
E. Formenti (Ed.): AUTOMATA and JAC 2012 conferences
EPTCS 90, 2012, pp. 166–176, doi:10.4204/EPTCS.90.14

This work is licensed under the
Creative Commons Attribution License.

Computing by Temporal Order:
Asynchronous Cellular Automata

Michael Vielhaber ∗

Universidad Austral de Chile, Instituto de Matemáticas, Casilla 567, Valdivia, Chile

Hochschule Bremerhaven, FB2, An der Karlstadt 8, D–27568 Bremerhaven, Germany

vielhaber@gmail.com

Our concern is the behaviour of the elementary cellular automata with state set {0,1} over the cell set
Z/nZ (one-dimensional finite wrap-around case), under all possible temporal rules (asynchronicity).

Over the torus Z/nZ (n≤ 10),we will see that the ECA with Wolfram update rule 57 maps any
v ∈ Fn

2 to any w ∈ Fn
2, varying the temporal rule.

We furthermore show that all even (element of the alternating group) bijective functions on the
set Fn

2
∼= {0, . . . ,2n−1}, can be computed by ECA-57, by iterating it a sufficient number of times with

varying temporal rules, at least for n ≤ 10. We characterize the non-bijective functions computable
by asynchronous rules.

The thread of all this is a novel paradigm:
The algorithm is neither hard-wired (in the ECA), nor in the program or data (initial configura-

tion), but in the temporal order of updating cells, and temporal order is pattern-universal.
Keywords: Cellular automata, asynchronous, update rule, universality.

1 Introduction and Notation, Asynchronicity

We consider elementary cellular automata, i.e. with state set S = F2 = {0,1} and update neighborhood
(ci−1,ci,ci+1) for cell ci.

The cell index (site) i will come from Z/nZ for some n ≥ 3, i.e. we consider the finite one-
dimensional torus, indices wrap around. In Section 2, we consider patterns “How universal can a map-
ping on Fn

2 become?”, and Section 3 covers functions Fn
2 3 v→ w ∈ Fn

2.
The 256 ECA’s group into 88 classes under the symmetries 0/1 and left/right neighbor, see Ap-

pendix A. It is sufficient to consider one member per class.
The Wolfram rule ECA = ∑

7
k=0 2k · pk ∈ {0, . . . ,255} defines the behavior. A cell with neighborhood

(ci−1,ci,ci+1) ∈ F3
2, summing up to k := 4ci−1 +2ci + ci+1 ∈ {0, . . . ,7} is replaced by c+i := pk.

Example 1 The behaviour of the ECA with Wolfram rule 5710 = 001110012 is given in Table 1. We
have that 0ci1 7→ ci, all other cases 0ci0,1ci0,1ci1 7→ ci.

111 7→ 0, 011 7→ 1,
110 7→ 0, 010 7→ 0,
101 7→ 1, 001 7→ 0,
100 7→ 1, 000 7→ 1.

Table 1: ECA-57

∗Partially funded by HS Bremerhaven, Germany through a sabbatical leave.

http://dx.doi.org/10.4204/EPTCS.90.14
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

M. Vielhaber 167

1.1 State-of-the-Art

The study of asynchronous cellular automata started with Ingerson and Buvel’s 1984 paper [2].
Lee et al. [3] give an asynchronous CA on the two-dimensional grid Z×Z, which is Turing-universal.
Fatès et al. [1] consider ECA’s with quiescent states (000 7→ 0,111 7→ 1, i.e. with even Wolfram rule

≥ 128). They consider fully randomized ECA’s.
A good overview is given in the thesis [4] by Sharkar.
Nevertheless, all these articles treat asynchronous CAs with randomized clocks.
Our concern is instead the (fully deterministic) behavior of a suitable ECA, with any fixed initial

configuration, under all possible temporal sequences. There seems to be no work on the combined effect
of all deterministic temporal rules, synchronous and asynchronous, so far.

Definition 1. Temporal Rules — Asynchronicity Rules
Let the set ASn of asynchronicity rules over Z/nZ consist of all words of length n over the alphabet

{<,≡,>} such that both < and > occur at least once. We also include the word “≡ ·· · ≡”, the syn-
chronous case, and have ASn = ({<,≡,>}n\({<,≡}n∪{≡,>}n))∪{≡n} with |ASn|= 3n−2n+1 +2.

Given a rule AS = AS0 · · ·ASn−1, ASi = “<”, “≡”, and “>”, resp., defines that cell ci updates after,
simultaneously with, resp. before ci+1,∀0≤ i≤ n−2. ASn−1 refers to cell cn−1 with respect to c0.

