
M. Suda, S. Winkler (Eds.): Second International Workshop
on Automated Reasoning: Challenges, Applications,
Directions, Exemplary Achievements (ARCADE 2019)
EPTCS 311, 2019, pp. 25–31, doi:10.4204/EPTCS.311.4

c© S. Winkler and G. Moser
This work is licensed under the
Creative Commons Attribution License.

Smarter Features, Simpler Learning?

Sarah Winkler
University of Verona, Italy

sarahmaria.winkler@univr.it

Georg Moser
University of Innsbruck, Austria

georg.moser@uibk.ac.at

Earlier work on machine learning for automated reasoning mostly relied on simple, syntactic features
combined with sophisticated learning techniques. Using ideas adopted in the software verification
community, we propose the investigation of more complex, structural features to learn from. These
may be exploited to either learn beneficial strategies for tools, or build a portfolio solver that chooses
the most suitable tool for a given problem. We present some ideas for features of term rewrite systems
and theorem proving problems.

1 Introduction

The idea to exploit machine learning in automated reasoning has been a natural one, given the success
of AI methods in areas like Jeopardy1 and Go.2 Indeed, machine learning has already been investigated
to improve heuristics for different tasks in theorem proving. Most prominently, these include learning
parameters of the proof process [9], learning selection of the objects (like clauses) to process next [22,
14], premise selection [15], and learning proof search guidance in a more general sense, such as which
branch to follow in a tableau proof [16].

Work done in the area so far typically exploited features reflecting the syntactic structure of the input;
we mention some examples as representatives of different approaches. Used characteristics commonly
include symbol counts, the number of clauses of a certain type, clause depth, and clause weight. For
instance, such properties were considered by Bridge et al. [9] to determine tool parameters both for the
initial problem (static features) and during the proof process (dynamic features). The strategy scheduling
learner E-MaLeS by Kaliszyk et al. [18] also relies on features such as clause, literal, and term count,
function symbol arity, and problem class (e.g., Horn or unit problems). Another approach used for
clause selection in early work by Schulz [22] and Jakubův and Urban [14, 10] is to extract symbol
strings (sometimes called term walks) from the tree representation of terms, and count occurrences of a
predefined set of strings to obtain a feature vector. In a further experiment by Loos et al. [21] the entire
problem was fed into a neural network. In the context of premise selection for a given conjecture, terms
in the conjecture have often been compared to the terms in the premises, using the well-known notion of
term frequency-inverse document frequency, but also by comparing prefixes of terms, see e.g. work by
Jakubův and Urban [15].

These approaches tend to use elaborate machine learning models with rather simple features. A
contrasting approach following the paradigm of smart features, simple learning has been pursued by
Demyanova et al. to design a portfolio solver for the software verification competition (SV-COMP) [13]:
Based on metrics of programs related to loop types, variable use, and control flow, the authors applied
machine learning techniques to decide which solver to use. The resulting portfolio solver would have
won the software competition in three consecutive years. Since the applied machine learning model is

1WATSON, IBM, https://researcher.watson.ibm.com/researcher/view_group.php?id=2099
2ALPHAGO, DeepMind, https://deepmind.com/research/alphago.

http://dx.doi.org/10.4204/EPTCS.311.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://researcher.watson.ibm.com/researcher/view_group.php?id=2099
https://deepmind.com/research/alphago


26 Smarter Features, Simpler Learning?

comparatively simple (support vector machines), the success of the method is attributed to the sophisti-
cated metrics. Besides providing a powerful combined solver, the work thus also delivers a taxonomy of
problems, along with insights on which techniques and tools work best on them.

