
R.C. Cardoso, A. Ferrando, F. Papacchini,
M. Askarpour, L.A. Dennis (Eds.): Second
Workshop on Agents and Robots for reliable
Engineered Autonomy (AREA’22).
EPTCS 362, 2022, pp. 37–53, doi:10.4204/EPTCS.362.6

© Y. Carreno, Y. Petillot, R. Petrick
This work is licensed under the
Creative Commons Attribution License.

Temporal Planning with Incomplete Knowledge and
Perceptual Information

Yaniel Carreno* Yvan Petillot Ronald P. A. Petrick
Edinburgh Centre for Robotics, Edinburgh, United Kingdom

Heriot-Watt University and The University of Edinburgh, Edinburgh, United Kingdom

{y.carreno, y.r.petillot, r.petrick}@hw.ac.uk

In real-world applications, the ability to reason about incomplete knowledge, sensing, temporal no-
tions, and numeric constraints is vital. While several AI planners are capable of dealing with some of
these requirements, they are mostly limited to problems with specific types of constraints. This pa-
per presents a new planning approach that combines contingent plan construction within a temporal
planning framework, offering solutions that consider numeric constraints and incomplete knowledge.
We propose a small extension to the Planning Domain Definition Language (PDDL) to model (i) in-
complete, (ii) knowledge sensing actions that operate over unknown propositions, and (iii) possible
outcomes from non-deterministic sensing effects. We also introduce a new set of planning domains
to evaluate our solver, which has shown good performance on a variety of problems.

1 Introduction and Motivation

Automated planning is widely used as a tool for autonomous agents to achieve their mission goals. In
the past decade, AI planners have been introduced in a large number of real-world applications [30] to
deal with the challenges that arise in these scenarios, such as the incompleteness of the domain definition
and the complexity of dynamic models that capture numeric and temporal constraints. Hybrid temporal
planners are able to reason with both discrete and continuous numeric changes over time to generate
realistic action schedules (plans) capable of supporting concurrent actions, synchronisation of multiple
tasks, and deadlines. Several solutions to planning with continuous and discrete effects [28, 32, 16] base
their reasoning on deterministic models. These solvers generate plans by scheduling sequences of actions
that satisfy numeric and temporal constraints. However, their applicability is limited when parts of the
domain are incomplete or unknown. Contingent planning [38, 43] copes with certain types of incomplete
information by treating the plan as a decision tree with different contingent branches that could arise. A
contingent plan guides the agent to act conditionally to achieve the goal, with actions in the decision tree
enabling the planner to decide which branch to take.

In this work, we focus on temporal planning with numeric constraints where the action sequences
required to reach the goals give rise to conditional plans. For instance, consider the following example:

Example 1. (Valve Manipulation) An offshore scenario (Figure 1 (left)) includes a set of blowout pre-
venters (BOPs) which are controlled by manipulating valves. An autonomous underwater vehicle (AUV)
must close two valves (v1 and v2) during a mission, and must record and communicate data every time
it manipulates a valve. The AUV starts at the deployment base. From there, it can navigate to the BOPs
and manipulate a valve. The AUV’s actions will depend on the valve state: if a valve is open, then it
should be closed; if a valve is closed, then no action is needed. The valve state can be checked using a

*Contact Author.

http://dx.doi.org/10.4204/EPTCS.362.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

38 Temporal Planning with Incomplete Knowledge and Perceptual Information

Figure 1: (left) Example of the planning and execution process required to solve a problem in Example 1.
(right) Graphical representation of the plan solution for Example 1.

sensing action. The AUV may also need to recharge using an autonomous surface vehicle (ASV) which
is deployed in different recharge points at different times.

Figure 1 (right) shows a plan solution for this problem. We note that no sequence of actions allows
the AUV to achieve the goal without first determining the state of the valves. As a result, choosing the
correct actions to execute depends on the outcome of sensing the valve states (open or closed). Numeric
constraints are required to control the data recorded when a valve is manipulated. Therefore, if the valve
is open, the AUV should execute a manipulation action and navigate to the surface to report the action’s
implementation. Temporal constraints are also essential for scheduling recharge activities due to the
ASV’s time availability at different locations. Different sensing outcomes (red) can lead to different task
sequences with extra actions (green) requiring more energy and time to complete the mission.

In this paper, we formalise temporally-contingent planning (TCP) problems, which describe a par-
tially observable environment with sensing actions (PPOS) and time constraints, and introduce a new
compilation-based planning approach called Temporal Contingent Effect (TraCE) that combines tempo-
ral plan construction with contingent planning. TraCE analyses the PPOS as a Fully-Observable Non-
Deterministic (FOND) planning problem using a modified version of the approach in [5] to convert PPOS
into FOND problems that include temporal constraints. Both deterministic (physical) actions and non-
deterministic (sensing) actions are treated as durative actions. Plan branches are computed by considering
the branching points, arising from sensing actions, and branch depth. The plans generated by TraCE are
trees of actions (Figure 1 (right)), where the actions in a branch satisfy the ordinary propositional pre-
conditions but are scheduled by a sub-solver that also considers temporal and numeric requirements. The
approach is evaluated on a set of planning problems that include real robotic applications.

2 Related Work

Many temporal planning models introduce an explicit notion of time [24]. Examples include solvers
dealing with temporal coordination [20], continuous effect requirements [16], and preferences [2]. Such
approaches are capable of solving a large number of well-established planning domains [31], and real-
world domains [9, 8, 12]. Our framework aims to solve a new set of problems that require reasoning
about incomplete information in addition to the temporal and numeric requirements. In this work, we
focus on offline planning strategies. Previous examples of offline contingent planning solvers include
MBP [4], Contingent-FF [29], and POND [6]. Although these planners can solve large problems at
different hardness levels, they do not scale well, mostly due to the underlying belief state representation.

Y. Carreno, Y. Petillot, R. Petrick 39

DNFct [41] and CLG [1] (offline version) outperform previous approaches, finding solutions in a shorter
time with better scalability. A different contingent planning approach is PKS [39, 40] which attempts
to model the knowledge state directly. Amongst the group of planners that deal with FOND planning
problems, PO-PRP [34] extends PRP [35] to compute strong cycle plans. ProbPRP [7] is an extension of
PO-PRP that computes policies to overcome deadends. HCP-ASP [44] and HCPlan [36] demonstrate the
applicability of contingent planning in hybrid approaches. Our work inherits some of the ideas introduced
by the prior approaches regarding implementing hybrid solutions and the translation (or compilation) of
nondeterministic problems for planning.

Few approaches in the literature combine temporal and contingent planning to solve nondetermin-
istic temporal planning problems. CTP [42] allows the construction of conditional plans with temporal
constraints. Strategies based on Simple Temporal Networks with Uncertainty (STNU) such as [14] are
used as temporal scheduling tools where conditions and decisions can be added to STNUs [17, 45]. [18]
present an encoding to Conditional Simple Temporal Networks with Uncertainty and Resources (CST-
NURs) with promising results in a set of applications that model temporal and numeric constraints. A
solution that considers planning and meeting temporal problem constraints is the TCP framework [21],
which includes time and contingency notions in the model. This framework differs from the contingent
planning problems we are interested in, where branch creation leads to solve the incomplete knowledge
Some work associated with temporal plan merging [25, 10] and opportunistic planning consider temporal
[13] and resource [15] constraints to generate branches in a temporal plan. [11] presents an approach to
solve TCP problems considering the work implemented in [37] that translates contingent planning into
classical problems. TraCE differs from this approach in the problem translation and the tree expansion.