For any partition (S1, . . .Sm) of the cell sites, i.e. ∪̇m
k=1Sk = {0, . . . ,n− 1}, let its temporal rule be

ASi = <,≡,> , resp., if i ∈ Sι(i), i+1 ∈ Sι(i+1), and ι(i) is >,=,<, resp., than ι(i+1) (we say that site
i is “bigger” if it comes before i+1, hence dominates it).

With the exception of≡n (synchronous case), both < and > must occur at least once, since otherwise,
by wrapping-around, each cell would update only after itself and the temporal rule would thus not be
well-defined, e.g. ≡<≡ leads to c1 with c2 after c3 with c1, so c1 after, and thus before, itself.

Example 2 Let n = 4, and AS = “<≡>>”: Cell 0 updates after cell 1, 1 with 2, 2 before 3, and
3 before 0. Hence the temporal order is (1,2|3|0), first 1 and 2 simultaneously, then 3, finally cell 0,
i.e. S1 = {1,2},S2 = {3},S3 = {0}. Analogously, “<><>” leads to (1,3|0,2), and “>≡><” leads to
(0|1,2|3).

One might be inclined to partition the n cells into sets S1, . . . ,Sm ⊂Z/nZ, and update those in S1 first,
then cells from S2 and so forth. This, however, is too fine-grained:

Theorem 1
Consider two partitions (S1, . . . ,Sm) and (S′1, . . . ,S

′
m′) of the cell set Z/nZ and define functions

a,b,c,a′,b′,c′ such that

∀i ∈ {0, . . . ,n−1} : i−1 ∈ Sa(i), i ∈ Sb(i), i+1 ∈ Sc(i), . . .

. . . i−1 ∈ S′a′(i), i ∈ S′b′(i), i+1 ∈ S′c′(i).

Then, if sgn(a(i)−b(i)) = sgn(a′(i)−b′(i)) and sgn(b(i)− c(i)) = sgn(b′(i)− c′(i)),∀i, i.e. the relative
update order of cells i−1, i, i+1 is the same for S and S′, then updating according to S or according to
S′ leads to the same result, and this is described by the following asynchronicity rule (Table 2).

Proof. By construction. Since the relative temporal order of cell ci with respect to ci−1 and ci+1 is the
same for (Sk) and (S′k) by sgn(a(i)−b(i)) = sgn(a′(i)−b′(i)) and sgn(b(i)− c(i)) = sgn(b′(i)− c′(i)),
both partitions lead to the same overall behaviour, which is described by AS. �

The construction by the theorem shows that the AS ∈ ASn are sufficient to distinguish the behaviour.
On the other hand, all these AS are necessary and can lead to different behaviour (at least for some
ECA’s), since any ASi 6= AS’i will lead to a different order of updating cells ci and ci+1.

168 Computing by Temporal Order

sgn(a−b) sgn(b− c) ASi−1 ASi

−1 −1 > > a before b before c
−1 0 > ≡ a before b with c
−1 +1 > < a and c before b

0 −1 ≡ > a with b before c
0 0 ≡ ≡ a with b with c
0 +1 ≡ < c before a with b

+1 −1 < > a before b and c
+1 0 < ≡ b with c before a
+1 +1 < < c before b before a

Table 2: Local asynchronicity

Example 3 For n = 6, “<><><>” requires the odd cells 1,3,5 to update before the even ones
0,2,4. There are 13 partitions of three elements, e.g. (1,3,5),(1|3,5), (1,5|3), and (5|1|3), and thus
132 = 169 partitions (Sk) for this AS.

Definition 2. By ECAAS(v) = w, we mean that the elementary CA with rule ECA maps v ∈ {0,1}n

to w ∈ {0,1}n via the temporal sequence AS.

Example 4 ECA-57<><>(1000) = 1110, in two steps: 1000 7→ 1100 7→ 1110, where underlined
cells are active in the next step.

2 The Finite Torus Z/nZ: Patterns

In this section, we work on the torus Z/nZ, and consider all ECA’s for all initial configurations. We
apply a fixed temporal rule AS ∈ ASn repeatedly, τ times, and ask, whether these 5 pattern universality
properties hold:

(o) ∃v ∈ Fn
2, ∀w ∈ Fn

2, ∃τ ∈ N, . . .
(i) ∀v ∈ Fn

2, ∀w ∈ Fn
2, ∃τ ∈ N, . . .