We propose to experiment with a similar approach to the areas of term rewriting and theorem prov-
ing. Both in the termination3 and the confluence competition4 for term rewrite systems a variety of tools
compete annually on thousands of benchmarks. Each tool has its own strengths on problems of a certain
kind, but it can typically also be run with a vast variety of different strategies that accommodate better
to some problems than others. We do not deny the relevance of syntactical characteristics: some tools
and analysis techniques are obviously restricted to problems with certain syntactic properties. For in-
stance, some tools are restricted to string rewrite systems, and the Knuth-Bendix order only applies to
non-duplicating rewrite systems. However, many tools work on a wide range of problems and offer a
variety of proof strategies. This holds for rewrite tools that attempt to establish termination, complexity
bounds, and confluence; but also for theorem provers competing in the CADE Annual System Competi-
tion (CASC).5 It is a common experience in this field that with the “right” strategy, a proof can be found
within a few seconds or even fractions thereof while other strategies diverge hopelessly; but a suitable
strategy is hard to predict. Many tools thus employ strategy scheduling, where a variety of strategies is
run subsequently on a problem for a short time each, in the hope that one of them might succeed [18].

In this extended abstract we thus propose to investigate meaningful structural features that, possibly
together with syntactic characteristics, allow machine learning models to predict which proof strategy
and/or tool works best for a given problem. We do not fix a particular learning task, as we think that such
structural properties could be of interest for different concrete applications.

In Section 2 we summarize the program metrics exploited in [13]. We propose corresponding metrics
for term rewrite systems in Section 3. Subsequently, we consider possible extensions to problems from
theorem proving in Section 4 and conclude in Section 5.

2 Program Metrics

The metrics to classify programs proposed in [13] are related to three different aspects: variable roles,
loop patterns, and control flow.

For the former, the authors defined 27 variable roles, including e.g., pointers, loop bounds, array
indices, counters, and variables of a particular type. An occurrence count vector holding the number of
variables of each role, normalized by the total number of variables, is included in the features used for
learning.

Second, four loop patterns are defined based on an estimate whether the number of iterations in
a program execution can be bounded or not. In particular, the first two patterns correspond to loops
with a constant number of iterations, and a certain type of FOR-loops where termination is guaranteed.
Again, the number of loops of each kind gets counted, and an occurrence count vector (normalized by
the number of loops overall) is included in the feature list.

Finally, control flow metrics include the number of basic blocks and the maximal indegree of a basic
block for intraprocedural control flow, as well as the number of (recursive) call expressions and the
involved parameters to account for interprocedural control flow.

3http://termination-portal.org/wiki/Termination_Competition
4http://project-coco.uibk.ac.at
5http://www.tptp.org/CASC

http://termination-portal.org/wiki/Termination_Competition
http://project-coco.uibk.ac.at
http://www.tptp.org/CASC


S. Winkler and G. Moser 27

3 Metrics for Rewrite Systems

In this section we propose structural features for rewrite systems like the ones collected in the Termina-
tion Problems Database TPDB6 or the collection of confluence problems CoPs.7 Some basic notions of
term rewriting are assumed in the sequel, see e.g. [5].

As mentioned above, there are a number of syntactic features of rewrite systems which naturally
restrict applicable tools and strategies. These include the type of rewrite systems (string, conditional,
constrained, classes of higher-order systems). On the other hand, one may want to recognize variable
duplication (e.g. for the Knuth-Bendix order), linearity (e.g. for confluence criteria), or left-linear right
ground systems (whose first-order theory is known to be decidable [12]).

That said, we next discuss structural features which might influence applicability of certain tools and
methods, as outlined in Section 2. While programs are generally more structured than rewrite systems,
we argue in the next paragraphs that several properties outlined in Section 2 actually remain relevant.

Variable Roles. On the level of term rewrite systems, a program variable corresponds to an argument
position of a function symbol. We consider a function symbol f of arity n occurring in a TRS R, with
argument position 1≤ i≤ n. The following properties of the ith argument can be considered:

• it is a projection argument if R contains a rule f (t1, . . . , tn)→ ti,

• it is decreasing in presence of a rule f (t1, . . . ,C[ti], . . . tn)→ f (t1, . . . , ti, . . . tn) where C is a non-
empty context (or increasing if the rule is reversed),

• it is recursive if some rule f (t1, . . . , tn)→ f (t1, . . . , f (u1, . . . ,un), . . . tn) features a recursive call in
the ith position,

• it is a pattern matching argument if R has rules f (t1, . . . ,c1, . . . , tn)→ r1 and f (t1, . . . ,c2, . . . , tn)→
r1 with different constructors c1 and c2 occurring at position i, and

• it is a duplication argument if in a rule f (t1, . . . , tn)→ r term ti occurs at least twice in r.

