direction to our running example.

Let Q be the |P| · |T | matrix such that is Q[p,t] = 0(t)(p)− I(t)(p) ∈ Z. Any P-vector p which is a

non-null, positive integer solution of the product p ·Q = 0, called P-semiflow, expresses a conservative

law for the marking of places corresponding to non-zero entries of p. Any T -vector t which is a non-

null, positive integer solution of the product Q · t = 0, called T -semiflow, expresses a cyclicality effect

for firing sequences matching the semiflow.

By inspecting the Maude module RWPT-FMS one can (also formally) check that the system’s structure

may only be one of those described in Fig. 1, more a symmetrical faulty one.

Table 2 shows the semiflows8 of the PT nets in Fig. 1 (there are symmetric semiflows for the other

faulty configuration). We observe that the PT nets are covered by P-semiflows, therefore, the whole

system is structurally bounded. The T -semiflows represent a base production cycle in the nominal

and faulty configurations of the MS. Consider the two P-semiflows of the faulty configuration, and

the initial marking immediately after a system switch. We derive these invariant marking-expressions:

∀m : m(p0)+m(p8) = 1, m(p1)+ 2 ·m(p6)+m(p3)+m(p5) = 2 ·M. With simple arguments we can

show that if m(p8) = 1 then we eventually reach either of the two dead states: m′ = 1∗ p8 + 2 ·M ∗ p3,

m′′ = 1∗ p8 + 1∗ p5 +(2 ·M − 1) ∗ p3, corresponding to matches 1,4 found with the search command

(for M = 50). We have used this parametric outcome in rule r2 of module RWPT-FMS.

Even if, in general, a static prediction of all the possible structural changes of a rewritable PT system

specified with Maude may be more complex, or even impossible, the opportunity to exploit the structural

analysis capabilities of Petri nets together with the formal analysis tools of Maude looks promising.

7 Conclusion, open issues and ongoing work

We have presented a Maude formalization of “rewritable” PT nets, a framework for the specification/anal-

ysis of distributed system with dynamic reconfiguration capabilities. With respect to similar approaches,

the proposed encoding provides much more data abstraction to ease the modeller task, is more compact

and efficient, and fosters the definition of rewrite rules with a high degree of flexibility. We have used as a

(simple but tricky) running example throughout the paper a reconfigurable, fault-tolerant Manufacturing

System. We have reported some experiments of formal verification of properties and discussed about the

possible advantages of such a hybrid modelling approach.

8Semiflows have been computed with the GreatSPN tool [1].
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Ongoing work & open issues We first plan to enrich the modular and intuitive Maude specification

with structural extensions (e.g., test/flush arcs, transition priorities) that further enhance the model’s

expressivity. The idea is to use “decorated” terms representing PT nodes (e,g, t(1,"line",0), where

there are a label and a value indicating the priority) and to update the firing rule in module PT-EMU

accordingly.

A more complex, really interesting extension is the Maude encoding of rewritable High-Level PN

(e.g.,algebraic PN) possibly using the meta-level and term-unification modules.

The Labelled Transition System of a Maude specification of rewritable PT nets should be defined up

to isomorphism of PT systems (in that case, the state-space of the running example should be reduced by

half). A possible solution is to define a syntactical normal form for PT systems using equations. This is

generally complex, but some heuristics could help dramatically reduce the inefficiency in most practical

cases, e.g., by defining classes of ”similar” PT nodes (using labels) so that an isomorphism preserves

these symmetry classes. This topic, however, deserves special attention.

Rule-based transformations are simple to specify and elegant, but sometimes they are shown to be

flawed and ill-equipped for representing realistic situations. Passing to more complex and suitable forms

should be easy using the reflection capability of Maude and/or the Maude strategy language [13] (a

specification layer above those of equations and rules).

These advanced features of Maude might be also used to control the rewriting process and break the

construction of the transition system of a rewritable PT net when an undefined/error state is reached. The

strategy language provides a cleaner way, respecting the separation of concerns.
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A Appendix - Maude specification of rewritable PT nets

fmod TRAN is

protecting NAT .

sort Tran .

op t : Nat −> Tran [ctor] .

op subscript : Tran −> Nat .

vars N : Nat .

eq subscript (t(N)) = N .

endfm

fmod IMATRIX is

pr BAG{Place} * (sort Bag{Place} to BagP, sort NeBag{Place} to NeBagP, op nil to nilP) .

pr EXT−BOOL .

sort Imatrix .

op [_,_,_] : BagP BagP BagP −> Imatrix [ctor] .

op remove : Imatrix Place −> Imatrix .

op in : Imatrix Place −> Bool .

vars X Y Z : BagP .

var P : Place .

eq remove([X,Y,Z], P) = [set(X,P,0),set(Y,P,0),set(Z,P,0)] .

eq in([X,Y,Z], P) = X[P] =/= 0 or−else Y[P] =/= 0 or−else Z[P] =/= 0 .