(ii) ∀v ∈ Fn
2, ∃τ ∈ N, ∀w ∈ Fn

2, . . .
(iii) ∃τ ∈ N, ∀v ∈ Fn

2, ∀w ∈ Fn
2, . . .

(iv) ∃τ0 ∈ N, ∀τ ≥ τ0, ∀v,w ∈ Fn
2, . . .

 ∃AS ∈ ASn : ECAτ

AS(v) = w.

All results are experimental i.e. derived from exhaustive computer simulations for the stated lengths.

We start with

(o) ∃v ∈ Fn
2,∀w ∈ Fn

2,∃τ ∈N,∃AS ∈ ASn : ECAτ

AS(v) = w. That is from some v we eventually reach
any w. We give the largest number of w’s reached for some v, for n = 4,8, and 12. To satisfy (o), these
must be (16,256,4096).

The 3 ECA families 0 (1,1,1), 200 (1,1,1), and 204 (1,1,1) are resilient to asynchronicity. They have a
constant result, for all n.

ECA-51 (2,2,2) varies between at most two results.

M. Vielhaber 169

The next 49 ECA families are ordered by increasing image size for n = 12:
140 (2,6,16), 160 (12,130,1182), 164 (13,197,2930), 108 (16,256,4052),
136 (2,9,27), 2 (11,211,1477), 24 (15,211,2961), 56 (16,256,4066),
128 (2,16,49), 72 (11,131,1499), 34 (13,209,2998), 74 (15,255,4071),
132 (4,18,81), 76 (11,131,1499), 130 (14,211,3160), 73 (16,256,4084),

32 (7,31,127), 172 (11,137,1506), 94 (16,216,3448), 33 (16,256,4092),
8 (5,45,320), 168 (12,147,1601), 152 (14,237,3561), 10 (13,253,4093),
4 (7,47,322), 13 (16,168,1792), 138 (13,238,3751), 134 (15,255,4093),

12 (7,47,322), 232 (12,156,1830), 104 (14,232,3824), 42 (15,255,4093),
28 (11,91,641), 77 (12,156,1830), 162 (16,250,3970), 35 (16,256,4094),
29 (12,92,642), 142 (12,140,1848), 170 (16,256,3976), 43 (16,256,4094),
44 (12,100,870), 78 (15,167,1851), 15 (16,256,3976),

156 (4,64,1024), 36 (14,162,1943), 150 (12,240,4032),
40 (11,119,1052), 5 (16,216,2542), 1 (16,256,4051),
The 4 ECA families 6, 14, 18 [for n≥ 7], 50 [for n≥ 4], miss exactly one pattern, leading to 2n−1

in general.
Finally, the 31 ECA families

3, 7, 9, 11, 19, 22, 23, 25, 26, 27, 30, 37, 38, 41, 45, 46, 54, 57, 58, 60, 62, 90,
105 [n 6= 0 mod 4], 106, 110, 122, 126, 146, 154, 178 [n 6= 3], 184 [n 6= 3],
satisfy property (o) (for 3≤ n≤ 12).

(i) ∀v,w ∈ Fn
2,∃AS ∈ ASn,∃τ ∈ N : ECAτ

AS(v) = w. From the 31 families satisfying (o), most fall
short for some v. We give the smallest number of w reachable from some v, for n = 4,8, and 12, this
should be (16,256,4096) to satisfy (i).

Eighteen ECA families are insensitive (or resilient) to asynchronicity for at least some v, the same w
resulting for all AS. Hence, (1,1,1) patterns are reached:
22, 26, 30, 38, 46, 54, 58, 60, 62, 90, 106, 110, 122, 126, 146, 154, 178, 184.
ECA family 7 reaches 2n−1 for n 6= 0 mod 3 and only 1 pattern for n≡ 0 mod 3.
ECA family 45 has 2n−1 patterns for odd n, 1 for even n.
Six ECA families get near the full 2n for all w: 3 (15,233,3411), 9(12,243,3963), 11 (15,233,3515), 25
(16,251,4031), 27 (16,253,4052), 43 (12,236,3554).

The following 6 ECA families satisfy (i) at least for certain [n] (3≤ n≤ 12 considered):
19 [3-12], 23 [3,5,7,9,11], 37 [4-5,7-8,10-11], 41[3,5,7-12], 57[3-12], 105 [3,5-7,9-11] all generate

2n patterns for these [n].
(ii)− (iv) From now on, we will consider the 6 ECA families satisfying (i): 19, 23 (n 6≡ 0 mod 2),

37 (n 6≡ 0 mod 3), 41, 57, and 105 (n 6≡ 0 mod 4).
(ii) ∀v ∈ Fn

2,∃τ ∈ N,∀w ∈ Fn
2,∃AS ∈ ASn : ECAτ

AS(v) = w; i.e. for fixed v, all w are reached at the
same time.

