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To enable robots to achieve high level objectives, engineers typically write scripts that apply exist-
ing specialized skills, such as navigation, object detection and manipulation to achieve these goals.
Writing good scripts is challenging since they must intelligently balance the inherent stochasticity
of a physical robot’s actions and sensors, and the limited information it has. In principle, AI plan-
ning can be used to address this challenge and generate good behavior policies automatically. But
this requires passing three hurdles. First, the AI must understand each skill’s impact on the world.
Second, we must bridge the gap between the more abstract level at which we understand what a skill
does and the low-level state variables used within its code. Third, much integration effort is required
to tie together all components. We describe an approach for integrating robot skills into a working
autonomous robot controller that schedules its skills to achieve a specified task and carries four key
advantages. 1) Our Generative Skill Documentation Language (GSDL) makes code documentation
simpler, compact, and more expressive using ideas from probabilistic programming languages. 2) An
expressive abstraction mapping (AM) bridges the gap between low-level robot code and the abstract
AI planning model. 3) Any properly documented skill can be used by the controller without any
additional programming effort, providing a Plug’n Play experience. 4) A POMDP solver schedules
skill execution while properly balancing partial observability, stochastic behavior, and noisy sensing.

1 Introduction

To build autonomous robots capable of performing interesting tasks, one must integrate multiple capabil-
ities such as navigation, localization, different types of object manipulations, object detection, and more.
Each of these areas attracts much research interest and our ability to program robots that can provide
these capabilities, which we refer to as skills, has progressively improved. Moreover, for many skills,
one can find publicly available software packages that implement them and publicly available algorithms
one can implement independently. However, integrating diverse skills into a working system that can
utilize them in unison to perform a given task is not easy. First, this requires designing and implement-
ing an execution system that can initiate the execution of each skill with the suitable parameters and
adequately process the output of implemented sensing skills. Second, one must provide the logic that
dictates which skills to use and when. A solution must address both the software engineering challenge
and the conceptual issue of generating the execution logic, i.e., the behavior policy.

The latter problem is often solved by manually writing a script. Such pre-programmed scripts (can)
have the advantage of being explainable and predictable. However, writing scripts for robotic agents is
hard because physical agents’ actions are usually probabilistic, and robots may have a partial noisy view
of the world. Moreover, a script usually addresses a specific task only. To build autonomous systems that
can perform diverse tasks in diverse environments, we must constantly supply new scripts or alter existing
ones. For this reason, starting with the very early days of robotics research, automated AI planning was
suggested as a possible solution to the problem of generating a behavior policy [8].
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There is abundant work on the use of planning algorithms in robotics but these are mostly one-
of-a-kind implementations. ROSPlan [5] was one of the first systems attempting to address this issue
by providing architecture and software that supports the integration of a planning engine into a ROS-
based robot architecture [19]. Following ROSPlan, several other systems emerged that seek to make
the integration of planners into robot software easier, such as [17, 21]. However, these systems have
two main weaknesses. First, they offer limited support for robots that operate with partial observability
and use noisy sensors – a basic property of many, if not most, mobile robotic systems. Second, they
only partially address the integration issue discussed earlier, as they still require manual programming of
standard interfaces between the skill’s code and the engine. Moreover, they are often bound to specific
systems, such as ROS. Finally, they rely on formal Action Description Languages (ADLs).

Indeed, most planning algorithms need, as input, an action specifications in a formal language, such
as the Planning Domain Definition Language (PDDL) [9], the POMDP XML format (POMDPX) , etc.
Very few programmers are familiar with these languages and it is difficult to specify stochastic effects
and sensing with them except in very small models5 [24]. Instead, [24] is able to use a relatively simple,
code-based generative model to model the game of Pacman, which has 1056 states. Their approach for
modeling this large, nontrivial domain can be divided into two. 1) Describe the planning domain via a
sampling procedure, or simulator, that is able to sample the next-state, the next-observation, and the next
reward given the current state and action, correctly. A model that specifies how some object is sampled,
possibly dependent on some context parameters (e.g., a state and an action), is often called a generative
model – it shows how the object is “generated“. 2) Use code to describe this sampling procedure. Indeed,
in the past decade or so, it was realized that programming languages could be adapted to serve as means
of specifying complex generative models. This led to the advent of probabilistic programming languages
[4, 10] that, through the use of code, can express complex generation processes and perform inference
on them.

Code-based specification would not have worked with older planning algorithms that require ADL
input. Yet, newer planners based on sampling procedures, such as Partially Observable Monte-Carlo
Planning (POMCP) [24] and Determinized Sparse Partially Observable Tree (DESPOT) [25] directly use
code-based sampling procedures. Code-based specification is typically better for such planners because
it can provide more efficient samplers than ones built from declarative models2.