Some of these properties resemble roles of program variables: for instance, a decreasing or increasing
argument position can be seen as the equivalent of a counter variable in a TRS, and a projection argument
corresponds to a variable that is returned by a function. In the case of integer transition systems, many
more of the variable roles from [13] have straightforward equivalents, for instance counters, argument
positions involved in branching conditions, and arguments involved in arithmetic operations .

Moreover, for particular types of rewrite systems, further roles become important: In higher-order
systems, argument positions can be divided into first- and higher-order ones. In the case of conditional
or constrained TRSs, positions having extra variables can be recognized (i.e., variables that occur in the
right-hand side of a rule but not in the respective left-hand side) .

Recursion Patterns. In particular for termination and complexity analysis of rewrite systems, recur-
sion constitutes the key difficulty. The first two loop patterns considered in [13] are strongly connected
to the idea of tiering and safe recursion [23, 6, 19], where the essential idea is that the arguments of a
function are separated into normal and safe arguments, and recursion is only allowed in safe arguments.
Such a problem classification is also commonly used in runtime complexity analysis of term rewrite sys-
tems [4, 3]. More generally, restricted loop structures have been considered in the context of decidable

6http://termination-portal.org/wiki/Termination_Competition#Termination_Problems_Data_Base
7http://termcomp-devel.uibk.ac.at/cops

http://termination-portal.org/wiki/Termination_Competition#Termination_Problems_Data_Base
http://termcomp-devel.uibk.ac.at/cops


28 Smarter Features, Simpler Learning?

classes of resource or termination analysis, cf. [7, 8, 11]. Again, for the case of integer transition systems
the loop patterns of [13] naturally carry over.

Control Flow. Just like call graphs depict calling relationships between functions in imperative pro-
grams, a call graph can be considered for term rewrite systems, and e.g. recursive calls and degrees of
nodes can be counted to obtain numerical features.

The dependency graph [2] (DG) is another common illustration of control flow in TRSs. This graph
is in general not computable, but estimations thereof are often used in termination tools. Natural features
of this graph are given by the number of nodes, edges, and strongly connected components (SCCs).
Though the control flow is in general less obvious for TRSs than for programs, some of the program
metrics mentioned above have quite direct correspondents: The number of recursive calls is reflected by
the number of paths in the DG between nodes with the same root symbol. Mutually recursive functions
are reflected by edges between nodes and SCCs of different root symbols. The indegree of nodes in the
DG could be considered related to the indegree of basic blocks.

We illustrate some of the proposed properties by means of an example.

Example 3.1. The following TRS R models a functional program to enumerate prime numbers:

(1) primes→ sieve(from(s(s(0)))) (5) sieve(0 : y)→ sieve(y)

(2) from(n)→ n : from(s(n)) (6) sieve(s(n) : y)→ s(n) : sieve(filter(n,y,n))

(3) take(0,y)→ nil (7) filter(0,x : y,m)→ 0 : filter(m,y,m)

(4) take(s(n),x : y)→ x : take(n,y) (5) filter(s(n),x : y,m)→ x : filter(n,y,m)

For instance, the first arguments of take and filter are both decreasing and pattern matching arguments,
while the argument of from is increasing. Both can be seen as analogues of counter variables. The last
argument of filter is a duplication argument.

The call graph of this program depicts calling relationships between the different functions: an edge
from function f to function g indicates that there exists a rule with f as the root symbol of a left-hand
side where g occurs on the corresponding right-hand side.

take from primes sieve filter

From the dependency pairs of R:

(1) primes#→ sieve#(from(s(s(0)))) (5) sieve#(0 : y)→ sieve#(y)

(2) primes# → from#(s(s(0))) (6) sieve#(s(n) : y) → sieve#(filter(n,y,n))

(3) from#(n)→ from#(s(n)) (7) sieve#(s(n) : y) → filter#(n,y,n)

(4) take#(s(n),x : y)→ take#(n,y) (8) filter#(0,x : y,m)→ filter#(m,y,m)

(9) filter#(s(n),x : y,m)→ filter#(n,y,m)

the dependency graph can be constructed, where there is an edge from `1 → r1 to `2 → r2 if r1 may
rewrite to a term matching `2. It provides a more fine-grained analysis than the previous graph, just like
a basic block flow graph shows more details than a call graph.