We considered τ up to 20000, and obtain:
ECA-23: No v has any τ ≤ 20000 to satisfy (ii).
ECA-19,-37,-41: For some v, there is no τ ≤ 20000 to satisfy (ii).
ECA-57 satisfies (ii), for n ≥ 5 and all v. The largest τ required is 28 for n = 5; 14 for n = 6; 10 for
7≤ n≤ 13; and 9 for n = 14 and 15.
ECA-105 satisfies (ii) for odd n≥ 7 and all v. The largest τ required is 30 for n = 7; 16 for n = 9,11,13;
and 8 for n = 15.

In general, the time τ decreases with n, since the number of patterns, 2n, increases slower than the
number of asynchronicities, 3n–2n+1+1, and thus for larger n, ASn is more likely to satisfy (ii) early on.

170 Computing by Temporal Order

(iii) ∃τ ∈ N,∀v,w ∈ Fn
2,∃AS ∈ ASn : ECAτ

AS(v) = w. All transductions v 7→ w are done in the same
time.

From the result of (ii), we can infer that at most ECA-57 and ECA-105 can satisfy (iii).
ECA-57 has a joint τn at which all transductions v 7→ w are satisfied simultaneously in these cases:
τ5 = 445,τ7 = 70,τ8 = 242,τ9 = 35,τ10 = · · ·= τ14 = 13, τ15 = 10.
For ECA-105, we have τ7 = 570,τ9 = 14,τ11 = τ13 = 6, and τ15 = 8.

(iv) ∃τ0 ∈ N,∀τ ≥ τ0,∀v,w ∈ Fn
2,∃AS ∈ ASn : ECAτ

AS(v) = w. Eventually all transductions v 7→ w
can be done at all times.

Theorem 2
There is no τ0 ∈ N,∀τ ≥ τ0,∀v,w ∈ Fn

2,∃AS ∈ ASn : ECAτ

AS(v) = w, i.e. (iv) can not be satisfied.
Proof. Consider the case w = v.
For each rule AS, applying AS repeatedly, starting at v, we will either return to v at some time, which

is the period length per(AS), the length of the cycle of AS containing v, or else v is in a preperiod and
will never be reached again. Therefore, either v is in the preperiod and thus will not reappear, or else
there is no preperiod, and v = w appears exactly after k · per(AS),∀k, applications of AS.

Let now PER = lcmAS(per(AS)), where AS runs over those temporal rules without preperiod. Ap-
parently, after k · PER(v),∀k, applications of AS, we return to v, for all these rules without preperiod
simultaneously. After k ·PER(v)±1 steps, ∀k, we are not at v (unless the period is 1, and thus v is a fixed
point). Hence, v 7→ v is impossible for all these timesteps k ·PER(v)±1, and there is no such τ0.

Finally, in the case that v is a fixed point under AS, no cell changes its contents for this temporal rule
and thus only w = v, but no w 6= v is ever reached. �

Definition 3. We call an elementary cellular automaton pattern-universal at length n, if it is able
to convert any pattern v in Fn

2 into any other, i.e. satisfies property (i) (∀v,w ∈ Fn
2,∃AS ∈ ASn,∃τ ∈ N :

ECAτ

AS(v) = w).
If an ECA is pattern-universal for all n≥ n0, for some n0, it is called uniformly pattern-universal.
Corollary ECA’s from the 6 families 19,23,37,41,57, and 105 are pattern-universal for the lengths

indicated in property (i) above.
We conjecture that ECA’s from families 19, 41, and 57 are uniformly pattern-universal.

3 The Finite Torus Z/nZ: Functions

In Section 2, we focussed on transductions v 7→ w, which — in general — used different temporal rules
for different v’s and w’s, but for each pair (v,w) stayed with the same rule, applied repeatedly.

In this section, we are interested in functions Fn
2 3 v 7→ f (v) = w ∈ Fn

2, which use the same temporal
rule sequence for all v, but — necessary to generate enough variation — concatenate several different
temporal rules.

We may restrict ourselves to ECA families 19, 23, 37, 41, 57, and 105. Given a function on Fn
2

defined by the values w(v) ∈ Fn
2,∀v, our question is thus:

∃k ∈ N,∃AS1, . . .ASk ∈ ASn,∀v ∈ Fn
2 : ECAASk(. . .(ECAAS1(v)) . . .) = w(v)?