Among ADLs, the Relational Dynamic Influence Diagram Language (RDDL) [23] is noteworthy
for its ability to compactly specify a generative probabilistic model using a dynamic Bayesian network
model [11]. Yet, it, too, does not have the expressiveness of programming languages, like advanced
control structures (e.g., ‘while‘ loops) or built-in multi-purpose functions (e.g., C++ ‘cmath‘ library or
the ‘string‘ class that provides string manipulation functions).

A final crucial issue that requires attention is the abstraction gap. Action languages typically employ
abstract concepts, such as holding(cup) or at(kitchen) to describe their model, whereas robotic code must
interact with many lower-level variables.

We seek to address existing systems’ limitations and provide programmers’ with a plug’n play ex-
perience as follows: The robot programmers program or import skills’ code of their choice. They doc-
ument their code using the more abstract Generative Skill Documentation Language (GSDL) and use
an expressive Abstraction Mapping (AM) to bridge the gap between low-level robot code and the ab-
stract AI planning model. Next, they need only supply a goal specification for each task and the system
auto-generates all needed integration code and controls the robot online. The system described here1 is
part of the Autonomous Robot Operating System (AOS), a general system we are developing for making

1Our system’s code is available at https://github.com/orhaimwerthaim/AOS-WebAPI/.
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programming of autonomous software from components easy. This paper describes the decision engine
of the system, which we will refer to as the AOS for brevity, despite its more limited scope.

The AOS can deal with partial observability and noisy sensing by using solution algorithms for
partially observable Markov decision processes (POMDPs) and it uses ideas from probabilistic pro-
gramming languages to make model specification easier and more flexible. More specifically, our sys-
tem makes the following contributions. 1. It introduces the Generative Skill Documentation Language
(GSDL), a new code-based action description language that supports stochastic actions and sensing and
partial observability. 2. It introduces a new Abstraction Mapping (AM) format that addresses the model-
code abstraction gap. 3. It leverages the code in the GSDL to automatically generate efficient sampling
code2 for sampling-based POMDP solvers and RL algorithms, but also supports ADL-based solvers. 4.
It utilizes the knowledge in the AM to provide a plug’n play experience in which code for integrating the
planner and the diverse skills is auto-generated by the system, leaving the programmers with the sole task
of describing their code and the task. 5. Although currently demonstrated on ROS [19], the architecture
is general and can be converted for other robot frameworks.

Our empirical evaluation, involving different systems, demonstrates these capabilities, and its mod-
ular specification makes incremental development simple.

2 Background and Related work

We review POMDPs, AI planning architectures for robotics, and robot skills’ documentation languages.

2.1 Partially Observable Markov Decision Process (POMDP)

A discrete-time POMDP models the relationship between an agent and its environment. Formally, a
POMDP is a tuple 〈S,A,T ,R,Ω,O,γ,I〉: S is the state space, A is the action space, T is the state
transition model,R is the reward model, Ω is the observation space,O is the observation model, γ ∈ [0,1]
is the discount factor, and I ∈ B is the initial belief state. A belief state, which is a distribution over S is
required since, in POMDPs the agent may not be fully aware of his current state.

Following each action a ∈ A, the environment transitions from its current state s ∈ S to state s’ with
probability T (s,a,s′). Then, the agent receives an observation o ∈ Ω, with probability O(s′,a,o), and a
reward r =R(a,s′) ∈ R. In the discounted case, we assume that earlier rewards are preferred and use a
predefined discount factor γ to reduce the utility of later rewards. The present value of a future reward
r that will be obtained at time t is hence γ tr. Using standard probabilistic inference, the updated belief
state b′ = Pr(s|a,o,b) can be computed from the model parameters.

A behavior policy for a POMDP, or simply a policy, is a mapping π : B 7→ A from belief states to
actions. The goal of POMDP solvers is to find a policy π∗ that maximize the expected accumulated
discounted reward, i.e., π∗ = max

π
[Eπ [∑

∞
t=1 γ trt .].

POMDPs are a natural model for robots acting in the world because they capture the stochastic
nature of robot’s actions, their noisy and partial sensing, and allow for diverse task specifications using
the reward function.

2 An experiment [28] comparing sampling rates of RDDLSim’s [22] generic code vs. AOS’s domain-specific auto-generated
code showed significant differences in favor of the AOS (452,000 vs. 12,500 samples per second).
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2.2 Planning-Based Deliberative Architectures

Our work relates to deliberative robotic architectures, which follow the sense-plan-act paradigm, specif-
ically those designed for general purpose rather than specific application. In this respect, it includes the
plan, act, observe components discussed by [13]. The influential system that motivated much of our
work is ROSPlan [5]. ROSPlan is a planning and a plan execution architecture for robotics that generates
plans based on a PDDL2.1 [9] (or RDDL [23]) documentation of ROS-implemented skills. It supports a
rich set of planning formalisms: classical, temporal, contingent planning, and probabilistic planning with
some limitations [3]. However, even its probabilistic variant maintains only a single world state that the
user updates during execution, and it requires deterministic sensing. When the inner state is discovered
to be incorrect, the user can invoke replanning. As such, it cannot support full-fledged POMDP planning
and cannot model the effect of sensing actions on the belief state of the agent. Integration with ROSPlan
requires user effort [30], although recent work [2] seeks to reduce it under certain conditions.