S. Winkler and G. Moser 29

(1)

(6) (5) (2) (3) (4)

(7) (8) (9)

Finally, we mention some further features of term rewrite systems which express structural proper-
ties that may be relevant. These include orthogonality, the number of critical pairs, or whether it is a
constructor system. But also more complex properties such as simple (non-)termination and local (non-
)confluence can be easily decided for some cases, and might be indicative for the complexity of an input
TRS and hence appropriate strategies. Moreover, also the presence of algebraic substructures such as
associative and commutative operators, groups, lattices, or distributivity can be taken into account.

4 Metrics for Theorem Proving Problems

Here we consider theorem proving problems as collected in the TPTP benchmarks [24]. This collection
is quite diverse. Given a theorem proving problem, it thus seems natural to consider membership of this
problem in different syntactic problem classes, as in the case of rewrite systems. In the case of TPTP
problems, one might consider the unit equality class (UEQ), the Bernays-Schönfinkel class (EPR) [20],
higher-order classes, or decidable first-order fragments like the monadic, the Ackermann, or the guarded
fragment [1], description logics, or problems where symbols can be sorted in an acyclic way [17].

Membership of the problem in classes like UEQ or EPR is already indicated in the metadata of TPTP
files, as are in fact many other syntactic properties: the number of (unit) clauses, literals, and terms;
the number of occurrences of different logical operators; the number of function symbols, predicates,
and (existentially and universally quantified) variables; formula and term depth; as well as information
about arithmetic operators and types. In learning suitable strategies for a given problem, it cannot hurt to
include these features, since non-influential problem properties can be ignored by the model.

Next, we mention some structural properties which can be included to classify problems. In presence
of equality literals, all features described in Section 3 can be considered for theorem proving problems
as well. Besides, the presence of substructures like group, list, lattice, or array axioms can be exploited.

For typed theorem proving problems, we can moreover take the number of arguments of boolean,
integer, real, and set type in every function symbol and predicate into account. These features would
resemble variable types being taken into account as done in [13].

In Section 3 the dependency graph was used to keep track of dependencies between function symbols.
A similar approach could be used to analyze the dependencies between literals. For problems in CNF
without equality, the following notion of a clause dependency graph could be used for this purpose.

Definition 4.1. Let S be a set of variable-disjoint clauses without equality. The clause dependency graph
has as node set all pairs of literals (l, l′) such that there is a clause in S containing ¬l and l′, and an edge
from (l1, l′1) to (l2, l′2) if and only if l′1 and l2 have the same polarity and are unifiable (where we identify
literals ¬¬p and p, for all atoms p.)

The clause dependency graph captures opportunities for resolution. For instance, if this graph has no
cycles then the problem admits only finitely many resolution steps and is hence decidable. We illustrate
this idea by means of an example.



30 Smarter Features, Simpler Learning?

Example 4.1. Consider the following two sets of clauses

S1 : ¬P(x)∨Q(x) ¬Q(y)∨¬R(f(y),y) R(u,z)∨P(f(u))

S2 : ¬P(x)∨Q(x) ¬Q(y)∨¬R(f(y),y) R(u,u)∨P(f(u))

The clause dependency graphs look as follows, where we use colors to indicate from which clauses the
literal pairs originate:

(P(x),Q(x)) (Q(y),¬R(f(y),y))

(¬R(u,z),P(f(u)))S1 :

(¬Q(x),¬P(x))

(R(f(y),z),¬Q(y)) (¬P(f(u)),R(u,z))

(P(x),Q(x)) (Q(y),¬R(f(y),y))

(¬R(u,u),P(f(u)))S2 :

(¬Q(x),¬P(x))

(R(f(y),y),¬Q(y)) (¬P(f(u)),R(u,u))

The graph for S1 has cycles and the accumulated substitutions in the cycles are not just renamings.
Indeed, S1 offers infinitely many opportunities for resolution. The graph for S2 on the other hand is free
of cycles, hence its saturation is finite.

