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Robots are soon going to be deployed in non-industrial environments. Before society can take such
a step, it is necessary to endow complex robotic systems with mechanisms that make them reliable
enough to operate in situations where the human factor is predominant. This calls for the development
of robotic frameworks that can soundly guarantee that a collection of properties are verified at all
times during operation. While developing a mission plan, robots should take into account factors such
as human physiology. In this paper, we present an example of how a robotic application that involves
human interaction can be modeled through hybrid automata, and analyzed by using statistical model-
checking. We exploit statistical techniques to determine the probability with which some properties
are verified, thus easing the state-space explosion problem. The analysis is performed using the
Uppaal tool. In addition, we used Uppaal to run simulations that allowed us to show non-trivial time
dynamics that describe the behavior of the real system, including human-related variables. Overall,
this process allows developers to gain useful insights into their application and to make decisions
about how to improve it to balance efficiency and user satisfaction.

1 Introduction

Robots have been mostly used in industrial environments. Indeed, manufacturing lines that feature
robotic manipulators, as well as mobile robots in automated warehouses, are very common nowadays.
Nevertheless, these applications usually involve strong workspace separation between humans and robots
(e.g., through cages or dedicated lanes). Over the last few years, thanks to the phenomenon called Indus-
try 4.0, a lot of effort has been put into trying to inject human-robot collaboration into industrial contexts.
On the other hand, robots employed in non-industrial settings still represent extraordinary cases despite
their massive potential. Their deployment could, for example, relieve health professionals from the most
repetitive tasks, such as transporting objects or delivering paperwork, so that they would have more time
for duties which are exclusive to humans, i.e., taking care of patients. Similarly, robots could provide
support in disaster relief situations, for instance when buildings at risk of collapse need to be inspected.
Before users can welcome personal assistant robots into their daily routines, they require strong guaran-
tees about the fact that these machines will not cause any harm nor any damage. The issue of safety in
service robotics has already been tackled in previous works, firstly by standards, as assessed by Virk et
al. [19] (most notably ISO:13482 [12]). The challenges of minimizing risk for service robots, as argued
by Jacobs et al. [14], are due to the diversity of users that this technology reaches, and to the fact that
most applications imply intended contact.
However, safety is not the only priority. It is also paramount that users perceive the addition of robots as
an improvement rather than a step back. This involves building trust between the human and the machine
(e.g., by making the robot able to transparently share its status), and assuring that the robot plan does not
prevail over human needs. This is especially important when users in delicate conditions are involved,
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such as patients who may be too tired or in discomfort to keep up with the robot’s actions.
We have selected a relevant scenario where human-robot interaction is the most relevant aspect to be
considered. A human and a battery-powered mobile robot are the main elements of the scenario. The
novelty lies in the fact that non-traditional variables pertaining to human mental and physical conditions
are embedded in the model. Given the complex dynamics of the system, the most appropriate choice is
to develop the formal model as a network of Hybrid Automata. The modeling tool is Uppaal [4] and its
extension Uppaal SMC [6]. Statistical Model Checking (SMC) assesses the probability of occurrence of
certain critical events based on time-bounded runs of the system. In particular, in this paper we explore
the likelihood of the human reaching full exhaustion while the robot is still moving: this highlights the
need of robot decision-making policies that are aware of human needs. In the future, we envision the
development of features that make the scenario easily customizable and verifiable by users who possess
a technical background though not on formal methods. This could prove substantial, for example, to
healthcare specialists willing to estimate the outcome of a real application case.
The rest of the paper is organized as follows: Section 2 surveys related works existing in literature; Sec-
tion 3 outlines the background of the work; Section 4 introduces in detail the selected case study and
Section 5 presents the main contribution of the paper, i.e. the hybrid automata; Section 6 reports the
experimental results; finally, Section 7 draws some conclusion.