The CLIPS Executive (CX) [17] is a flexible robot execution and planning framework with some
innovative ideas. It stores a predefined high-level plan in the form of a goal tree. CX calculates the next
goal to pursue, and a PDDL solver generates a plan for this goal; based on the plan execution result, CX
calculates the next goal and so on. The system preserves an extended model with the information required
to activate robot skills. CX support for non-deterministic skills is limited to replanning. Nevertheless, it
proved its utility in a number of robotics competitions.3

Unlike both systems, our system supports a full-fledged POMDP model and uses an expressive spec-
ification language.

SkiROS [21] is a platform that can auto-generate action descriptions in PDDL based on a predefined
ontology and invokes a solver to schedule the different robot skills. It includes a number of innovative
ideas and a variety of tools. It, too, is based on classical planning with replanning, as opposed to a
POMDP model, and it requires users to work using strict patterns. Thus, code used must adapt to the
architecture, whereas our system seeks to support integration of diverse code from diverse sources.

The system described in [14] and [1] proposes a formal language to specify robot skills with an
expressive descriptive model used for reasoning, and an operational model. It maintains a life cycle for
every robot skill and allows concurrent activation of the same skill. Code auto-generation assists users
in integrating their code, yet users do need to add some code to handle changes in their skill life-cycle.
This system uses a fixed policy described by an automaton or a behavior tree. Users can also use AI
planning with PDDL solvers. Our system does not support concurrent skill activation, but supports the
richer POMDP model and code-based generative model specification. Moreover, it requires no additional
information besides the documentation.

2.3 Skill Models

Architectures that use a planner to control the execution of a set of skills require some form of skill
documentation as input to the planner. This documentation describes the effect of applying this skil-
l/action on the system’s state. ADLs such as STRIPS [8], PDDL [35, 9] and RDDL [23] use formal
syntax to describe the action’s effect. Most relevant to us, RDDL is a language for describing dynamic
Bayesian networks (DBNs) [11] that is used for specifying transition and observation functions in MDPs
and POMDPs. It describes the post-action value of a state variable as a function of the pre-action vari-
ables’ values. Moreover, RDDL allows the definition of intermediate effect variables for expressing more
complex dependent effects. RDDL specs, as well as their classical counterparts, can be understood as

3The platform was used by the winner of RoboCup German Open 2018 and PExC 2018.
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generative model specifications, as they implicitly describe how the post-action distribution is generated
given pre-action values. Writing them, however, has some limitations: a) RDDL syntax is less expres-
sive than programming languages. For example RDDL cannot describe a generative model that samples
from a distribution until a condition is met since it does not support loops; b) probabilistic initial states
are not supported; c) hierarchical generative processes require intermediate variables definition, which
may over-complicate the model. GSDL, on the other end, has the expressive power of C++, which in-
cludes control structures and complex data structure manipulation. GSDL can easily describe real-world
complex domains with probabilistic initial states, extrinsic changes, and action pre-condition. Each is
in a designated area for a clear separation in the generative model. Moreover, it allows users to define
hierarchical generative processes straightforwardly using code without intermediate variables. Notably,
the use of code, beyond making the specification process simpler, makes the sampling process required
by the solver much more efficient2 (the generative model itself is used for sampling). This translates
into faster computation or (given similar time) better decisions. The use of code (we support C++) also
reduces the amount of new syntax a programmer must master to write a specification.

3 System Overview and Concept

There is a long tradition of systems and architectures for autonomous robots based on tightly coupled
components, such as [15, 6, 21] that provide various reasoning and planning services and provide support
for programming skills in a principled manner. Undoubtedly, such systems have shown some impressive
results, yet while they offer various capabilities that can be exploited when writing new code, such code
must conform to the system’s requirements or methodology.

A more common approach with roots in the world of computer programming, is to try to re-use
best-of-breed, (or most-accessible) components, write additional functions/skills, and put them together.
In robotics, we can use, for example, various ROS libraries, recent deep-learning-based object detection
or object manipulation code, together with our own code for other needed skills. Our system, the AOS,
takes this latter approach.

3.1 Concept

The design process we support is the following: The user starts with a set of implemented skills, whether
imported or self-programmed. Each skill is a code module that can be activated and may respond with
a returned value. These skills need to be documented. Code documentation is standard practice, but
we require more formal documentation, consisting of two components, as described below. The GSDL
file describes how the execution of the code impacts the robot’s and the world’s state. The Abstraction
Mapping file (AM) documents the connection between the abstract POMDP model depicted in the GSDL
file and the skill code. The AM describes how to activate the code, how to map abstract parameter values
to code-level parameters, and how to compute the planning model-level observation based on the robot
skill execution output. This provides a clean separation between the abstract system model captured by
the GSDL file and low-level aspects captured by the AM file. An additional global Environment file is
needed to specify the state variables, initial belief state, extrinsic changes, and special states (e.g., goal
states).