Properties of the clause dependency graph such as its number of nodes, degrees of nodes, and cycles
can thus be used as features indicating the proof complexity. One could also consider to include further
properties about these cycles related to the accumulated substitution.

All the features mentioned so far in Sections 3 and 4 were described as static properties, in the
sense that they are computed from the input problem before starting a proof attempt. They could also
be considered as dynamic features, meaning they are re-evaluated after a certain number of proof steps.
This idea was already used in [9]. However, besides revising properties already considered for the initial
problem, also characteristics of the proof steps themselves could be considered.

5 Conclusion

In this extended abstract we proposed structural features that can be used in machine learning tasks to
infer appropriate strategies or tools for term rewriting or theorem proving problems.

We believe that the development of meaningful features is interesting in multiple respects. One aim
is to use machine learning to better predict suitable strategies and tools for a given problem. But once a
machine learning model is obtained, it can also be analyzed for its most significant features. If a nontrivial
feature turns out to be important, it constitutes also an interesting property of problems that helps to
discriminate between different problem classes. This should allow for interesting conclusions about
which characteristics are pivotal in the choice of a strategy or a strategy component, and consequently
lead to a taxonomy of problems.

The properties described here are, however, not meant to be comprehensive. On the contrary, they
rather constitute a collection of initial ideas. In future work, we aim to test the expressibility of the
proposed feature set experimentally, also attempting to complement it with further useful properties.

References
[1] H. Andréka, I. Németi & J. van Benthem (1998): Modal logics and bounded fragments of predicate logic.

JPL 27(3), pp. 217–274, doi:10.1023/A:1004275029985.
[2] T. Arts & J. Giesl (2000): Termination of term rewriting using dependency pairs. Theoretical Computer

Science 236(1), pp. 133–178, doi:10.1016/S0304-3975(99)00207-8.

http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1016/S0304-3975(99)00207-8


S. Winkler and G. Moser 31

[3] M. Avanzini, N. Eguchi & G. Moser (2015): A new order-theoretic characterisation of the polytime com-
putable functions. Theoretical Computer Science 585, pp. 3–24, doi:10.1016/j.tcs.2015.03.003.

[4] M. Avanzini & G. Moser (2013): Polynomial Path Orders. Log. Meth. Comput. Sci. 9(4),
doi:10.2168/LMCS-9(4:9)2013.

[5] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press,
doi:10.1017/CBO9781139172752.

[6] S. Bellantoni & S. Cook (1992): A new recursion-theoretic characterization of the polytime functions. Com-
put. Complex. 2(2), pp. 97–110, doi:10.1145/129712.129740.

[7] A. Ben-Amram (2011): Monotonicity Constraints for Termination in the Integer Domain. Log. Meth. Com-
put. Sci. 7(3), doi:10.2168/LMCS-7(3:4)2011.

[8] A. Ben-Amram & A. Pineles (2016): Flowchart Programs, Regular Expressions, and Decidability of Poly-
nomial Growth-Rate. In: Proc. 4th VPT, EPTCS 216, pp. 24–49, doi:10.4204/EPTCS.216.2.

[9] J. P. Bridge, S. Holden & L. Paulson (2014): Machine Learning for First-Order Theorem Proving. JAR 53(2),
pp. 141–172, doi:10.1007/s10817-014-9301-5.

[10] K. Chvalovský, J. Jakubův, M. Suda & J. Urban (2019): ENIGMA-NG: Efficient Neural and Gradient-
Boosted Inference Guidance for E. In: Proc. 27th CADE, LNCS 11716, pp. 197–215, doi:10.1007/978-3-
030-29436-6 12.

[11] T. Colcombet, L. Daviaud & F. Zuleger (2017): Automata and Program Analysis. In: Proc. 21st FCT, LNCS
10472, pp. 3–10, doi:10.1007/978-3-662-55751-8 1.

[12] M. Dauchet & S. Tison (1990): The Theory of Ground Rewrite Systems is Decidable. In: Proc. 5thIEEE
Symposium on Logic in Computer Science, pp. 242–248, doi:10.1109/LICS.1990.113750.