2 Related Work

The literature features a number of works on the use of timed automata to model complex systems.
Molnar et al. [17] present a layered modeling architecture where agents correspond to hybrid systems
interacting with each other. Wang et al. [20] [16] explore the possibility of modeling a simple robotic
application using the Uppaal tool. They model every robot component as a set of automata that synchro-
nize with each other to perform the mission. Once the model formally satisfies a set of properties, they
automatically generate executable C++ code. Similarly, Halder et al. [11] model a mobile Kobuki robot
ROS-based application in Uppaal, and subsequently perform model-checking to verify relevant prop-
erties about communication between nodes, e.g., that loss of information never occurs. The approach
presented by Aniculaesei et al. [2] shows an approximation of the environment by means of static and
dynamic obstacles, that might obstruct the movement of a mobile robot. In this case, Uppaal is used
to verify collision-avoidance conditions. The work by Zhou et al. [22] is centered on motion planning,
where the mission is specified with an MITL formula from which an automaton is generated to find
feasible runs. Model-checking techniques are also applied to formal models of robotic systems. Webster
et al. [21] analyze the case study of a personal robotic assistant operating in a house-simulating labora-
tory. High-level rules are translated into a Brahms workframe, which is subsequently translated into the
language used by the SPIN model-checker. The work by Arai and Schlingloff [3] implements statistical
model checking to evaluate the performances of autonomous transport robots in an industrial plant. In
their case, the verification process aims at finding the optimal value of certain system parameters, e.g.,
how many robots are needed to complete the mission. Despite the intrinsic limitations of simulation,
they manage to obtain results exhaustive enough so that stakeholders can make their decisions. Statisti-
cal model checking is also pivotal in the works by Foughali et al. [7] [8]. The authors compare different
formalisms to model and formally verify concurrency [7]. In particular, they select Timed Transition
Systems to formalize such components and perform statistical verification of the model of a quadri-
copter [8]. In this case, relevant properties involve the machine’s capability to respond to requests in an
orderly and consistent fashion to avoid accidents.
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Despite model-checking receiving some attention over the last few years, most of the works applying
formal verification approaches to robotics tend to focus on the robot itself and its internal structure. In
particular, formal verification mostly deals with internal safety and integrity properties. Verifying this
type of property holds major importance, for example, when the product is undergoing the certification
process to be released into the market. On the other hand, applications that heavily feature human-
interaction also require higher-level models and the verification of properties of a different nature. In this
paper, we present an example of this type of model that mostly focuses on human-related aspects.

3 Background

In this Section, we introduce the bases on which the model of the scenario has been built. The selected
formalism, as mentioned in Section 1, is that of hybrid automata. Timed automata are built on the
simplest time dynamics [9]: each model features specific variables called clocks, whose value increases
linearly with time unless they are reset. Hybrid automata [1] can be considered an extension of the afore-
mentioned formalism since they support generic time dynamics. As per the semantics defined by [1],
each automaton is composed of a set of locations. Each location can be endowed with constraints, called
flow conditions, that determine how variables evolve with time. The switch from one location to another
is realized through transitions. If a transition is endowed with a guard condition, it may be fired only
when the condition is true. In some cases, it is useful to model transitions that only fire once an event
e occurs: these are labeled by e! and e? if the transition respectively triggers the event e or awaits its
occurrence. These labels are also called channels [4] since they allow the synchronization of concurrent
systems in a way similar to the publish/subscribe pattern.
Hybrid automata are useful to model systems whose dynamics can be described by a set of non-elementary
ODEs (Ordinary Differential Equations). In our specific case, ordinary timed automata would not have
proven sufficiently expressive to capture either robot or human behaviors that possess complex dynam-
ics. For example, hybrid automata are well-suited to capturing human-related variables in the system,
such as their fatigue. The adopted model of human fatigue F(t) is the one proposed by Konz [15] [13],
which can also be found in eq.(1).

F(t) =

{
1− e−λ t (a)
e−µt (b)

(1)

Eq.(1)(a) represents how the level of fatigue increases (to a maximum value of F = 1) with time t
while walking, and eq.(1)(b) how it decreases with time while resting (F = 0 means full recovery).
Parameters λ and µ determine the duration of full fatigue accumulation/recovery cycles: if they have
a low value, fatigue accumulation / recovery will be slow [13]. Finally, if F(tmax) = 1, tmax is called
Maximum Endurance Time (MET) [13]. As for the robot, we assume it is powered by a lithium battery
with a typical charge/discharge profile [18]. The battery charge is set to 100% at the beginning of the
simulation, then it decays rapidly until 80% (with rate r1) and between 20% and 0% (rate r3), whereas
the discharge rate decreases significantly in the nominal zone (rate r2), i.e., between 80% and 20%.

4 Human-Robot Interaction Scenario

The case study involves a robot in a healthcare setting leading a newly registered patient to their room or
a doctor’s office. The actors, also depicted in Figure 1, are a battery-powered mobile robot and a human,
and the synchronization is realized by having the robot lead the human along a hallway.



12 Statistical Model Checking of Human-Robot Interaction Scenarios

Figure 1: Diagram representing the scenario: green arrows F(t) and C(t) represent human fatigue and battery charge; red
arrows h(t) and r(t) are the distances covered respectively by human and robot; blue arrows represent the constant speed of the
human v and the robot’s speed V(t) which follows a trapezoidal profile.