3 Problem Formalisation

We begin by formulating the TCP problem. We use PDDL2.1 [22] which is typically used for temporal
planning problems:

Definition 1. A temporal planning problem is a tuple PT := 〈P,V,AT , IT ,GT ,T 〉, where P is a set of
Boolean variables; V is a vector of real variables (numeric fluents); AT is a set of instantaneous and
durative actions, where the duration of the actions is controllable and known; IT is a function IT : P∪V→
{>,⊥}∪R describing the initial state; GT is a set of goals, where goals in GT are Boolean variables
from P or inequalities over real variables in V that represent the objectives that must be achieved; T is
a set of timed initial literals (TILs).

A timed initial literal (TIL) [19] is a pair (t, p) where t is the rational-valued time of occurrence of a
Boolean variable p, where p ∈ P and p→ {p,¬p}. A TIL (t, p) defines the time t that the Boolean
variable p becomes true (p), and a TIL (t,¬p) describes the time t that p becomes false (¬p).

Definition 2. A durative action ad ∈ AT is a tuple of the form 〈adpre ,adeff ,addur〉. adpre is a set of conditions
of the following types that must hold for the action to be applicable: at-start (adpre`), over-all (adpre↔),
and at-end (adprea). adeff is the set of action effects of the types: positive starting effects (adeff`+

), negative
starting effects (adeff`−

), numeric starting effects (adeff`n), continuous numeric effects (adeff↔n), positive
ending effects (adeffa+

), negative ending effects (adeffa−
), and numeric ending effects (adeffan). addur is a set

of action durations.

A solution to a TCP problem PT is a time-aware plan ΠT = {a1 · · · ,an} described by a sequence of
durative and instantaneous actions, where each action ai is applicable, and ΠT achieves the goals in GT

satisfying the temporal constraints. For instance, each branch in Figure 1 (right) from the initial state IT

40 Temporal Planning with Incomplete Knowledge and Perceptual Information

to the goal GT is a single sequence of durative actions. Note that such plans do not consider incomplete
information or the effects of sensing actions.

We now consider contingent planning problems which include partial observability and non-deterministic
(sensing) actions in the model, but no temporal constraints.
Definition 3. A contingent planning problem is a tuple PC := 〈P,AC,O, IC,GC〉, where P is set of Boolean
variables describing the state of the world; AC is a set of physical actions; O is a set of sensing actions,
separate from AC such that O∩AC = /0; IC ⊆ P, is the set of clauses over P that denotes the initial state;
and GC is a set of propositions over P representing the goal condition.

A proposition p ∈ P or its negation ¬p defines a literal l ∈ L, where L is a set of literals and L =
{¬l | l ∈ L}. A set L

′
of literals is consistent if the condition {p,¬p}* L holds for every p; and complete

if the condition {p,¬p}∩L 6= /0 holds for every p ∈ P. The complement of a literal l is defined as l such
that l = ¬l and p = ¬¬p for p ∈ P.

A state s is defined as a consistent and complete set L of literals. A state s satisfies a conjunction of
literals L′′ (s |= L′′) if L′′ ⊆ s. A state s satisfies a literal l (s |= l) if l ∈ s. A belief state S is a set of states.
The belief state S |= l if s |= l for every s ∈ S. Finally, S |= L′′ if s |= L′′ for every s ∈ S.

The set of states in the belief state S capture the alternative ways that the world could be configured.
In a contingent planning model, a literal as being “unknown” if it appears in more than one state in
a belief state with different mappings. So, if s |= l is true in each state s, then s is said to be known.
However, if there exist states s1 and s2 such that s1 |= l and s2 |= ¬l then l would be considered unknown
since either value of l is considered possible. For instance, in Example 1 a belief state S includes the
possible outcomes of the (state_on v1) variable which are (state_on v1) and ¬(state_on v1).

Actions are defined as follows:
Definition 4. A physical action a ∈ AC is a tuple 〈apre,aeff 〉, where apre is a set of atomic propositions
indicating the preconditions to implement a, and aeff represents a set of action outcomes. aeff describes
a set of pairs 〈c, l〉,which capture its conditional effects, where c is a set of possible effects defined by a
set of literals L and l is a literal.
Definition 5. A sensing action o ∈ O is a tuple 〈opre,oeff 〉, where opre is a set of atomic propositions
indicating the preconditions to implement o, and oeff completely characterises an unknown literal l, by
considering the possible outcomes for a given proposition. Therefore, oeff includes a set of possible
effects o′eff and o′′eff that uncover the value of l.

This is for a belief state S a sensing action effects define two independent belief state S+ and S−

that enclose the states where l is possible, and states where ¬l is possible, respectively. Considering
Definition 5, sensing actions are nondeterministic. Sensing actions lead to a possible set of outcomes
(states), enclosed in the belief state, associated with the truth value of a literal. For a sensing action the
belief state So gives rise to two possible belief states, depending on the value of the underlying literal
(l or ¬l). This makes the model nondeterministic at plan time but the belief state is always certain in
each case. The possible belief states associated with a sensing action are: S+o = {s |s ∈ S,s |= l(o)} and
S−o = {s |s ∈ S,s |= l(o)}.

A solution to ΠC is a contingent-aware plan PC with a branching structure induced by the sensing out-
comes. For instance, the plan in Figure 1 (right) is a solution to a contingent planning problem, assuming
the recharge and broadcast actions, which include temporal and numeric constraints, are ignored.

3.1 Temporally-Contingent Planning Problem

A TCP problem is a special case of the PPOS problem where the source of uncertainty is connected to the
outcome of the sensing actions [34], and temporal and numeric notions are introduced in the model. We

Y. Carreno, Y. Petillot, R. Petrick 41

consider simple PPOS problems [5] which can be mapped into FOND planning problems [34]. In par-
ticular, we assume that (i) non-unary clauses in the initial state I are invariant, which are states that hold
in every world state [26], (ii) hidden literals do not emerge in the effects of a non-deterministic action,
and (iii) uncertainty decreases monotonically, i.e., unknown properties cannot become unknown again
after becoming known. As a result, the TCP problem is a FOND problem with temporal requirements
and real variables.

Definition 6. A temporally-contingent planning problem is a tuple PTC := 〈P,V,A,∆, I,G,T 〉, where P
is set of Boolean variables describing the state of the world; V is a vector of real variables (numeric
fluents), A is a set of durative physical (deterministic) actions; ∆ is a set of durative sensing (nonde-
terministic) actions, separate from A such that ∆∩A = /0, both actions with controllable and known
durations; I is a function I : P∪V → {>,⊥}∪R describing the initial state; G is a set of goals, where
goals in G are Boolean variables from P or inequalities over real variables in V that represent the
objectives that must be achieved; T is a set of TILs.

The TCP problem includes two type of actions, where physical actions can be defined as durative
actions (see Definition 1), while durative sensing actions in ∆ are an special type of sensing actions (see
Definition 3) defined as follows:

Definition 7. A durative sensing action δ , where δ ∈ ∆, is a durative action with a nondeterministic
outcome defined by the tuple 〈δpre,δeff ,δdur〉. δpre is a set of conditions, including a set of literals, that
must hold for the action to be applicable of type: at-start, over-all, and at-end. δeff includes a set of
possible action outcomes δ ′eff and δ ′′eff that include effects of positive, negative, and numeric startings,
continuous numeric, positive, negative, and numeric endings. The possible action outcomes characterise
an unknown literal l, by considering the possible outcomes for l (l or ¬l) described in a belief state S.