[13] Y. Demyanova, T. Pani, H. Veith & F. Zuleger (2017): Empirical Software Metrics for Benchmarking of
Verification Tools. Form. Methods Syst. Des. 50(2-3), pp. 289–316, doi:10.1007/s10703-016-0264-5.

[14] J. Jakubův & J. Urban (2017): ENIGMA: Efficient Learning-Based Inference Guiding Machine. In: Proc.
CICM 2017, LNCS 10383, pp. 292–302, doi:10.1007/978-3-319-62075-6 20.

[15] J. Jakubův & J. Urban (2018): Hierarchical invention of theorem proving strategies. AI Commun. 31(3), pp.
237–250, doi:10.3233/AIC-180761.

[16] C. Kaliszyk & J. Urban (2015): FEMaLeCoP: Fairly Efficient Machine Learning Connection Prover. In:
Proc. LPAR 2015, LNCS 9450, pp. 88–96, doi:10.1007/978-3-662-48899-7 7.

[17] K. Korovin (2013): Non-cyclic Sorts for First-Order Satisfiability. In: Proc. FroCoS 2013, LNCS 8152, pp.
214–228, doi:10.1007/978-3-642-40885-4 15.

[18] D. Kühlwein, S. Schulz & J. Urban (2013): E-MaLeS 1.1. In: Proc. 24th CADE, LNCS 7898, pp. 407–413,
doi:10.1007/978-3-642-38574-2.

[19] D. Leivant (1994): Ramified recurrence and computatinal complexity I: Word recurrence and poly-time. In
P. Clote & J. Remmel, editors: Feasible Mathematics II, Birkhäuser, pp. 320–343, doi:10.1007/978-1-4612-
2566-9 11.

[20] H. R. Lewis (1980): Complexity results for classes of quantificational formulas. JCSS 21(3), pp. 317–353,
doi:10.1016/0022-0000(80)90027-6.

[21] S. M. Loos, G. Irving, C. Szegedy & C. Kaliszyk (2017): Deep Network Guided Proof Search. In: Proc. 21st
LPAR, pp. 85–105, doi:10.29007/8mwc.

[22] S. Schulz (2001): Learning Search Control Knowledge for Equational Theorem Proving. In: Proc. KI 2001,
LNCS 2174, pp. 320–334, doi:10.1007/3-540-45422-5 23.

[23] H. Simmons (1988): The realm of primitive recursion. Archive for Mathematical Logic 27(2), pp. 177–188,
doi:10.1007/BF01620765.

[24] G. Sutcliffe (2009): The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts.
JAR 43(4), pp. 337–362, doi:10.1007/s10817-009-9143-8.

http://dx.doi.org/10.1016/j.tcs.2015.03.003
http://dx.doi.org/10.2168/LMCS-9(4:9)2013
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1145/129712.129740
http://dx.doi.org/10.2168/LMCS-7(3:4)2011
http://dx.doi.org/10.4204/EPTCS.216.2
http://dx.doi.org/10.1007/s10817-014-9301-5
http://dx.doi.org/10.1007/978-3-030-29436-6_12
http://dx.doi.org/10.1007/978-3-030-29436-6_12
http://dx.doi.org/10.1007/978-3-662-55751-8_1
http://dx.doi.org/10.1109/LICS.1990.113750
http://dx.doi.org/10.1007/s10703-016-0264-5
http://dx.doi.org/10.1007/978-3-319-62075-6_20
http://dx.doi.org/10.3233/AIC-180761
http://dx.doi.org/10.1007/978-3-662-48899-7_7
http://dx.doi.org/10.1007/978-3-642-40885-4_15
http://dx.doi.org/10.1007/978-3-642-38574-2
http://dx.doi.org/10.1007/978-1-4612-2566-9_11
http://dx.doi.org/10.1007/978-1-4612-2566-9_11
http://dx.doi.org/10.1016/0022-0000(80)90027-6
http://dx.doi.org/10.29007/8mwc
http://dx.doi.org/10.1007/3-540-45422-5_23
http://dx.doi.org/10.1007/BF01620765
http://dx.doi.org/10.1007/s10817-009-9143-8

	1 Introduction
	2 Program Metrics
	3 Metrics for Rewrite Systems
	4 Metrics for Theorem Proving Problems
	5 Conclusion