3.1 Bijective Functions

We first consider bijective functions on Fn
2. In this case the equivalent group-theoretic statement is:

Do the ECAAS ∈ ASn (written as permutations on the set {0,1, . . . ,2n− 1}) generate the full sym-
metric group S2n ?

M. Vielhaber 171

To answer this question, we used the program GAP (Graphs, Algorithms, Programming) from RWTH
Aachen (Prof. Neubüser’s group) and St. Andrews University [5]. Thank you!

We ran GAP on some subsets of only 3 asynchronicity rules to show that ECAAS ∈ ASn generates at
least the alternating group A2n , for 3≤ n≤ 11.

Trying directly to obtain the group generated by the full set ECAAS ∈ ASn overburdens GAP already
from n = 4 on. Therefore, in order to check for the generation of S2n , it is then sufficient to exhibit at
least one odd permutation, which is the case for n = 3, with the whole S23 generated — or to show that
all permutations generated by ECAAS ∈ ASn are even, which is the case for 4 ≤ n ≤ 11, and thus only
A2n , but not S2n , is generated in these cases.

Out of the 6 ECA families satisfying property (i), ECA-57 and ECA-105 are the only ones, which
have a locally bijective update rule. Therefore, only these families must be considered. We immediately
have that temporal rules avoiding the symbol “≡” are bijective, when the temporal rule is bijective, since
different applications of that temporal rule do not interfere with each other. On the other hand, for n 6= 3,
all temporal rules involving the symbol “≡” lead to non-bijective functions, see next subsection.

The rules excluding≡ define bijective functions, whenever the ECA itself is (locally) bijective, that is
the application of such an temporal rule for a single cell yields bijectivity. Those temporal rules including
≡ define the non-bijective functions. Hence, the only way to generate bijective functions for n≥ 4 is by
using ECA-57 or ECA-105, and only applying temporal rules from {<,>}n.

ECA-57: GAP tells us that the 2n− 2 temporal rules from {<,>}n\{<n,>n} always yield at least
the alternating group A2n , which is in fact generated already by 3 of the temporal rules, for 3≤ n≤ 10.

The case S2n vs. A2n is easiest checked by hand: Is there some odd permutation within the temporal
rules? This is only the case for n = 3. For 4 ≤ n ≤ 10, all temporal rules yield even permutations and
thus can not generate the full S2n .

Hence, for n = 3, all bijective functions are generated through ECA-57 by concatenation of suitable
temporal rules, while for n ≥ 4, only the even permutations from A2n (that is half of the 2n! bijective
functions) are generated.

ECA-105: GAP tells us that all bijective temporal rules combined generate only fairly small groups:
< AS3 > has order 24, | < AS4 > | = 48 = 4! ·21, | < AS5 > | = 1920 = 5! ·24, | < AS6 > | = 11520 =
6! ·26, |< AS7 > |= 322560 = 7! ·26, all are far below |S2n |= 2n!, the number of bijective functions.

3.2 Non-Bijective Functions

We now turn to non-bijective functions. Then Im(f)⊂ Fn
2 with |Im(f)| strictly less than 2n.

We start with n = 3. The convex hull over all AS ∈ AS3 has cardinality at least 23!/2 = 20160 for
the following ECA’s, Table 3 (the other ECA with bijective update rule, ECA-105, generates only 344
functions):

ECA-25: 22496 ECA-46: 89110
ECA-110: 23166 ECA-41: 210493
ECA-30: 25258 ECA-38: 223102
ECA-3: 39155 ECA-27: 268034
ECA-57: 40320 ECA-35: 751760
ECA-11: 52934 ECA-54: 1.190.449
ECA-62: 62683 ECA-19: 3.519.992

Table 3: Image size for ECAs on F3
2

172 Computing by Temporal Order

There are 88, about 16 Mio., functions on F3
2. Hence, for n = 3, none of the ECA’s even generates

a quarter of all functions. The case ECA-57 is special in that this ECA actually generates all bijective
functions, but no non-bijective one, for n = 3.

In the sequel, n ≥ 4, we consider only ECA-57, which has sufficiently many bijective functions,
namely 2n!/2, at least for 4≤ n≤ 10. We will generate a considerable subset of all functions by suitably
interleaving bijective and non-bijective temporal rules for ECA-57.