In a belief state SA = {(l, l1, l2),(¬l, l1, l2),(l,¬l1, l2),(¬l,¬l1, l2)}, there would be states where l is
possible and states where¬l is possible so l’s true value is unknown. δ ’s outcomes δ ′eff and δ ′′eff define two
independent belief states S′B = {(l, l1, l2),(l,¬l1, l2)} and S′′B = {(¬l, l1, l2),(¬l, ¬l1, l2)}. δdur represents
represents a set of duration constraints (controllable and known). A sensing action δ , where δ ∈ ∆, helps
to completely characterise an unknown literal l, where l ∈ I, by considering the possible outcomes for l
described in a belief state S′. The solution of the TCP problem is a transition tree which is defined based
on the outcomes of the sensing action.

PDDL Encoding. We propose a set of extensions to PDDL2.1, which define the unknown literals, the
set of possible outcomes of a durative sensing action, and the connection between the literal sensed
and the effects of the sensing action. This approach is inspired by previous approaches that represent
incomplete information, and sensing [29, 39]. Our PDDL extensions to encode the TCP problem are: (i)
:unknown-literals. Figure 2 (left top) shows an example of how incomplete information is represented
for Example 1. In :unknown-literals, the incomplete information in the problem is identified, which
can be extracted for the initial state I. For instance, the domain the unknown literals reflect that the valve
states are initially unknown, (state_on ?v - valve); (ii) :knowledge-updates. Figure 2 (left bottom)
shows an example of the observational effects extension for the Example 1. In :knowledge-updates, the
and and oneof clauses [23] are used to define the set of facts corresponding to the possible outcomes of
a sensing action. For the Example 1 domain, the unknown literal (state_on v1) is associated with two
possible effects, first, the valve’s state is open ((state_on v1)), the second, the valve’s state is closed
((not (state_on v1))). Notice that in the second effect, the and clause is used to specify the state of
two literals, (not (state_on v1)) and (valve_closed wp32); and (iii) :durative-action. Finally, we
present the extension for sensing outcomes in Figure 2 (right). In :durative-action, a durative sensing

42 Temporal Planning with Incomplete Knowledge and Perceptual Information

(:unknown-literals
(state_on v1)
(state_on v2)
)

(:knowledge-updates
(oneof (state_on v1)

(and (not (state_on v1))
(valve_closed wp32)))

(oneof (state_on v2)
(and (not (state_on v2))

(valve_closed wp42)))
)

(:durative-action sense-valve
:parameters (?r - robot ?s - sensor

?v - poi ?wp - waypoint)
:duration (= ?duration 5)
:condition (and

(over all (can_sense ?r ?s))
(...))

:effect (and
(at end (available ?r))
(...))

:observe (and (at end (state_on ?v)))
)

Figure 2: PDDL extensions for representing incomplete information and observational effects in durative
actions using constructs :unknown-literals (left top) and :knowledge-updates (left bottom).

action is extended from an ordinary (physical) action to include the :observe construct, which connects
the action to the sensed literal. In the example, the sensing action (sense-valve) observes the valve’s
state (state_on ?v - valve) for a particular valve ?v which gives rise to multiple possible outcomes,
such as those in Figure 1 (right). This action includes time constraints and is not limited to Boolean
effects on literals. A durative sensing action in a TCP problem is nondeterministic based on the sensing
outcomes from the :observe. However, a sensing action contains another set of deterministic effects that
are associated with the :effect. For instance, the positive ending effect (at end (available ?r)),
which defines the robot is available when the action finishes. Considering this, the set of belief states
associated with the outcome of a sensing action contains an effect associated with the unknown literal
(different for each outcome) and a set of effects that are the same for all possible belief states. In Example
1, the possible outcomes from implementing the sensing action in valve v1 are: (i) (and (state_on

v1) (available auv1) (v_at v1 wp32) ...), and (ii) (and (not (state_on v1) (valve_closed

wp32) (available auv1) (v_at v1 wp32) ...).

4 TraCE Planning

The TraCE planner takes as input a simple PPOS problem with temporal and numeric constraints PTC

and generates a time-knowledge-aware plan ΠTC defined as follows:

Definition 8. A time-knowledge-aware plan ΠTC = (N,E) for a temporally-contingent planning problem
PTC is a transition tree B, represented as an AND/OR graph, where nodes N are labelled with actions
built on a set of tuples, πA := 〈a, t,d〉 for physical actions and π∆ := 〈δ , t,d〉 for sensing actions; and
edges E represent the action outcomes, denoting the set of propositions whose value are known after an
action execution, where a ∈ A is an instantaneous or durative action, δ ∈ ∆ is a durative sensing action,
t is the action starting time, d represents the action duration, t ∈R≥0, and d ∈R>0 when actions have a
duration.

The plan ΠTC arising from Definition 8 describes a tree where physical and sensing actions are
encoded as two different types of vertices: (i) vA, denoting vertices that describe physical actions, where
v(a) is a vertex, v(a) ∈ vA, and a is a physical action, a ∈ A; and (ii) v∆, which describes sensing action
vertices, where v(δ) is a vertex, v(δ) ∈ v∆, and δ is a sensing action, δ ∈ ∆. The B tree edges capture the
action ordering, where an edge z(v(x),v(y)) defines that the action denoted by the vertex v(x) is executed

Y. Carreno, Y. Petillot, R. Petrick 43

Algorithm 1: TRACE PLANNER (DTC, PTC, U)
Output: ΠTC (Branched Temporal Plan)

1 begin
2 ΠT ← /0
3 Π∗T ,H← FINDTEMPORALPLAN(DTC,PTC,U, tinitial)
4 if CheckExistence(Π∗T) then
5 while ΠT 6= Π∗T do
6 ΠT ,H← Update(Π∗T ,H)
7 b,Q← BUILDBRANCH(DTC,U,ΠT ,H)
8 root← EXPANDTREE(DTC,PTC,b,H,U,Q)
9 return ΠTC← root

10 else
11 return FAILURE

before the action denoted by v(y). Physical actions are deterministic; therefore a vertex v(a) has at most
a single edge. Sensing actions are nondeterministic; therefore, a vertex v(δ), associated with the sensing
action δ , is characterised by at least two possible outgoing edges. In this case, the number of edges
depends on the possible δ outcomes.

Algorithm 1 shows the TraCE planning approach, which returns a time-knowledge-aware plan ΠTC.
TraCE is a PDDL planner that aims to support the PDDL extensions modelling the TCP problem in full.
The required inputs to the TraCE solver are the domain DTC, including physical and sensing actions; the
TCP problem PTC, which defines the initial state; and U , which includes the incomplete information and
observational effects. U incorporates the incomplete information in the :unknown-literals’s body and
the observational effects in the :knowledge-updates’s body; while the sensing actions in DTC include
the extension for sensing outcomes. The branches in ΠTC are time-aware plan solutions (ΠT) that solve
a temporal planning problem PT under different sets of contingent outcomes arising from domain incom-
pleteness and durative sensing actions. For instance, the solution for Example 1 shows the branches of a
ΠTC. Top and bottom branches represent two different time-aware plans considering the sensing action
sense-valve outcomes define the valves (v1 and v2) are (both) closed and open, respectively.

The strategy starts by initialising an empty temporal plan solution ΠT (line 2), which preserves
the temporal plan associated with a particular branch. Then, the approach finds an ordinary (initial)
deterministic temporal plan Π∗T (line 3) for the problem that represents the largest temporal plan solution.
In this work, the plan size is defined as the total number of actions in a plan (that describe each branch).
Therefore, the largest plan is the solution with more actions. For instance, in Example 1, the largest
deterministic temporal plan is represented by the bottom branch. FINDTEMPORALPLAN computes the
largest plan and returns it in Π∗T . In our approach, the initial temporal plan Π∗T can be updated in parallel
to the ΠTC search (line 4-9).