At this point, the user sends an HTTP request to the AOS Web API containing the path to their
documented code. The AOS uses the GSDL and Environment files’ code to auto-generate sampling code
that samples in accordance with the model specified in the GSDL fie. The solver is then compiled and
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run. Similarly, a ROS middleware node that communicates with the solver is auto-generated based on
the AM files. The robot and the middleware node are initialized, and an online POMDP solver now
operates the robot, attempting to optimize its behavior. We use POMCP [24], but any other online solver
supporting the required API can be used. The user may query the AOS at any time for the execution
status. We also support the use of an off-line solver, desirable when the model is not too large and
response times must be fast. For this purpose, we use the sampling code to convert the code-based
generative model into a standard POMDP model and use the SARSOP solver [27] to solve it.

The AOS auto-generates code for two purposes: 1) code required to run the POMDP solver that
can sample states and observations using the GSDL files; 2) integration code, i.e., code that enables the
solver to communicate with the skills, activate them, and receive ‘real-world‘ observations using the AM
files. This results in a true plug’n play experience: any executable skill on the robotic platform can be
easily added to the system, provided a GSDL and an associated AM file. Once added, the planning and
execution engine can activate it with no additional effort.

3.2 Skill Documentation

The idea of using a formal description of an action as an input to a control algorithm underlies the area
of AI planning [8, 12], and goes back to the robot Shakey [18]. Below we explain the language we use
and its semantics. We start with the latter, explaining the generative model our documentation specifies,
and then, through an example, we describe the structure of our specification.

3.2.1 Semantics and Structure

Our specification describes a POMDP. Because our specification is code-based, this is not an explicit
POMDP, but rather an enhanced POMDP simulator. Enhanced because it contains information about
the distributions from which state, observations, and rewards are sampled, much like in probabilistic
programming languages. We refer to it as a generative model because it explains how to generate the
next state, observation, and reward from the current state and action.4

Using code, we describe how the initial state is sampled and how the world changes. Changes occur
in discrete steps (i.e., at this point, we ignore the duration of an action, although it can be used within
the code), and can be exogenous or action induced. An action is selected at each time step. Before it is
executed, an exogenous effect may take place. Then, the action is executed leading to a new state that
depends on the state following any exogenous event and the action. Depending on the resulting state and
the action, an observation and a reward are received.

The model specification is divided into multiple files. A global Environment File describes the
POMDP elements unrelated to any specific robot skill: state variable definitions, initial belief state,
the impact and likelihood of exogenous events, and state-dependent rewards. For each skill, a separate
GSDL file documents the impact of that skill: how it generates the next state, observation and reward,
conditioned on the after exogenous effect state. This separation makes for a more manageable and in-
cremental software development process, and makes it easy to export and continuously add documented
skills.

Each file has sections that correspond to the different elements it describes (e.g., initial state, obser-
vation probability, etc.). These sections contain sets of assignments that use C++ code lines. In them,
the modeler can refer to three copies of state variables that can be conditioned on and assigned to: 1) the

4The term generative model comes from the classification literature, while our models are dynamic, but it refers to models
that specify the conditional probability of the observations given a class. That is, how the data collected is generated.



104 Towards Plug’n Play Task-Level Autonomy for Robotics

previous state, 2) the state after extrinsic changes, and 3) the next state. Moreover, there are variables for
met precondition, reward, and observation.

In addition, an AM file is associated with each skill, mapping between the skill’s GSDL documenta-
tion to the skill code.

3.2.2 Documentation Specification Through An Example

To illustrate actual documentation files, we describe part of the specification of a toy problem. For more
complete specification of the documentation format, see [32]. In this problem, a robot with a single
navigation skill must navigate as fast as possible to three known locations but we prefer that it will not
visit the second location before visiting the first one. The robot’s initial location is unknown: it is the first
location with probability 0.5, and otherwise,most likely (80%), it starts at the third location. Moreover,
there is a 5% chance that a person may occasionally move the robot, in which case it loses its orientation.

The navigation skill may fail, causing the robot to lose its orientation. Moreover, after experimenting
with our navigation skill we know that: (1) Navigating the robot to its current location causes it to lose
orientation. (2) It has a 10% chance of losing its orientation while navigating to a different location.
(3) The skill mistakenly reports success in 20% of the cases in which the robot lost its orientation along
the way. (4) When the robot loses orientation or starts navigating without knowing its location, the skill
takes significantly longer to execute.