In this scenario, the robot can start moving, stop, and start recharging. We also assume that the robot
can recharge regardless of its position, and stop recharging when the battery charge is back to its full.
In real life, the decision to start and stop could be caused by several factors, such as a sudden obstacle,
which are not captured by the model. The simplest way to simulate this behavior is to assume that the
probability to leave the idle state has an exponential distribution 1− e−λ t . As a consequence, the robot
is more likely to take action as time passes and quicker as λ increases.
Since we are focusing on the interaction between the human and the robot rather than between the agents
and the environment, assuming that the hallway has infinite length does not undermine the efficacy of the
model. For the human, we assume they walk with constant speed v. The robot, instead, displays a trape-
zoidal velocity profile, typical in robotic applications [5], which identifies three phases: the acceleration
phase, where acceleration is constant and velocity (V in Figure 1) increases linearly with time; the travel
phase, where acceleration is 0 and velocity is constantly equal to its maximum; the deceleration phase,
equivalent to the first phase but with negative acceleration. Human fatigue and battery charge (F and C
in Figure 1) are modeled as explained in Section 3.
In this setting, with the specified boundaries, some critical events can occur that require verification.
The aspect that we are most interested in analyzing is the likelihood of the human passing out due to
over-exhaustion while the robot is moving, thus causing the failure of the mission.

5 Hybrid Automata Model

The complete model of the agents described in Section 4 is composed of the three hybrid automata de-
picted in Figure 2, which will now be presented in detail.
The automaton modeling the robot’s behavior can be found in Figure 2(a). Variables r and V model
the distance covered by the robot and its velocity described in Section 4, while constants amax and vmax

(also in Figure 1) correspond to maximum acceleration and velocity. In the initial state idle, the robot
is not moving, hence its flow condition is V̇ = 0, ṙ = 0. From the initial state, the robot can fire two
transitions, triggering two events: start recharging and start moving. In this preliminary version
of the model, the choice is non-deterministic. In the first case, the automaton enters location recharging
and the flow conditions remain unvaried. This location can be left only when the event full battery

is triggered. In the second case, the robot starts moving, hence the velocity profile described in Section
4 is initiated. The automaton first enters the location starting, i.e., the acceleration phase, where the
following holds: V̇ = amax, ṙ =V . When guard V ≥ vmax is true, the robot switches to location moving,
corresponding to the travel phase, where V̇ = 0, ṙ = vmax. When the robot fires the event stop moving,
it switches to location stopping, corresponding to the deceleration phase, hence V̇ =−amax, ṙ =V . This
phase is completed when guard V ≤ 0 is satisfied, thus the robot returns to its idle state. Locations
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(a)

(b)

(c)

Figure 2: Hybrid Automata modeling: (a) robot, (b) robot battery, (c) the human.

starting and stopping are endowed with invariants V ≤ vmax and V ≥ 0, so that the outgoing transitions
are respectively fired when V is exactly equal to vmax and 0. All locations, except for recharging, have an
additional outgoing transition towards the deadlock state dead, which fires when event dead battery

occurs. In this state, the robot is forced to stop, hence V is reset to 0 and V̇ = 0, ṙ = 0.
The automaton corresponding to the battery, in Figure 2(b), captures the charge/discharge cycles de-
scribed in Section 3. The time-dependent variable C models the level of charge, which is set to 100 in the
initial state full to 80. The three discharge cycle phases are identified by as many locations (full to 80,
80 to 20, and 20 to empty). There is a deadlock state empty that captures the case in which the bat-
tery is fully discharged and human intervention is required to make the robot operational again. The
switch from one location to the next takes place when C = Cth, with Cth respectively equal to 80,20,
and 0. This is achieved through the invariant C ≥ Cth on the starting location and the guard C ≤ Cth on
the outgoing transition. The last transition from 20 to empty triggers the event dead battery, causing
also the robot automaton to enter its deadlock state. The time-dynamics of C are constrained by flow
conditions on the above-mentioned locations, respectively Ċ =−r1,Ċ =−r2,Ċ =−r3 and Ċ = 0 in the
empty state. The locations corresponding to the recharge cycle (recharging upto20, recharging upto80,
recharging upto100 and recharging full) have a dual behavior with flow conditions Ċ = r3,Ċ = r2,Ċ = r1
and Ċ = 0. While recharging, the passage from one location to the next takes place when C = Cth with:
Cth equal to 20,80,100, invariants in the form C ≤ Cth and guard conditions C ≥ Cth. When location
recharging full is reached, the urgent channel [4] full battery is immediately triggered, so that the
robot automaton also leaves its recharging location. The transition from the location of a discharging
phase to its corresponding recharging one fires when the robot triggers the event start recharging.
Finally, Figure 2(c) shows the automaton that models the human. In this case, the variables with non-
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trivial time-dynamics are the covered distance h and the fatigue F , whose model has already been de-
scribed in Section 3. A clock t, whose value grows linearly with time unless it is reset, is also required to
keep track of active and resting time frames duration. When the automaton is in its initial state idle, we
assume the human is in its resting phase, hence the flow conditions are Ḟ = −µe−µt , ḣ = 0. When the
robot triggers the event start moving, the human switches to its moving location and the clock t is also
reset. In this case, since fatigue increases with time, the flow condition imposes Ḟ = λe−λ t and ḣ = v, as
the distance increases as the human follows the robot. This location is also endowed with the invariant
F ≤ 1: once this condition becomes false, it means the fatigue has reached the maximum tolerable value
and the human enters its deadlock state passed out, where Ḟ = 0. The switch from location moving back
to idle occurs when the robot triggers the event stop moving and the human goes back to rest.