The history set H for the temporal plan denotes the state s[i] at which ΠT [i] or Π∗T [i] is executed,
and the time t[i] at which i starts and concludes, where H[i] = 〈s[i], t[i]〉 and ΠT [i] or Π∗T [i] defines the
ith plan’s action in ΠT or Π∗T . H[i+1] describes the possible states reached after an execution of ΠT [i]
or Π∗T [i]. Then, if Π∗T exists (line 4), TraCE checks if ΠT 6= Π∗T (line 5). Notice that the condition
ΠT 6= Π∗T allows the strategy to update the initial temporally-contingent plan solution if after generating
a plan ΠTC, Π∗T differs from the first ΠT as a result Π∗T was optimised. If the strategy finds discrepancies
between ΠT and Π∗T , the first is updated with the plan in Π∗T (line 6). Then, the strategy builds a branch b
using the BUILDBRANCH method (see Algorithm 2) and expands the tree for a set of “tasks” describing

44 Temporal Planning with Incomplete Knowledge and Perceptual Information

the sensing actions in b to obtain root (line 7-8) using the EXPANDTREE method (see Algorithm 3). The
variable root (identified by first action in the plan) describes ΠTC, and Q defines a queue of tasks 〈n,u〉,
where n ∈ N is a sensing node (representing a sensing action) and u is a possible outcome of the sensing
action, where u ∈U . Each q ∈ Q introduces different subsets of initial conditions based on the sensing
action outcomes that leads to a new temporal planning problem PT . After the tree expansion, the ΠTC is
returned (line 9). If Π∗T is not found the planner fails to find a solution for PTC (line 10-11).

The FINDTEMPORALPLAN method computes temporal plans using the OPTIC [2] planner. TraCE
branch generation considers temporal–numeric planning within a forward state space search framework.
FINDTEMPORALPLAN does not consider changes in the temporal planning search regarding the OPTIC
approach. Instead, the strategy provides the right conditional and time constraint inputs to the propo-
sitional planning techniques and the sub-solver used to schedule the action sequence to generate the
required time-aware plan. The algorithm finds the plan with the largest size by iterating over the initial
state, considering the combinations of incomplete information and observational effects. We solve the
plan length check by including into the problem initial state the set of observational effects that defines
the unknown literals in U to be false (S−o). Considering this information in the initial state we obtain
a plan solution Π

−
T . Then, the plan Π

−
T is stored (if it exists). A similar procedure is repeated con-

sidering all sensing outcomes associated with the unknown literals are true (S+o) and we achieve a plan
solution Π

+
T for this initial state. The approach compares the two plan solutions (Π−T and Π

+
T) and its

saves the largest plan in Π∗T . The planning problems that we consider include temporal and numeric
constraints that force actions in some order in the plan solution. This justifies our decision to start the
branch generation using the largest plan as this solution satisfies the problem with the most considerable
set of temporal and numeric restrictions. Temporal planners attempt to improve the initial plan solution,
usually considering as a metric the makespan minimisation.

The FINDTEMPORALPLAN method returns the plan’s history H. The second component of the H is
the time t[i] associated with the action execution. The core of the temporal planning solver implements
the scheduling of the plan’s actions considering STNs and LP methods. We refer to these strategies as a
temporal solver (TS). The TS represents the temporal constraints between the set of time points where
actions start or end. Therefore, we can describe the occurrence of an action i in the TS reasoning as the
time point when the action starts i` and ia when the action ends. This information is saved in t[i] = [i`, ia].
The FINDTEMPORALPLAN strategy extends the scheduling analysis by controlling the tinitial value. The
tinitial is introduced as an input to the approach (see line 3 in Algorithm 1). For the first temporal plan
Π∗T , tinitial is considered 0. However, this modification gains importance when expanding the tree based
on the sensing vertices. In these cases, the time the sensing action concludes is defined as the tinitial for a
new branch in the tree associated with a different outgoing edge from the sensing vertex. We put this into
context when describing the remaining parts of the algorithm. The TS encodes a TIL by adding a time
point t(p) for the occurrence of TIL p, with the temporal constraint t(p)− tinitial = timeT IL(p), where
timeT IL(p) is the time at which p occurs. The TILs describe other time points that need to be ordered by
the TS approach when scheduling the plan’s actions.

The BUILDBRANCH method in Algorithm 2 describes the branch generation, which starts with the
first action in ΠT . The strategy initialises Q (line 2) and creates the first branch over the ΠT ’s size (line
3). The branch creation relies upon the definition of all nodes in ΠT (vertices) and their connections
(edges). For each action ΠT [i] in the plan the algorithm initialises a node n (line 4) that includes a set
of definition parameters: (i) n.name. is the name of the action describing the node; (ii) n.s-action.
Boolean variable to define if the node represents a sensing action; (iii) n.parent. is the node n parent;
and n.depth. number of edges from the root node to n.name. The strategy takes the information that
the FINDTEMPORALPLAN method saves in the history H (state and time) to define another two node’s

Y. Carreno, Y. Petillot, R. Petrick 45

parameters (line 5): (iv) n.state. defines the state at which the action in n.name is executed; and (v)
n.time. defines the time at which the node (action) starts and concludes. If the plan size is 0 (line
6-7), the branch b contains precisely the node n, which contains the set of parameters initialised. On
the contrary, the TraCE creates an outgoing edge from node n to another new node child that denotes
the next action (line 8-9). Then, the method defines the state and time1 parameters for the child (line
10). TraCE appends the node n children in the node parameter (line 11). n.children defines the set of
n.name(s) (actions) associated with a n.name. If the action to label is a sensing action (line 12), TraCE
maps the edge from node n to child child with the relevant outcome of the sensing action, obtained from
the history H of ΠT and U (line 13-14). This labelling is stored in the last node n definition parameter:
n.edge-map. is the label of the outgoing edge from the node to its child, where n is a sensing node.

The node n, describing a sensing action in ∆, and the possible outcomes defined in U for the action
that does not label any outgoing edge from n, describes a new temporally-contingent planning task with
an initial state Ii obtained from H[i]. The planner stores the sensing nodes and their possible outcomes
(〈n,u〉) obtained when building the branch b in Q (line 15-16) The algorithms returns b and an updated
Q (line 17). The n.depth definition parameter helps to organise the tasks in the queue Q to implement the
expansion.