endfm

fmod PT−SYS is

pr MAP+{Tran, Imatrix} * (sort Map{Tran, Imatrix} to Net, op empty to emptyN) .

sort System .

op __ : Net BagP −> [System] [ctor] .

ops In Out Inh : Net Tran −> [BagP] .

op enabled : System Tran −> [Bool] .

op dead : System −> Bool .

op in : Net Place −> Bool . *** test the existence of a place

var N : Net .

var T : Tran .

var P : Place .

var I O H S : BagP .

var Q : Imatrix .

var K K’ : NzNat .

eq In((T |−> [I,O,H], N), T) = I .

eq Out((T |−> [I,O,H], N), T) = O .

eq Inh((T |−> [I,O,H], N), T) = H .

eq in((T |−> Q, N), P) = in(Q, P) or−else in(N, P).

eq in(emptyN, P) = false .

eq T |−> [I,I,H] = emptyN [metadata ”null t”] .

ceq T |−> [K . P + I, O, K’ . P + H] = emptyN if K >= K’ [metadata ”dead t”] .

*** ceq N K . P + S = N S if in(N, P) = false [metadata ”isolated p”] .

eq enabled( (T |−> [I,O,H], N) S, T) = I <= S and−then H >’ S .

ceq dead((T |−> Q, N) S) = false if enabled( (T |−> Q, N) S, T) .

eq dead(N S) = true [owise] .

cmb N S : System if N =/= emptyN . *** a PT system cannot be ”empty”

endfm
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fth PTSYSTH is

protecting PT−SYS .

op m0 : −> BagP .

op net : −> Net .

endfth

mod PT−EMU{X :: PTSYSTH} is

var T : Tran .

var I O H S : BagP .

var N N’ : Net .

crl [firing] : N S => N S + O − I if T |−> [I,O,H], N’ := N /\ I <= S /\ H >’ S .

endm

mod RWPT−FMS is

*** protecting PT−SYS .

protecting PT−RWLIB .

op net : −> Net .

op m0 : −> BagP .

op M : −> Nat . *** model’s parameter

vars N N’ : Net .

vars TL TF : Tran .

vars P2 P3 P4 P5 PF : Place .

var S : BagP .

var K : NzNat .

eq M = 50 .

eq net = t(0) |−> [2 . p(1), 1 . p(2) + 1 . p(3), nilP], t(1) |−> [1 . p(2) , 1 . p(4), 1 . p(7)],

t(2) |−> [1 . p(3) , 1 . p(5), 1 . p(8)], t(3) |−> [1 . p(4) + 1 . p(5) , 1 . p(6), nilP],

t(4) |−> [1 . p(6) , 2 . p(1), nilP], t(5) |−> [1 . p(0) , 1 . p(7), nilP], t(6) |−> [1 . p(0) , 1 . p(8), nilP].

eq m0 = 2 * M . p(1) + 1 . p(0) .

crl [r1] : (N, t(0) |−> [2 . p(1), 1 . P2 + 1 . P3, nilP] , t(3) |−> [1 . P4 + 1 . P5, 1 . p(6), nilP],

TF |−> [1 . p(0), 1 . PF, nilP], TL |−> [1 . P3, 1 . P5, 1 . PF]) S + 1 . PF =>
(N, t(0) |−> [1 . p(1), 1 . P2, nilP], t(3) |−> [2 . P4, 1 . p(6), nilP]) set(S, P3, 0) + S[P3] . P2 + 1 . p(0)

if S[P5] = 0 .

crl [r2] : N S => net S + 1 . p(0) + M . P3 − M . P2 − 1 . p(7) − 1 . p(8) if 1 . P2 := Out(N, t(0))

/\ 1 . P2 + 1 . P3 := Out(net, t(0)) /\ dead(N S) .

*** crl [r3] : N S => setw(N, t(0), p(9), i, 1) S if S[p(0)] = 0 /\ S[p(9)] = 0 /\ in(N, p(9)) = false .

endm

view Fms from PTSYSTH to RWPT−FMS is

op m0 to m0 .

op net to net .

endv

mod FMS−EMU is

including PT−EMU{Fms} .

endm
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fmod PT−RWLIB is

protecting PT−SYS .

sort Atype . *** arc type

ops i o h : −> Atype [ctor] .

op w : Net Tran Place Atype −> [Nat] . ***get an arc’s weight

op setw : Net Tran Place Atype Nat −> Net . ***set an arc

op setwS : Net Tran Place Atype Nat −> Net . ***set an arc in a safe way

ops remove : Place Net −> Net .

var N N’ : Net .

var T : Tran .

var P : Place .

var I O H M : BagP .

var Q : Imatrix .

var K K’ : NzNat .

var Y : Nat .

var A : Atype .

eq w(N, T, P, i) = In(N,T)[P] .

eq w(N, T, P, o) = Out(N,T)[P] .

eq w(N, T, P, h) = Inh(N,T)[P] .