6 Experimental Results

6.1 Verification and Simulation

The hybrid automata presented in Section 5 have been implemented in the Uppaal tool [4] and subjected
to SMC experiments [6]. Given the parametric model, we assign the values justified in the following.
Having established that 1 time unit corresponds to 1s and choosing the TurtleBot21 specifications as
reference, we set vmax = 65cm/s and amax = 50cm/s2. We also assume that the human moves at the same
speed, although lower than their average, since they need to follow the robot (v = 65cm/s). To comply
with a real mobile robot charge life, the chosen battery parameters are r1 = 0.035, r2 = 0.008, r3 = 0.055,
so that the resulting battery life is approximately 2.5h. Finally we set λ = µ = 0.005 (eq.1), which would
mean full recovery/exhaustion after about 15min of resting/walking.

As mentioned in Section 4, the property to verify, formally expressed in eq.2, is that the automaton
representing the human will eventually (�) enter location passed out while the robot is moving, hence
while the automaton is either in location starting or moving. Classical model-checking properties such
as deadlock are subsumed by 2.

P≤ts[� passed out ∧ (starting∨moving)] (2)

The tool allows us to evaluate the probability of the property being verified in the bounded interval [0, ts],
which determines the timespan of simulations. By running the verification 2 for monotonically increas-
ing values of ts, we analyse how the probability evolves with time.
Figure 3(a) shows that the probability of the patient passing out is negligible for the first 5min, it increases
with time and finally crosses the 90% threshold after 2h. This outcome is only apparently inconsistent
with the 15min Maximum Endurance Time (MET). Indeed, this value of MET refers to intervals of non-
stop walking, whereas in our model the robot can stop during operation and this gives the patient time
to rest. An example of simulation is given in Figure 3(b) and (c), where the patient is fully exhausted at
around time 5000 after walking for about 16min without stopping. The simulation also gives us some
insights on the robot behavior and its battery, whose charge (the green line in Figure 3(b)) coherently
decreases during movement and increases when the robot stops moving and starts recharging.

1https://www.turtlebot.com/turtlebot2/
2On a MacOs 10.14 machine with 8GB of RAM and 2 cores, running the whole experiment takes about 10min.
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(a)

(b)

(c)
Figure 3: (a) shows the probability ranges (blue bars) calculated by Uppaal over increasing values of time, while the red line
connects the average points of such intervals; (b) and (c) provide an example of system simulation in which the mission fails
(the human passes out after about 5000s): in (b) we show robot-related variables, and in (c) human-related ones.

6.2 Beyond Verification

Were stakeholders to synthesize a robot controller for this case study, the results of this experiment should
be taken into account by adding a fatigue monitoring loop as a decision-making layer for the robot. The
core idea is to trigger the events start moving and stop moving only when the value of fatigue belongs
to an acceptable range: if the pair is moving and the patient becomes excessively tired, the robot should
stop and restart when the human has had time to rest. In reality, this could be achieved by monitoring
the distance between the robot and human: if this value crosses a certain threshold than the human is
likely not being able to keep up. Alternative solutions could involve the use of a wearable device that
can monitor the heartbeat or machine learning techniques to estimate human fatigue in real-time [10].

7 Conclusions

We have presented a high-level modeling approach of a human-robot interaction case study. By building
upon these bases, we intend to add to the model a robot controller that takes into account non-traditional
human-related factors. Further future refinements include additional interaction patterns and a realistic
floor plan layout. Once the framework has reached a suitable stage of development, it will be tested in a
real environment to verify the effectiveness of the synthesized controllers.
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