Algorithm 2: BUILDBRANCH

Input: 〈DTC,U,ΠT ,H〉
Output: 〈b,Q〉

1 begin
2 Q← /0
3 for i = 0, · · · ,size(ΠT)−1 do
4 n←CreateNode(ΠT [i])
5 n.state, n.time = H[i]
6 if i == 0 then
7 b == n

8 if i 6= size(ΠT)−1 then
9 child←CreateNode(ΠT [i+1])

10 child.state, child.time = H[i+1]
11 n.children

←AppendChildToNode(child)

12 if n.s-action then
13 U∆←ObtainCurrentOutcome(H[i]∩

UΠT [i])
14 n.edge-map(child) = u
15 for u =U∆�{u∆} do
16 Q← AddToQueue(Q,〈n,u〉)

17 return b,Q

Algorithm 3: EXPANDTREE

Input: 〈DTC,PTC,b,H,U,Q〉
Output: root

1 begin
2 while not Q← /0 do
3 for 〈ni,ui〉 ← ExtractFromQueue(Q) do
4 I = ni.state
5 I

′′ ←ModifyInitialState(I,ui)
6 P

′′

TC← update.PTC(I
′′
)

7 ΠT ,H← FINDTEMPO-
RALPLAN(DTC,P

′′

TC,U,ni.time)
8 if CheckExistence(ΠT) then
9 branch_child,Q

′′ ← BUILD-
BRANCH(DTC,U,ΠT ,H)

10 branch_child.edge-map = ui
11 ni.children←

AddToTree(branch_child)
12 Q←update.Q(Q

′′
)

13 else
14 root← /0
15 return BREAK

16 return root

The EXPANDTREE method in Algorithm 3 evaluates the task set Q sequentially considering the order
imposed by the depth to compute the tree expansion (line 2-3). For each q ∈ Q, the approach defines the
initial state I using the node information (line 4) and modifies I according to the outcome ui (line 5). PTC

is updated with I
′′

(line 6). Then, TraCE triggers the temporal planning search (line 7), which finds the
largest plan solution considering the current initial state I

′′
. Here, the branch is not the first; therefore

tstart is not 0. The FINDTEMPORALPLAN method finds sequences of actions that satisfy the propositional

1At this stage t[i+1] for an action i includes initial time of the next action which is i` + ε .

46 Temporal Planning with Incomplete Knowledge and Perceptual Information

preconditions considering the (new) initial state information. Then, the planning approach uses the TS
method to schedule the action sequence considering the starting time for the new plan is tstart = ni.time.
H saves the right time information regarding each action in the temporal plan ΠT . Supposing ΠT exists
(line 8), the method creates a new branch branch_child of the tree (new child) and finds the task queue
Q associated with the branch (line 9) using Algorithm 2. The branch is mapped (line 10) by labelling the
outgoing edges from the node to its child, considering ui information. The node children are then added
to the tree (line 11). The strategy updates the task queue Q to compute further branches considering
the new sensing nodes identified in the branch_child (line 12). If the approach does not find a plan the
EXPANDTREE returns an empty plan in root (line 13-15).

We implement the tree expansion sequentially and all branches expanded must return a solvable tem-
poral plan. The algorithm returns a root (line 16) when all branches are fully expanded. This occurs when
the Q set is empty and all possible branches are created. The root builds over the set of nodes explored
during the tree generation. The node labelling and depth information are fundamental to obtaining the
transition tree. Saving the times at which sensing actions are executed allows the strategy to maintain the
action scheduling in all branches. The TraCE planner iterates the solution by considering possible up-
dates in the initial deterministic plan solution. If the algorithm identifies an update in the Π∗T at the time
the ΠTC is achieved, the planner starts the process again. In this case, TraCE starts finding a new root
based on a new initial temporal plan solution. Notice that if an updated Π∗T exist, the process starts again
independently on the plan in root. Therefore, if the last root was empty, it does not affect the search for
a new plan. For one planning iteration, if the computed plan presents a branching factor µ and its depth
(maximum) is η , the tree describing ΠTC has at most µη leaves, where the leaves are physical vertices.
Therefore, the TraCE planner calls the temporal planning algorithm at most µη when finding a solution.
TraCE provides a generic solution. The planner solves problems with temporal, numeric and perception
requirements. However, it can also solve problems with fully-known initial states as a common temporal
planning problem. Soundness and completeness results for our approach are presented in Appendix A.

5 Experimental Evaluation

Our domain and problems are encoded in PDDL. All experiments in this section are run on Ubuntu 16.04,
with an Intel Core i7-8700, limiting the planner to 30 minutes of CPU@3.2GHz, 16GB of RAM. We
illustrate the TraCE planner performance in three experiments that cover offline planning and execution:
Experiment 1. This experiment compares the planner with a state-of-art offline conditional planner PO-
RPR, to evaluate the efficiency of the proposed approach generating solutions for a set of simple PPOS
domains2, including Coloured Balls (cballs), Canadian Traveller’s Problem (ctp-ch), and Doors (doors).
These domains are described in [34]. TraCE uses a revised version of the domains considering durative
actions; numeric constraints are not included.
Real-World Domains. Experiment 2-3 considers planning domains motivated by real-world domains3,
particularly robotics applications, including the Offshore Energy Platform (oep), Manufacturing Plant
(mp), Valve Manipulation (vm) and the Neighbourhoods (n) domains. All these domains describe
robotics problems where temporal requirements (e.g., TILs and deadlines), numeric constraints, and
partial observability are part of the mission characteristics.
Experiment 2. Here, we evaluate the quality of the planning algorithm while generating plans for real-
world domains. The problems introduce a set of robotic scenarios where robots need to implement tasks

2The original problems and PO-PRP source are presented in https://github.com/QuMuLab/planner-for-relevant-policies.git
3These domains and problems can be found at https://github.com/YanielCarreno/tcp-domains.

https://github.com/QuMuLab/planner-for-relevant-policies.git
 https://github.com/YanielCarreno/tcp-domains

Y. Carreno, Y. Petillot, R. Petrick 47

Size (∆+A) PT

Problem PO-PRP TraCE PO-PRP TraCE

cballs-4-1 261 232 0.02 3.45
cballs-4-2 13887 TO 0.67 TO
cballs-10-1 4170 TO 1.57 TO

ctp-ch-1 4 6 0.00 2.01
ctp-ch-5 16 16 0.00 7.05

ctp-ch-10 31 35 0.02 7.10
ctp-ch-15 46 42 0.07 8.24
doors-5 82 96 0.01 3.00
doors-7 1295 2291 0.04 16.90
doors-9 28442 TO 1.07 TO

Table 1: Experiment 1: Plan size and
planning time (PT) (sec) for PO-PRP
and TraCE when solving 10 simple
PPOS problem instances. TO indicates
time out.

oep mp vm bc

Problem BF Size PT BF Size PT BF Size PT BF Size PT

1 4 85 41.50 2 78 32.30 2 44 13.40 2 42 9.05
2 3 77 22.15 3 57 47.50 2 64 28.12 2 156 28.63
3 2 66 27.23 2 108 32.52 2 67 21.23 2 108 33.42
4 2 81 32.03 4 72 42.29 2 95 19.92 2 88 14.81
5 2 102 35.50 3 340 69.43 2 145 12.24 2 234 44.70
6 3 90 39.34 4 75 52.18 2 132 14.14 2 69 8.44
7 3 123 53.20 3 72 50.90 2 80 17.15 2 62 6.13
8 4 116 66.23 3 110 84.32 2 109 27.08 2 92 19.13
9 5 TO TO 4 145 54.91 2 56 18.83 2 134 21.12

10 6 TO TO 5 TO TO 2 134 96.90 2 287 48.32

Table 2: Experiment 2: Branching factor (BF), plan size
(Size), and planning time (sec) (PT), including physical and
sensing actions, for 10 problem instances of the real-world
robotic application domains using TraCE. TO indicates time
out.

with temporal and numeric constraints to maintain the operation, and sensing actions are required to
solve the planing problem.
Experiment 3. We evaluate the system’s performance in a laboratory environment using a BlueROV2.
The experiment analyses the mission execution time associated with plans that include non-deterministic
sensing actions. Here the problem goals include the manipulation of five valves, sensors need to check
the valves’ state before executing the manipulation. We compare TraCE and OPTIC plan execution. The
execution framework embedding both planners support replanning during the mission. The experiment
evaluates ten different problems where we introduce five forced failures during the mission, associated
with the valve state and valve localisation.