We now consider ECA-57 for a temporal rule with a single ≡ on Z/nZ,n≥ 4.
Considering larger neighborhoods, with 2 cells changing simultaneously, also ECA-57 becomes non-

surjective (we show the effect of AS1 = “≡” on the two middle cells for all configurations of 4 adjacent
cells):

v 7→ ECA-57(v)
0000 7→ 0110
0001 7→ 0101
1000 7→ 1110
1001 7→ 1101
0010 7→ 0000
0011 7→ 0011
1010 7→ 1100
1011 7→ 1111
0100 7→ 0010
0101 7→ 0011
1100 7→ 1010
1101 7→ 1011
0110 7→ 0100
0111 7→ 0101
1110 7→ 1000
1111 7→ 1001

Table 4: ECA-57: Effect of AS1 = “≡”

We obtain the patterns 0011 and 0101 twice, while missing 0001 and 0111. Hence the image is
smaller than the full 24 by 2, or by a factor of 7/8.

Extending this neighborhood of≡ to any size n, and using only < and > for the other n−1 positions,
before and after the ≡ transition, ECA-57 behaves bijectively. Therefore, the whole image shrinks by
just the factor 7/8, when applying ≡ once.

Since all temporal rules without ≡ are bijective, and inclusion of more than one ≡ shrinks the image
even further, we have the following result on the functions that can be represented by ECA-57:

Theorem 3
Let the patterns from {<,>}n\{<n,>n} generate at least the alternating group A2n (which is the

case at least for 3≤ n≤ 10).
Let f : Fn

2→ Fn
2,n≥ 4 be any non-bijective function on at least 4 symbols. Let #(w) = |{v| f (v) = w}|

be the number of configurations v leading to configuration w. Then f is representable by ECA-57 under
asynchronicity, if and only if

∑
w∈Fn

2

b#(w)/2c ≥ 2n−3.

M. Vielhaber 173

Proof. We first introduce the functions # on Fn
2 and @ on N0:

The multiplicity #(w) tells us, how often w is reached, i.e. is the size of the preimage of {w}.
For k ∈ N0, let @(k) ∈ N0 be the number of results w appearing with multiplicity k, @(k) = |{w ∈

Fn
2 : #(w) = k}|. In particular, @(0) = 2n−|Im(f)| is the number of words avoided by the image of f .

We have ∑k k ·@(k) = 2n.
We make use of the temporal rule AS∗ := “<≡> · · · >” which maps 2n−3 pairs (v1,v2) onto 2n−3

words w, and otherwise is 1-to-1. Hence, for AS∗, we have @(1) = 6 · 2n−3,@(0) = @(2) = 2n−3. We
generate f by a chain f = πk ◦AS∗ ◦ · · · ◦π2 ◦AS∗ ◦π1 ◦AS∗, alternating AS∗ and permutations πk ∈ S2n .

For the second and every further application of AS∗, we will join 2n−3−1 words v1 with #(v1)> 0 to
2n−3−1 words v2 with #(v2) = 0, hence without changing the distribution @. We also map 6 ·2n−3 words
1-to-1, and finally we join two multiplicities #(v1),#(v2) by mapping v1,v2 onto the same w, the actual
effect of this application of AS∗. The new values @+ are thus @+(#(v1)) = @(#(v1))−1,@+(#(v2)) =
@(#(v2))− 1,@+(#(v1)+ #(v2)) = @(#(v1)+ #(v2))+ 1, and @+(k) = @(k) otherwise. In this way,
we eventually arrive at a distribution @ as required by f .

To achieve this, we permute values in between applications of AS∗. In this (slow) way, we eventually
get to the distribution of #(w) required by f .

The final permutation πk maps the v with multiplicities #(v)> 0 to the correct values w ∈ Im(f).
Since we always have two words v1,v2 mapping to the same w under AS∗, and also two words w1,w2

outside Im(AS∗), any πk ∈ S2n\A2n can be extended by one of the transpositions (v1,v2) or (w1,w2) to an
equivalent π ′k ∈ A2n .

Concerning the “only if” part, already the first application of AS∗ would decrease the number of
values below |Im(f)|. �

3.3 Examples

The superscript (n) indicates the torus size.
INC(3) For n = 3, let w = v+ 1 mod 8. This is an odd bijective function, and hence representable

for this n = 3.
MUL-BY-3(3) For n = 3, let w = 3 · v mod 8. Same as with INC.
MUL-BY-2(3) For n = 3, let w = 2 · v mod 8. From 2 · 0 = 2 · 4 = 0 mod 8, this function is not

bijective, and hence not representable by ECA-57 for n = 3.
INC(4) For n = 4, let w = v+1 mod 16. As with n = 3, this is an odd bijective function. Contrary

to the case n = 3, a representation by ECA-57 is not possible for n≥ 4.
INC’(4) For n = 4, let w = v+ 1 mod 15,15 7→ 15. This is an even bijective function, and thus

representable.
MUL-2-BY-2(4) For n = 4, let v = a|b, 0≤ a,b≤ 3 and w = a ·b. The range is given by the multiset