We describe abbreviated versions of the Environment, Navigation GSDL, and Navigation AM files
for this example. In them, we distinguish between three values of each variable x. Its value before skill
execution is denoted state.x. Its value after any extrinsic event is denoted state .x. And its value after
the skill execution is denoted state .x. State variables will also be referred to as global variables to
distinguish them from local variables.

Environment File Each robot has one Environment file that contains four sections. 1) The list of state
variables (not shown) that comprise a POMDP state s∈ S . These may be primitive (e.g., int, string, bool,
or float) or compound (custom types with sub-variables that are defined in the Environment file) types.
2) A generative model of the initial belief state. Line 9 in Listing 1 describes the uncertainty regarding
the robot’s initial location. 3) A generative model for extrinsic changes, possibly conditioned on the
previous state. For example, a certain constant probability of some malfunction when it is raining. Line
25 in Listing 1 describes the possible effect of a person moving the robot. 4) An objective function as a
set of state conditions and associated rewards. We can see in lines 11-21 in Listing 1 a high reward for
visiting all locations that express our goal and a smaller negative reward to express our preference of not
visiting the second location before visiting the first.

GSDL files A GSDL file is associated with a specific skill code and documents its expected behavior.
It provides a quantitative description of the code’s effects using concepts one would use to describe what
one’s code does in the world. The GSDL file describes two elements of the global generative model:
(1) Calculating the met precondition random variable. Lines 12-19 in Listing 2 express that we don’t
want the robot to navigate to its current location and lose its orientation. (2) The dynamic model, i.e.,
how to sample the next state, action cost (or reward), and observation random variables. Lines 21-34 in
Listing 2 describe it.

Specifically, line 23 indicates that the robot loses orientation when navigating to its location or if
the navigation fails (10% chance), else it reaches its desired location. Line 27 defines the observation’s
generative model (called moduleResponse) to return a Failed observation 80% of the time that the robot
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lost its orientation, expressing noisy sensing. Line 30 updates the reward model so that if the robot
starts navigating without knowing its location, it takes more time, expressed by a negative reward of
minus five; otherwise, a function on the navigation distances expresses the time it takes to navigate.
Finally, line 33 states a fixed large penalty when the navigation ends in losing the orientation. Skills
usually have parameters (e.g., destination of move), whose possible values are currently defined in the
Environment file. For example, in Lines 8-9 in Listing 2 the navigation destination is specified. The AOS
Planning Engine instantiate any parameter with any legal parameter value when activating a skill.

Abstraction Mapping File (AM) The AM file documents the abstract mapping between the robot
code and the GSDL file (POMDP model) and serves as a bridge so the AOS can smoothly control the
robot and reason about its execution outcomes. Each AM file is associated with the code for one skill
and has two main roles that serve to map between code-level parameters and model-level parameters.

The first role is to describe how to activate the code. Lines 18-28 in Listing 3 describe how to
activate a ROS service, specifying its path, service name, and parameters. The ROS service activation
requires mapping high-level POMDP action parameters into lower-level code parameters, as defined in
lines 43-54 in Listing 3 and used in line 25.

The second role is to define the observation associated with the skill execution outcome. Recall that
in a POMDP an observation is obtained following each action execution. The AM computes the value
of this observation from lower-level code parameters. Specifically, the AM specifies the observation
value, lines 6-17 in Listing Listing 3 describe the Success and Failed observations by referring to local
variables. Local variables get their value in one of three ways. a) By a GSDL parameter. Lines 43-54
in Listing 3 define local variables for the ‘x,’ ‘y,’ ‘z’ coordinates taken from the desired location GSDL
parameter (line 8 in Listing 2). b) As a function of public robot-framework data (e.g., ROS topics) or
other local variables. Lines 36-42 in Listing 3 describe the planSuccess local variable, whose value is
True if during skill execution, the /navigation/planner output topic published a message containing the
string ’success’. c) As a function of the skill code’s response. Lines 30-35 in Listing 3 describe the
skillSuccess local variable who stores the ROS service response.

Thus, we see that the AM file can transform low-level public data into abstract observations cor-
related with the GSDL file and vice versa. AM files, like GSDL files, harness the expressive power of
programming languages (the AM supports Python) to allow flexible integration with the AOS. Moreover,
the user’s sole work is to generate valid and coherent documentation, while the AOS supplies the tools
to transform this documentation into a working autonomous robot. Furthermore, the AM allows more
accurate reports of skill outcomes than initially coded and does so by reasoning with additional public
data external to the skill code (lines 36-42 in Listing 3).

4 Experiments

We conducted several experiments [32] to validate our system in different scenarios, described below.
Their goal is to test ease of use, and the impact of relying on POMDP-based planners, and their highlights
can be seen in our system overview video [26]).