6 Discussion

The results for Experiment 1 are presented in Table 1. The TraCE planner finds a solution for most
problem instances solved by PO-PRP in the experimental domains. The planner obtains plans with sizes
similar to PO-PRP’s plan sizes in several problems (highlighted in red). However, PO-PRP outperforms
TraCE in terms of planning times. TraCE sequentially expands the tree, introducing a delay in plan
generation. In addition, the TraCE planner uses temporal solvers to create the branches and expand
the tree, which affects the planning times. Temporal planners must meet the causality and temporality
constraints imposed by the model to obtain a valid plan. Therefore, additional time delays using TraCE
compared to PO-PRP might be expected, as the PO-PRP planner does not consider the time to schedule
the action sequence when finding a plan solution. We introduce time reasoning to address another set of
problems that PO-PRP cannot solve. Here, we present the results for the first ΠTC obtained. Additional
iterations optimise the plan solution by reducing the plan size; however, this introduces additional delays
in the plan generation.

Table 2 shows that TraCE solves most of the problem instances. The planner generates solutions with
different branching factors, demonstrating that TraCE deals with complex problems and scales well. As
expected, we note that the size of the plans and the planning times rise with the increase in the number
of sensing actions required in the plan to reduce the knowledge incompleteness. The oep and mp domain

48 Temporal Planning with Incomplete Knowledge and Perceptual Information

Figure 3: Experiment 3: Plan execution time (min) in 10 problem instances of the Example 1 domain
over 10 runs using TraCE and OPTIC.

incompleteness leads to more significant branching factors and planning times as the robots can explore
multiple paths (for the oep domain) and control several flows in a valve (for the mp domain). TraCE
planning times for the problem instances of the oep and mp domains are significantly higher compared
to the other two domains. These domains require the robots to find plans that deal with concurrent action
execution and numeric constraints along the branches which also affects planning times. The planner
finds solutions for all problem instances of the vm and bc domains. Although those domains present
small branching factors, planning times increase for complex problems (see problems 9 and 10). The
main reason for this increase is that TraCE needs to find a solution for problems where the robot needs
to recharge to maintain operation.

Figure 3 shows that the generation of contingent branches during the planning stage significantly
improves mission implementation times. This is mainly because OPTIC needs to replan every time a
discrepancy between the real value from the sensor (run-time) and the expected outcome (planning time)
is found. Replanning introduces unnecessary delays in the mission, mainly when we can use alternative
algorithms that deal with certain levels of uncertainty in the domain. Our approach reduces replanning in
non-quiescent environments since TraCE introduces the contingency analysis that specifies the possible
outcomes from the observation. ΠTC can be affected by noisy sensors, which might force the system to
generate a new plan if the sensing action does not provide a conclusive outcome.

7 Conclusions

We present the TraCE planner, which deals with incomplete knowledge, sensing, temporal notions, and
numeric constraints. Our approach combines temporal plan construction in a contingent planning frame-
work, offering more robust solutions for new types of applications. We can model problems that (i)
require temporal reasoning, such as timed initial literals and deadlines; (ii) manage resources, using
numerical fluents, offering more powerful modelling of mission scenarios; and (iii) and include par-
tial observability. We propose a PDDL extension to model sensing actions that operate over unknown
propositions, and possible outcomes from non-deterministic sensing actions. We evaluate the approach
in experiments that cover offline planning and execution in a new set of domains.

Y. Carreno, Y. Petillot, R. Petrick 49

References

[1] Alexandre Albore, Hector Palacios & Hector Geffner (2009): A translation-based approach to contingent
planning. In: Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), AAAI Press, pp.
1623–1628.

[2] J Benton, Amanda Jane Coles & Andrew Coles (2012): Temporal Planning with Preferences and Time-
Dependent Continuous Costs. In: Proc. of the International Conference on Automated Planning and Schedul-
ing (ICAPS), AAAI Press, pp. 2–10.

[3] Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri & Paolo Traverso (2001): Planning in nondetermin-
istic domains under partial observability via symbolic model checking. In: Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI), 2001, AAAI Press, pp. 473–478.

[4] Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri & Paolo Traverso (2006): Strong planning under
partial observability. Artificial Intelligence 170(4-5), pp. 337–384, doi:10.1016/j.artint.2006.01.004.

[5] Blai Bonet & Hector Geffner (2011): Planning under partial observability by classical replanning: Theory
and experiments. In: Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), AAAI
Press.

[6] Daniel Bryce, Subbarao Kambhampati & David E Smith (2006): Planning graph heuristics for belief space
search. Journal of Artificial Intelligence Research (JAIR) 26, pp. 35–99, doi:10.1613/jair.1869.

[7] Alberto Camacho, Christian J Muise & Sheila A McIlraith (2016): From FOND to Robust Probabilistic
Planning: Computing Compact Policies that Bypass Avoidable Deadends. In: Proc. of the International
Conference on Automated Planning and Scheduling (ICAPS), AAAI Press, pp. 65–69.

[8] Y. Carreno, A. Ng Jun Hao, Y. Petillot & R. P. A Petrick (2022): Planning, Execution, and Adaptation for
Multi-Robot Systems using Probabilistic and Temporal Planning. In: Proc. of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), IFAAMAS, pp. 217–225.

[9] Y. Carreno, È. Pairet, Y. Petillot & R. P. A Petrick (2020): Task allocation strategy for heterogeneous robot
teams in offshore missions. In: Proc. of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), IFAAMAS, pp. 222–230.

[10] Y. Carreno, Y. Petillot & R. P. A. Petrick (2020): Towards Robust Mission Execution via Temporal and
Contingent Planning. In: Proc. of the Annual Conference Towards Autonomous Robotic Systems (TAROS),
Springer, pp. 214–217, doi:10.1007/978-3-030-63486-5_24.

[11] Y. Carreno, Y. Petillot & R. P. A Petrick (2021): Compiling Contingent Planning into Temporal Planning for
Robust AUV Deployments. In: Proc. of the International Conference on Automated Planning and Scheduling
(ICAPS) Workshop on Planning and Robotics (PlanRob).

[12] Y. Carreno, J. Scharff Willners, Y. Petillot & R. P. A Petrick (2021): Situation-Aware Task Planning for Ro-
bust AUV Exploration in Extreme Environments. In: Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI) Workshop on Robust and Reliable Autonomy in the Wild (R2AW).

[13] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni & Bram Ridder (2017): Opportunistic
planning in autonomous underwater missions. IEEE Transactions on Automation Science and Engineering
15(2), pp. 519–530, doi:10.1109/TASE.2016.2636662.

[14] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli & Marco Roveri (2014): Using timed game automata
to synthesize execution strategies for simple temporal networks with uncertainty. In: Proc. of the AAAI
Conference on Artificial Intelligence, 28.

[15] Amanda Jane Coles (2012): Opportunistic Branched Plans to Maximise Utility in the Presence of Resource
Uncertainty. In: Proc. of the European Conference on Artificial Intelligence (ECAI), 2012, p. 252.

[16] Amanda Jane Coles, Andrew Coles, Maria Fox & Derek Long (2010): Forward-Chaining Partial-Order
Planning. In: Proc. of the International Conference on Automated Planning and Scheduling (ICAPS), AAAI
Press, pp. 42–49.

https://doi.org/10.1016/j.artint.2006.01.004
https://doi.org/10.1613/jair.1869
https://doi.org/10.1007/978-3-030-63486-5_24
https://doi.org/10.1109/TASE.2016.2636662

50 Temporal Planning with Incomplete Knowledge and Perceptual Information

[17] Carlo Combi, Luke Hunsberger & Roberto Posenato (2013): An algorithm for checking the dynamic control-
lability of a conditional simple temporal network with uncertainty. Evaluation 1(1).