ceq setw(N, T, P, i, Y) = N, T |−> [Y . P, nilP, nilP] if N[T] = undefined .

eq setw((N, T |−> [I,O,H]), T, P, i, Y) = N, T |−> [set(I, P, Y), O, H] .

ceq setw(N, T, P, o, Y) = N, T |−> [nilP, Y . P, nilP] if N[T] = undefined .

eq setw((N, T |−> [I,O,H]), T, P, o, Y) = N, T |−> [I, set(O, P, Y), H] .

ceq setw(N, T, P, h, Y) = N if N[T] = undefined .

eq setw((N, T |−> [I,O,H]), T, P, h, Y) = N, T |−> [I, O, set(H, P, Y)] .

eq remove(P, (T |−> Q, N) ) = T |−> remove(Q, P), remove(P, N) .

eq remove(P, emptyN) = emptyN .

ceq setwS(N, T, P, A, Y) = N’ if N’ := setw(N, T, P, A, Y) /\ N’ =/= emptyN .

eq setwS(N, T, P, A, Y) = N [owise] .

endfm

B Appendix - Maude generic modules

fmod BAG{X :: TRIV} is

protecting INT .

sorts Bag{X} NeBag{X} .

subsorts NeBag{X} < Bag{X} .

op nil : −> Bag{X} [ctor] .

op _._ : Nat X$Elt −> Bag{X} [prec 35 ctor] .

op _._ : NzNat X$Elt −> NeBag{X} [ctor ditto] .

op _‘[_‘] : Bag{X} X$Elt −> Nat [prec 23] .

op _+_ : Bag{X} Bag{X} −> Bag{X} [prec 39 ctor assoc comm id: nil] .

op _+_ : NeBag{X} Bag{X} −> NeBag{X} [ctor ditto] .

op _−_ : Bag{X} Bag{X} −> Bag{X} [prec 41 gather (E e)] .

op _<=_ : Bag{X} Bag{X} −> Bool [prec 43] .

op _>’_ : Bag{X} Bag{X} −> Bool [prec 43] .

op set : Bag{X} X$Elt Nat −> Bag{X} .

vars X Y : X$Elt .

vars N M : NzNat .

var K : Nat .
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var B B’ : Bag{X} .

eq (N . X + B)[X] = N .

eq B[X] = 0 [owise] .

eq 0 . X = nil .

eq N . X + M . X = (N + M) . X .

eq B − nil = B .

eq N . X + B − M . X + B’ = if N > M then N − M . X + (B − B’) else B − B’ fi .

eq B − M . X + B’ = B − B’ [owise] .

ceq N . X + B <= B’ = false if N > B’[X] .

eq B <= B’ = true [owise] .

ceq N . X + B >’ B’ = false if N <= B’[X] .

eq B >’ B’ = true [owise] .

eq set(B + N . X, X, K) = B + K . X .

eq set(B, X, K) = B + K . X [owise] .

endfm

fmod MAP+{X :: TRIV, Y :: TRIV} is

sorts Entry{X,Y} Map{X,Y} .

subsorts Entry{X,Y} < Map{X,Y} .

op _|−>_ : X$Elt Y$Elt −> Entry{X,Y} [ctor] .

op empty : −> Map{X,Y} [ctor] .

op _‘,_ : [Map{X,Y}] [Map{X,Y}] −> [Map{X,Y}] [assoc comm id: empty ctor prec 121 ] .

op undefined : −> [Y$Elt] [ctor] .

op insert : X$Elt Y$Elt [Map{X,Y}] −> [Map{X,Y}] .

op insert : X$Elt Y$Elt Map{X,Y} −> Map{X,Y} .

op remove : X$Elt [Map{X,Y}] −> [Map{X,Y}] .

op remove : X$Elt Map{X,Y} −> Map{X,Y} .

op _‘[_‘] : [Map{X,Y}] X$Elt −> [Y$Elt] [prec 23] .

op $hasMapping : [Map{X,Y}] X$Elt −> Bool .

op hasduplicate : [Map{X,Y}] −> Bool .

var D : X$Elt .

vars R R’ : Y$Elt .

var M : [Map{X,Y}] .

eq $hasMapping ((M, D |−> R), D) = true .

eq $hasMapping (M, D) = false [owise] .

eq insert (D, R, (M, D |−> R’)) = if $hasMapping (M, D) then insert (D, R, M) else (M, D |−> R) fi .

eq insert (D, R, M) = (M, D |−> R) [owise] .

eq remove (D, (M, D |−> R)) = remove(D, M) .

eq remove (D, M) = M [owise] .

eq (M, D |−> R) [D] = if $hasMapping (M, D) then undefined else R fi .

eq M [D] = undefined [owise] .

eq hasduplicate((D |−> R, D |−> R’, M)) = true .

eq hasduplicate(M) = false [owise] .

cmb M : Map{X,Y} if hasduplicate(M) = false .

endfm
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