4.1 TurtleBot3 Gazebo simulation

Our first experiment used the TurtleBot3[20] Gazebo simulation to see how we can quickly get sophis-
ticated behavior with little effort and existing code. The test environment included nine locations on a
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1 {
2 ” GsdlMain ” : {
3 . . .
4 ” Type ” : ” Envi ronment ”
5 }
6 . . .
7 ” I n i t i a l B e l i e f S t a t e A s s i g n m e n t s ” : [
8 {
9 ” AssignmentCode ” : ” s t a t e . r o b o t L o c a t i o n . d i s c r e t e = AOS. B e r n o u l l i ( 0 . 5 ) ? 1 (AOS. B e r n o u l l i ( 0 . 2 ) ? 2 : 3 ) ; ”

10 } ] ,
11 ” S p e c i a l S t a t e s ” : [
12 {
13 ” S t a t e C o n d i t i o n C o d e ” : ” ! s t a t e . v1 . v i s i t e d && s t a t e . v2 . v i s i t e d ” ,
14 ” Reward ” : −50 . 0 ,
15 ” IsOneTimeReward ” : t r u e
16 } ,
17 {
18 ” S t a t e C o n d i t i o n C o d e ” : ” s t a t e . v1 . v i s i t e d && s t a t e . v2 . v i s i t e d && s t a t e . v3 . v i s i t e d ” ,
19 ” Reward ” : 7000 . 0 ,
20 ” I s G o a l S t a t e ” : t r u e
21 } ] ,
22 ” Ex t r ins i cChangesDynamicMode l ” :
23 [
24 {
25 ” AssignmentCode ” : ” i f (AOS. B e r n o u l l i ( 0 . 05 ) ) s t a t e . r o b o t L o c a t i o n . d i s c r e t e = −1 ; ”
26 }
27 ]}

Listing 1: Environment File Example.

1 {
2 ” GsdlMain ” : { . . .
3 ” Type ” : ”GSDL”
4 . . .
5 } ,
6 ” G l o b a l V a r i a b l e M o d u l e P a r a m e t e r s ” : [
7 {
8 ”Name” : ” o D e s i r e d L o c a t i o n ” ,
9 ” Type ” : ” t L o c a t i o n ”

10 }
11 ] ,
12 ” P r e c o n d i t i o n s ” : {
13 ” G l o b a l V a r i a b l e P r e c o n d i t i o n A s s i g n m e n t s ” : [
14 {
15 ” AssignmentCode ” : ” m e e t P r e c o n d i t i o n = o D e s i r e d L o c a t i o n . d i s c r e t e != s t a t e . r o b o t L o c a t i o n . d i s c r e t e ; ”
16 } . . .
17 ] ,
18 ” V i o l a t i n g P r e c o n d i t i o n P e n a l t y ” : −10
19 } ,
20 . . .
21 ” N e x t S t a t e A s s i g n m e n t s ” : [
22 {
23 ” AssignmentCode ” : ” s t a t e . r o b o t L o c a t i o n . d i s c r e t e = ! m e e t P r e c o n d i t i o n | | AOS. B e r n o u l l i ( 0 . 1 ) ? −1 :

o D e s i r e d L o c a t i o n . d i s c r e t e ;}”
24 } ,
25 . . .
26 {
27 ” AssignmentCode ” : ” modu leResponse = ( s t a t e . r o b o t L o c a t i o n . d i s c r e t e == −1 && AOS. B e r n o u l l i ( 0 . 8 ) ) ?

e F a i l e d : e S u c c e s s ; ”
28 } ,
29 {
30 ” AssignmentCode ” : ” r e w a r d = s t a t e . r o b o t L o c a t i o n . d i s c r e t e == −1 ? −5 : −( s q r t ( pow ( s t a t e . r o b o t L o c a t i o n . x−

o D e s i r e d L o c a t i o n . x , 2 . 0 ) +pow ( s t a t e . r o b o t L o c a t i o n . y− o D e s i r e d L o c a t i o n . y , 2 . 0 ) ) ) *10 ; ”
31 } ,
32 {
33 ” AssignmentCode ” : ” i f ( s t a t e . r o b o t L o c a t i o n . d i s c r e t e == −1 ) r e w a r d = −10 ; ”
34 }
35 ]
36 }
37 }

Listing 2: Navigation Skill GSDL File Example.
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1 {
2 ” GsdlMain ” : {
3 . . .
4 ” Type ” : ”AM”
5 } ,
6 ” ModuleResponse ” : {
7 ” ResponseRu les ” : [
8 {
9 ” Response ” : ” e S u c c e s s ” ,