[18] Carlo Combi, Roberto Posenato, Luca Viganò & Matteo Zavatteri (2019): Conditional simple temporal
networks with uncertainty and resources. Journal of Artificial Intelligence Research (JAIR) 64, pp. 931–985.

[19] Stephen Cresswell & Alexandra Coddington (2003): Planning with timed literals and deadlines. In: Proc. of
Workshop of the UK PlanSIG, pp. 23–35.

[20] Patrick Eyerich, Robert Mattmüller & Gabriele Röger (2009): Using the context-enhanced additive heuristic
for temporal and numeric planning. In: Proc. of the International Conference on Automated Planning and
Scheduling (ICAPS), AAAI Press, pp. 130–137.

[21] Janae N Foss & Nilufer Onder (2005): Generating temporally contingent plans. In: Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI) Workshop on Planning and Learning in A Priori Unknown
or Dynamic Domains.

[22] Maria Fox & Derek Long (2003): PDDL2.1: An extension to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research (JAIR) 20, pp. 61–124, doi:10.1613/jair.1129.

[23] Hector Geffner & Blai Bonet (2013): A concise introduction to models and methods for auto-
mated planning. Synthesis Lectures on Artificial Intelligence and Machine Learning 8(1), pp. 1–141,
doi:10.2200/S00513ED1V01Y201306AIM022.

[24] Malik Ghallab, Dana Nau & Paolo Traverso (2004): Automated Planning: theory and practice. Elsevier.

[25] Muhammad Adnan Hashmi & Amal El Fallah Seghrouchni (2010): Merging of temporal plans supported by
plan repairing. In: Proc. of the IEEE International Conference on Tools with Artificial Intelligence (ICTAI),
2, IEEE, pp. 87–94.

[26] Malte Helmert (2009): Concise finite-domain representations for PDDL planning tasks. Artificial Intelli-
gence 173(5-6), pp. 503–535, doi:10.1016/j.artint.2008.10.013.

[27] Karla L Hoffman, Manfred Padberg & Giovanni Rinaldi (2013): Traveling salesman problem. In: Encyclo-
pedia of operations research and management science, Springer, pp. 1573–1578, doi:10.1007/978-1-4419-
1153-7_1068.

[28] Jörg Hoffmann (2003): The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric
State Variables. Journal of Artificial Intelligence Research (JAIR) 20, pp. 291–341, doi:10.1613/jair.1144.

[29] Jörg Hoffmann & Ronen Brafman (2005): Contingent planning via heuristic forward search with implicit
belief states. In: Proc. of the International Conference on Automated Planning and Scheduling (ICAPS),
AAAI Press, pp. 71–80.

[30] L. Kunze, N. Hawes, T. Duckett, M. Hanheide & T Krajník (2018): Artificial intelligence for long-
term robot autonomy: A survey. IEEE Robotics and Automation Letters (RA-L) 3(4), pp. 4023–4030,
doi:10.1109/LRA.2018.2860628.

[31] Derek Long & Maria Fox (2003): The 3rd international planning competition: Results and analysis. Journal
of Artificial Intelligence Research (JAIR) 20, pp. 1–59, doi:10.1613/jair.1240.

[32] Derek Long & Maria Fox (2003): Exploiting a graphplan framework in temporal planning. In: Proc. of the
International Conference on Automated Planning and Scheduling (ICAPS), AAAI Press, pp. 51–62.

[33] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel
Weld & David Wilkins (1998): PDDL – The Planning Domain Definition Language (Version 1.2). Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.

[34] Christian Muise, Vaishak Belle & Sheila McIlraith (2014): Computing contingent plans via fully observable
non-deterministic planning. In: Proc. of the AAAI Conference on Artificial Intelligence, 28.

[35] Christian Muise, Sheila McIlraith & Christopher Beck (2012): Improved non-deterministic planning by ex-
ploiting state relevance. In: Proc. of the International Conference on Automated Planning and Scheduling
(ICAPS), AAAI Press, pp. 172–180.

https://doi.org/10.1613/jair.1129
https://doi.org/10.2200/S00513ED1V01Y201306AIM022
https://doi.org/10.1016/j.artint.2008.10.013
https://doi.org/10.1007/978-1-4419-1153-7_1068
https://doi.org/10.1007/978-1-4419-1153-7_1068
https://doi.org/10.1613/jair.1144
https://doi.org/10.1109/LRA.2018.2860628
https://doi.org/10.1613/jair.1240

Y. Carreno, Y. Petillot, R. Petrick 51

[36] Ahmed Nouman, Volkan Patoglu & Esra Erdem (2021): Hybrid conditional planning for
robotic applications. The International Journal of Robotics Research 40(2-3), pp. 594–623,
doi:10.1177/0278364920963783.

[37] Héctor Palacios, Alexandre Albore & Hector Geffner (2014): Compiling contingent planning into classical
planning: New translations and results. In: Proc. of the International Conference on Automated Planning
and Scheduling (ICAPS) Workshop on Models and Paradigms for Planning under Uncertainty, AAAI Press.

[38] Mark A Peot & David E Smith (1992): Conditional nonlinear planning. In: AIPS, Elsevier, pp. 189–197.
[39] Ronald P. A. Petrick & Fahiem Bacchus (2002): A Knowledge-Based Approach to Planning with Incom-

plete Information and Sensing. In: Proc. of the International Conference on Artificial Intelligence Planning
Systems (AIPS), pp. 212–222.

[40] Ronald P. A. Petrick & Fahiem Bacchus (2004): Extending the Knowledge-Based Approach to Planning with
Incomplete Information and Sensing. In: Proc. of the International Conference on Automated Planning and
Scheduling (ICAPS), AAAI Press, pp. 2–11.

[41] Son Thanh To, Tran Cao Son & Enrico Pontelli (2011): Contingent planning as AND/OR forward search with
disjunctive representation. In: Proc. of the International Conference on Automated Planning and Scheduling
(ICAPS), AAAI Press, pp. 258–265.

[42] Ioannis Tsamardinos, Thierry Vidal & Martha E Pollack (2003): CTP: A new constraint-based formalism for
conditional, temporal planning. Constraints 8(4), pp. 365–388, doi:10.1023/A:1025894003623.

[43] Daniel S Weld, Corin R Anderson & David E Smith (1998): Extending graphplan to handle uncertainty &
sensing actions. In: Proc. of the AAAI Conference on Artificial Intelligence, pp. 897–904.

[44] Ibrahim Faruk Yalciner, Ahmed Nouman, Volkan Patoglu & Esra Erdem (2017): Hybrid conditional plan-
ning using answer set programming. Theory and Practice of Logic Programming 17(5-6), pp. 1027–1047,
doi:10.1017/S1471068417000321.