{07,1,22,32,4,62,9}, where superscripts show the number of occurrences. The sum ∑w∈F4
2
b#(w)/2c =

6 ≥ 2n−3 = 2 is large enough (the range is sufficiently small thus) to allow shrinking by e.g. repeated
application of the asynchronicity pattern “<=>>” and suitable permutations. Multiplication can thus
be computed by ECA-57 through asynchronicity. How to do it exactly, is a more complicated case, see
Open Problems.

MUL-k-BY-k(2k): Zero appears 2 · 2k− 1 times, and 1 ≤ a < b ≤ 2− 1 yields a · b = b · a that is at
least

(2k−1
2

)
pairs. Hence, we have ∑w∈F4

2
b#(w)/2c ≥ 2k−1+(2k−1) · (2k−2)/2 > 22k−3 = 2n−3 (with

k ≥ 2). All these multiplications can therefore be computed by ECA-57, using asynchronicity.

174 Computing by Temporal Order

Boolean and arithmetic functions on k bits, n = 2k:
Let v = a|b with 0≤ a,b < 2k. Then f∨,1(v) = (0|a∨b), f∨,2(v) = (a∨b|a∨b), f∧,1(v) = (0|a∧b),

f∧,2(v) = (a∧b|a∧b), f⊕,1(v) = (0|a⊕b), f⊕,2(v) = (a⊕b|a⊕b), f−(v) = (a−b mod 22k), f−′(v) =
(0|(a−b) mod 2k), can all be computed by ECA-57 under asynchronicity, for any k that is any even n:

All these Boolean functions are commutative, a ◦ b = b ◦ a, and thus enough pairs (v1,v2) with
f (v1) = f (v2) exist to have ∑b#(w)/2c ≥ 22k−3.

For 0 ≤ v < 2n, let fNEG(v) = (−v) (2’s complement). This is an odd bijection with the two fixed
points 0 and 2n−1, and 2n−1−1 transpositions, hence computable by ECA-57 only for n = 3.

fCOMP(v) = (v⊕111 · · ·111) (1’s complement), on the other hand, is an even bijection, computable
for all n.

Example 5 A detailed description of the calculation of INC(3) and MUL-BY-3(3). The left column
indicates the temporal rule and partition of Z/3Z

INC(3)

000 001 010 011 100 101 110 111
<><(1|0|2) 011 101 100 110 111 010 001 000
<>>(1|2|0) 010 110 011 000 001 101 100 111
<>≡(1|0,2) 101 000 110 011 100 010 111 001
≡><(0,1|2) 010 111 100 110 011 001 000 101
>><(0|1|2) 001 010 011 100 101 110 111 000

MUL-BY-3(3)

000 001 010 011 100 101 110 111
<<>(2|1|0) 101 010 111 100 110 011 001 000
><>(2|0|1) 001 101 100 010 011 000 110 111
≡<>(2|0,1) 110 011 010 111 000 101 001 100
>≡<(0|1,2) 101 100 001 010 110 000 111 011
>><(0|1|2) 000 011 110 001 100 111 010 101

Table 5: INC(3) and MUL-BY-3(3) in detail

Further Research and Open Problems

1. Give an algorithm to calculate the temporal sequence (AS1,AS2, . . . ,ASk) for a function on Fn
2 directly

from the function values, given e.g. as permutation on {0,1, . . . ,2n− 1}, instead of searching through
the full tree ASk

n.
2. Consider temporal sequences that do not depend on the position, but on the rule to be applied,

e.g. first update at all corresponding sites 000 7→ p0 , then 110 7→ p6, then 010 7→ p2 etc. There are 8! =
40320 such temporal rules, independent of n.

How do we treat actions that already had their turn, but whose neighborhood only turns up later?
Update immediately upon creation, never in this round, ...?

This could mimic chemical reactions, e.g. in cell biology, DNA expression, where some reactions
are faster than others, depending on their reaction rate constant k.

3. As in 2., but associate a latency time with each temporal rule: As soon as the corresponding
neighborhood pattern is created, wait for its latency time and then update according to the temporal rule.