10 ” C o n d i t i o n C o d e W i t h L o c a l V a r i a b l e s ” : ” s k i l l S u c c e s s and p l a n S u c c e s s ”
11 } ,
12 {
13 ” Response ” : ” e F a i l e d ” ,
14 ” C o n d i t i o n C o d e W i t h L o c a l V a r i a b l e s ” : ” True ”
15 }
16 ]
17 } ,
18 ” M o d u l e A c t i v a t i o n ” : {
19 ” R o s S e r v i c e ” : {
20 . . .
21 ” S e r v i c e P a t h ” : ” / n a v i g a t e t o p o i n t ” ,
22 ” ServiceName ” : ” n a v i g a t e ” ,
23 ” S e r v i c e P a r a m e t e r s ” : [
24 { ” S e r v i c e F i e l d N a m e ” : ” g o a l ” ,
25 ” A s s i g n S e r v i c e F i e l d C o d e ” : ” P o i n t ( x= n a v t o x , y= n a v t o y , z= n a v t o z ) ”}
26 ]
27 }
28 } ,
29 ” L o c a l V a r i a b l e s I n i t i a l i z a t i o n ” : [
30 {
31 ” Loca lVar iab leName ” : ” s k i l l S u c c e s s ” ,
32 ” FromROSServiceResponse ” : t r u e ,
33 ” AssignmentCode ” : ” n a v i g a t e S u c c e s s = i n p u t . s u c c e s s ” ,
34 . . .
35 } ,
36 {
37 ” Loca lVar iab leName ” : ” p l a n S u c c e s s ” ,
38 ” RosTopicPa th ” : ” / n a v i g a t i o n / p l a n n e r o u t p u t ” ,
39 ” I n i t i a l V a l u e ” : ” F a l s e ” ,
40 . . .
41 ” AssignmentCode ” : ” i f p l a n S u c c e s s == True :\n\ t r e t u r n True\n e l s e :\n\ t r e t u r n i n p u t . d a t a . f i n d ( ’ s u c c e s s ’ ) > −

1 ”
42 }
43 {
44 ” Loca lVar iab leName ” : ” n a v t o x ” ,
45 ” F r o m G l o b a l V a r i a b l e ” : ” o D e s i r e d L o c a t i o n . x ”
46 } ,
47 {
48 ” Loca lVar iab leName ” : ” n a v t o y ” ,
49 ” F r o m G l o b a l V a r i a b l e ” : ” o D e s i r e d L o c a t i o n . y ”
50 } ,
51 {
52 ” Loca lVar iab leName ” : ” n a v t o z ” ,
53 ” F r o m G l o b a l V a r i a b l e ” : ” o D e s i r e d L o c a t i o n . z ”
54 }
55 ]
56 }

Listing 3: Navigation Skill Abstraction Mapping File Example.



108 Towards Plug’n Play Task-Level Autonomy for Robotics

map. The goal was to visit all locations while using a minimal length path. For navigation, we used ROS
Move-Base [16], restricted to start and end positions that correspond to the nine locations. The program-
mer then defined a GSDL and AM files for this skill. The GSDL file uses nine boolean variables that
indicate whether a position was visited, a cost function that is equal to distance travelled, and a reward
for reaching all points. At this point, the AOS auto-generation code generated the needed interfaces, and
when the planner was activated, the robot performed the task, traveling the minimal distance.

4.2 The Franka Emika Panda CoBot

Our second experiment involved a Panda CoBot [7] playing tic-tac-toe with a human (see video [33]).
An Intel RealSense D415 camera was attached to the robot arm, and an erasable board with a tic-tac-
toe grid was placed within its reach. The experiment was based on two skills: marking a circle in a
specific grid cell, and detecting change in the board state and extracting the new board state. The first
skill was implemented using our own PID controller based on libfranka, which we wrapped as a ROS
service. The second skill was adapted from code found on the Web. After experimenting with the code
to see its properties, GSDL and AM files were specified for each skill. The AOS allows the specification
of an Environment file that describes exogenous events and are executed prior to every agent’s action.
This feature was used to model the human’s action. We modeled the human as making random legal
choices5. Finally, we defined the goal reward, an initial state of empty board and the starting player, in
the Environment file. Again, following the automated code generation, we run the game (changing the
starting player, as desired). Because the human was modeled as a random player, you can observe [34]
the robot sometimes relying on a human mistake of not completing a sequence of three.

4.3 Armadillo Robot Gazebo Simulation

The prior experiments involved mostly deterministic systems with full observability and few skills, and
were aimed at showing the plug’n play nature of the system. Our final experiment (see video [31]) was
conducted on a Gazebo simulation of our Armadillo robot with more skills, partial observability, noisy
sensing, and stochastic effects. These experiments demonstrate the advantage of using a POMDP model,
and the ease of incremental development (see [29]).

The simulation environment included a room with two tables, and a corridor with a person. Each
table had a can on it. One of the cans was very difficult to pick up (its true size was 10% of the size
perceived by the robot). The robot was located near the table with the difficult can. The goal was to
give the can to a person in the corridor. Three skills were implemented by us: pick-can, navigate which
can navigate to a person, Table1, or Table 2, and serve-can which handed the can to the person. For the
experiments, we used two versions of the pick GSDL: a “rough“ model that assumes that the probability
of a successful pick action is independent of the selected table, and a “finer“ model in which the success
probability is conditioned on the robot’s position.