[45] Matteo Zavatteri & Luca Viganò (2019): Conditional simple temporal networks with uncertainty and deci-
sions. Theoretical Computer Science 797, pp. 77–101, doi:10.1016/j.tcs.2018.09.023.

https://doi.org/10.1177/0278364920963783
https://doi.org/10.1023/A:1025894003623
https://doi.org/10.1017/S1471068417000321
https://doi.org/10.1016/j.tcs.2018.09.023

52 Temporal Planning with Incomplete Knowledge and Perceptual Information

A Soundness and Completeness

Temporal planning requires meeting the causality and scheduling constraints imposed by a temporal
planning problem while looking for a sequence of actions that reaches the goal state. To achieve a
valid plan, temporal planners must consider the action duration constraints along an unbounded length
timeline. The TraCE planner includes the temporal planning algorithm FINDTEMPORALPLAN, which
inherits the soundness and completeness of OPTIC and its predecessor POPF. The TraCE planner relies
on constructing a transition tree where individual branches denote deterministic temporal plan solutions.
This solution involves solving temporal planning problems with different initial states and merging them
into a tree. Possible outcomes of nondeterministic sensing actions describe the initial states. Then, for a
temporal plan solution:

Definition 9. A temporal plan is sound (with respect to a given domain and problem) if action precondi-
tions are satisfied in their respective states, temporal constraints are met, and the final action produces
a state where the goals are satisfied.

Definition 10. A temporal planner (or temporal planning algorithm) is defined as sound if every tempo-
ral plan that the planner generates (with respect to a given domain and problem) is a sound plan.

Definition 11. A planner is complete if for every planning domain/problem that has a solution, the
planner is guaranteed to produce a plan.

The FINDTEMPORALPLAN temporal planning approach reasons about the state representation. The
state considers: (i) the ordered list of start events (actions that have started but not yet finished) and the
collection of temporal constraints over the actions in the plan to reach the current world state. These two
state description components are defined over the sets P and V that hold in the world and support the
planning approach’s soundness.

We can explore the soundness and completeness of the TraCE planner considering it builds on the
temporal plan solutions generated by the sound and complete method FINDTEMPORALPLAN. The tem-
poral planning approach uses the domain actions to find a valid plan—a plan obtained by a sound a
complete planner—that reaches the goal state. We assume the PDDL actions in the domain description
do not present delayed effects. This means that action effects in the next state are defined in terms of the
current state of the world. Following these points, the TraCE planner soundness is defined as follows:

Lemma 1. (Soundness). TraCE is a sound planner if every branch of the tree from the root to a leaf
constructed incrementally is a valid temporal plan of physical and sensing actions.

Proof. Let Π′T = 〈a0,a1, · · · ,an〉 be a temporal plan that solves the temporal planning problem PT , where
an action ai is a physical or a sensing action (0 ≤ i < n) and the last action an in the plan is a physical
action. This plan is valid considering Definition 10 and Definition 11. Let H ′ = 〈〈S0, t0〉,a0,〈S1, t1〉,
a1, · · · ,〈Sn, tn〉,an,〈Sn+1, tn+1〉〉 describe the history of Π′T , where every action ai is executed at a belief
state Si at a time ti and reaches a belief state Si+1 at a time ti+1 (0≤ i < n). Sn+1 represents the last belief
state that is the goal state considering the problem PT definition.

For every sensing action a j in Π′T (0 ≤ j < n) with an outcome u j observed at 〈S j+1, t j+1〉, TraCE
constructs a task 〈n j,u j〉 and introduces it into the queue of tasks Q. Let Π′′T = 〈a j = a′0,a

′
1, · · · ,a′n′〉 a

temporal plan with an history H ′′= 〈〈S j, t j〉= 〈S′0, t ′0〉,a′0,〈S′1, t ′1〉,a′1, · · · ,〈S′n′ , t ′n′〉, a′n′ ,〈S′n′+1, t
′
n′+1〉〉 com-

puted for the planning problem characterised by this task. This plan is valid considering Definition 10
and Definition 11. Then, considering we are solving temporal planning problems with actions that do not
present delayed effects, the sequence of actions 〈a0,a1, · · · ,a j,a′1, · · · ,a′n′〉 is a valid sequential plan com-
puted for a temporal planning problem PT , with history 〈〈S0, t0〉,a0,〈S1, t1〉,a1, · · · ,〈S j, t j〉,a j,〈S′1, t ′1〉,

Y. Carreno, Y. Petillot, R. Petrick 53

a′1, · · · ,〈S′n′ , t ′n′〉,a′n′ ,〈S′n′+1, t
′
n′+1〉〉. The first part of the plan, 〈a0,a1, · · ·a j〉, does not prevent the last part

of the plan, 〈a′1, · · ·a′n′〉, and vice versa, considering Π′T and Π′′T are sound and complete their union is
sound and complete.

We consider that all contingencies describing the incomplete knowledge in the initial state are spec-
ified in U . The TraCE planner uses this information to construct a tree with temporal branches sequen-
tially.

Lemma 2. (Completeness). TraCE is a complete temporally-contingent planner if all known contingen-
cies are specified by its input U, and incrementally constructs a temporal plan PTC, such that the plan
size of each sub-branch b computed by one call of the temporal planning approach is smaller than the
size of the first temporal plan obtained Π∗T .

Proof. We first show that TraCE is complete considering (i) all known contingencies are specified by
U , and (ii) the planner incrementally constructs a temporally contingent plan such that the size of each
sub-branch b, computed by one call of the temporal planning approach is smaller than the size of the
first temporal plan obtained Π∗T . If all contingencies for a sensing action lead to a branch in the tree,
then the tree cannot be extended further. Otherwise, for some sensing action contingency, there is no
branch in the tree. This means that there does not exist a temporal plan whose plan’s size is less than or
equal to Π∗T . Considering every temporal plan computed by FINDTEMPORALPLAN when building the
tree B is connected4, such a branch cannot be reconstructed. If there is not a ΠTC under the conditions
we have mentioned in this proof, TraCE returns a failure. If there does not exist a temporally-contingent
plan under the conditions and TraCE returns B, at least one branch of the tree (excluding Π∗T) from the
root to a leaf is computed by one call of the temporally contingent planner. This leads to a contradiction
when connecting the branches. Therefore TraCE either returns a complete temporally-contingent plan or
failure.

In our approach, we analyse the plan size considering the number of actions in the plan. Other metrics
such as the plan’s makespan are not suitable for analysing the completeness in this case as we can find
branches (described by a deterministic plan solution) with a small number of actions; however, with a
higher makespan cost. For instance, consider Πn

TC denotes the solution for a n robotic planning problem.
The b1 and b2 represent two branches in the plan with plan size 3 and 6, respectively. The branches’
makespans are 40 min and 20 min, respectively. The first plan described by b1 includes a navigation
action with a significant duration. In this case, there is not a necessary correspondence between the two
metrics. In our problems the makespan is ill-situated compare to the plan size in order to analyse the
plan’s branches. Following this reasoning, the plan size metric ensures we expand the tree from the most
complex branches (based on the depth) to the simple ones, ensuring a solution where no further tree
expansions are possible.

Plan Correctness. When planning with temporal and contingent conditions, plan correctness relies on
checking (i) the temporal plans that build the branches are correct, (ii) the temporally-contingent plan
satisfies all the goals, and (iii) the plan has sufficient knowledge at every point that supports its execution.
The step (see Algorithm 1) in the TraCE algorithm CheckExistence satisfies the first criterion considering
FINDTEMPORALPLAN returns a correct plan. The other two conditions are associated with checking the
tree expansion (see Algorithm 3). If all tasks in Q are expanded, all branches were explored. The
solution only exists if the approach successfully evaluates all nodes in the tree, where no nodes precede
its parents and children nodes associated with positive observations come first. If Q is empty the plan
solution contains all the necessary knowledge to execute the sensing actions properly.

4Connection is guaranteed by H and Q.

	1 Introduction and Motivation
	2 Related Work
	3 Problem Formalisation
	3.1 Temporally-Contingent Planning Problem

	4 TraCE Planning
	5 Experimental Evaluation
	6 Discussion
	7 Conclusions
	A Soundness and Completeness