M. Vielhaber 175

4. What can we say about the alphabet {0,1,2} instead of {0,1}?
There are now 333 ≈ 243 ECA’s to be considered. Since there are 3n−2n+1+2 = Θ(3n) asynchronic-

ities (Definition 1) and exactly 3n configurations on Z/nZ, an analogue of properties (o) to (iv) is now
impossible due to lack of temporal rules. However, we may ask, how the number of configurations
actually reached grows with n. Do we ever obtain the full diversity of 3n−2n+1 +2 results?

Conclusion

We have introduced temporal order via temporal rules as a means to diversify the behaviour of elementary
cellular automata.

In particular, ECA’s with update rules 19, 41, and 57 are pattern universal for n≤ 12, achieving any
desired pattern transduction v 7→ w, applying iteratedly a single temporal rule. We conjecture that they
are indeed uniformly pattern-universal.

ECA-57 produces any even (as permutation) bijective function on {0,1}n, for n ≤ 10, and all non-
bijective ones that join at least 2n−3 pairs of argument values.

Temporal order is thus a third way to encode information and algorithms, after programs
(ECA’s) and data (initial configurations).

This may have farreaching consequences, e.g. for modeling gene expression, since physico-biological
processes seldomly achieve exact synchronicity.

References
[1] N. Fatès, E. Thierry, M. Morvan, N. Schabanel, Fully asynchronous behavior of double-quiescent elementary

cellular automata, TCS 362, 1–16, 2006. doi:10.1016/j.tcs.2006.05.036
[2] T. Ingerson, R. Buvel, Structure in asynchronous cellular automata, Physica D, 10, p. 59, 1984.

doi:10.1016/0167-2789(84)90249-5
[3] J. Lee, F. Peper, S. Adachi, K. Morita, S. Mashiko, Reversible computation in asynchronous cellular automata,

Proc. Unconventional Models of Computation, LNCS 2509, 220–229, 2002. doi:10.1007/3-540-45833-6 19
[4] A. Sharkar, Asynchronous Cellular Automata, Thesis, Shibpur, West Bengal, India, 2011.
[5] www.gap-system.org

http://dx.doi.org/10.1016/j.tcs.2006.05.036
http://dx.doi.org/10.1016/0167-2789(84)90249-5
http://dx.doi.org/10.1007/3-540-45833-6_19

176 Computing by Temporal Order

Appendix A – ECA Families
Each family (equivalence class under the symmetries 0/1 and L/R (ci−1 ↔ ci+1)) consists in up to 4 ECAs with
numbers ECA=abcdefgh2,

ECA
L/R←→ aecgbfdh2, ECA

0/1←→ hgfedcba2, and ECA
L/R,0/1←→ hdfbgcea2.

0 (255), 1 (127), 2 (191 16 247), 3 (63 17 119),
4 (223), 5 (95), 6 (159 20 215), 7 (31 21 87)
8 (239 64 253), 9 (111 65 125), 10 (175 80 245), 11 (47 81 117),
12 (207 68 221), 13 (79 69 93), 14 (143 84 213), 15 (85),
18 (183), 19 (55), 22 (151), 23,
24 (231 66 189), 25 (103 67 61), 26 (167 82 181), 27 (39 83 53),
28 (199 70 157), 29 (71), 30 (135 86 149), 32 (251),
33 (123), 34 (187 48 243), 35 (59 49 115), 36 (219),
37 (91), 38 (155 52 211), 40 (235 96 249), 41 (107 97 121),
42 (171 112 241), 43 (113), 44 (203 100 217), 45 (75 101 89),
46 (139 116 209), 50 (179), 51, 54 (147),
56 (227 98 185), 57 (99), 58 (163 114 177), 60 (195 102 153),
62 (131 118 145), 72 (237), 73 (109), 74 (173 88 229),
76 (205 76 205), 77, 78 (141 92 197), 90 (165 90 165),
94 (133), 104 (233), 105, 106 (169 120 225),
108 (201), 110 (137 124 193), 122 (161), 126 (129),
128 (254), 130 (190 144 246), 132 (222), 134 (158 148 214),
136 (238 192 252), 138 (174 208 244), 140 (206 196 220), 142 (212),
146 (182), 150, 152 (230 194 188), 154 (166 210 180),
156 (198), 160 (250), 162 (186 176 242), 164 (218),
168 (234 224 248), 170 (240), 172 (202 228 216), 178,
184 (226), 200 (236), 204, 232

	1 Introduction and Notation, Asynchronicity
	1.1 State-of-the-Art

	2 The Finite Torus Z/nZ: Patterns
	3 The Finite Torus Z/nZ: Functions
	3.1 Bijective Functions
	3.2 Non-Bijective Functions
	3.3 Examples