First, we experimented with each skill, saved statistics of their behavior, and used this information
to write their GSDL files. In addition, we provided the AM files and the task specification. Again, this
was sufficient to start the system going and attempt to carry out the task. However, as the plan was
executed, we saw that, occasionally, the pick skill ends with the arm outstretched. Attempting to serve
the person in this state causes a collision (i.e., injured the person). Moreover, pick returned success if

5To model the human action, we used a C++ while loop that repeatedly sampled a tic-tac-toe cell until an empty one was
sampled. RDDL cannot compactly express behaviors of sampling until a condition is met. It would have to use an exhaustive
if-sample-else-sample list which is only feasible for tiny distribution spaces.



Or Wertheim, Dan R. Suissa, & Ronen I. Brafman 109

Figure 1: Experiments: (left) The TurtleBot3 Gazebo simulation and rviz. (center) The Franka Emika
Panda. (right) The Armadillo Gazebo simulation.

motion planning and motion execution succeeded, but this did not imply that the can was successfully
picked up. Therefore, we wrote two new skills: detect-hold-can and detect-arm-stretched. Implementing
such skills that only map low-level public data (gripper pressure, arm-joint angles) to high-level insights
is immediate. The user should only implement ROS services that do nothing and document them with
GSDL and AM files. The AM files will describe the topics to listen to (e.g., gripper pressure, arm-joint
angles) and their mappings to high-level observations. We also implemented an alternative approach
where the sensing was integrated into the pick skill and its return value now reflected the outcome of
sensing whether the can is held. This, too, is very easy to do through the output specification in the AM
file. Both involve small changes to the respective file. Detect-hold-can is noisy and was modeled as
such. Detect-arm-stretched is not noisy.

First, with the rough model we saw, the robot (correctly) tries to pick the problematic can because it
saves the cost of navigating to the other table. With the finer model, it first moves to the other table where
pick action is more likely to succeed. Second, without the separated sensing actions, the robot serves
the can, but then, because it has no feedback, goes back to the tables and tries to repeat the process.
With sensing, the robot verifies success. If the result is yes, only then does it serve the can and stops.
Moreover, since sensing is noisy, the robot performs multiple sense actions to achieve a belief state with
less uncertainty because the results of the sensing actions are modeled as independent. However, when
sensing is integrated into the pick action, it cannot do independent sensing, and repeating the pick action
is not desirable.

5 Summary

We presented the decision-engine of the AOS. Given a set of implemented skills, documented using a
GSDL and AM files, the initial system state, and a reward specification, the system generates software
that controls the robot by activating these skills as needed, taking care of both execution logic and the
software required to integrate all the components into a working system. Our empirical study demon-
strated true plug’n play functionality and intelligent controller choices.
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GenoM3: Building middleware-independent robotic components. In: IEEE International Conference on
Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010, IEEE, pp. 4627–4632,
doi:10.1109/ROBOT.2010.5509539.

[16] Eitan Marder-Eppstein (2021): ROS Move-Base. Available at http://wiki.ros.org/move_base.
[17] Tim Niemueller, Till Hofmann & Gerhard Lakemeyer (2019): Goal reasoning in the CLIPS Executive for

integrated planning and execution. In: Proceedings of the International Conference on Automated Planning
and Scheduling, 29, pp. 754–763.

https://doi.org/10.1109/RoSE52553.2021.00015
https://doi.org/10.5281/zenodo.5348002
https://doi.org/10.1007/978-3-030-23807-0_20
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.2478/CAIT-2012-0018
https://doi.org/10.2478/CAIT-2012-0018
https://doi.org/10.1016/j.robot.2020.103653
https://www.franka.de/robot-system/
https://www.franka.de/robot-system/
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.48550/arXiv.1106.4561
https://doi.org/10.17863/CAM.42246
https://doi.org/10.1007/BFb0053999
https://doi.org/10.1017/CBO9781139583923
https://doi.org/10.1016/j.artint.2014.11.003
https://doi.org/10.1109/IROS45743.2020.9340698
https://doi.org/10.1109/ROBOT.2010.5509539
http://wiki.ros.org/move_base


Or Wertheim, Dan R. Suissa, & Ronen I. Brafman 111

[18] Nils J Nilsson (1984): Shakey the robot. Institute for Software Technology.
[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler & An-

drew Y Ng (2009): ROS: an open-source Robot Operating System. In: ICRA workshop on open source
software, 3.2, Kobe, Japan, p. 5.

[20] ROBOTIS: TurtleBot3 e-Manual. Available at https://emanual.robotis.com/docs/en/platform/
turtlebot3/overview/.

[21] Francesco Rovida, Matthew Crosby, Dirk Holz, Athanasios S Polydoros, Bjarne Großmann, Ronald Petrick
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