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The proliferation of the Internet of Things (IoT) has since seen a growing interest in architectural
design and adaptive frameworks to promote the connection between heterogeneous IoT devices and
IoT systems. The most widely favoured software architecture in IoT is the Service Oriented Archi-
tecture (SOA), which aims to provide a loosely coupled systems to leverage the use and reuse of
IoT services at the middle-ware layer, to minimise system integration problems. However, despite
the flexibility offered by SOA, the challenges of integrating, scaling and ensuring resilience in IoT
systems persist. One of the key causes of poor integration in IoT systems is the lack of an intelli-
gent, connection-aware framework to support interaction in IoT systems. This paper reviews existing
architectural frameworks for integrating IoT devices and identifies the key areas that require further
research improvements. The paper concludes by proposing a possible solution based on microser-
vice. The proposed IoT integration framework benefits from an intelligent API layer that employs an
external service assembler, service auditor, service monitor and service router component to coordi-
nate service publishing, subscription, decoupling and service combination within the architecture.

1 Introduction

The term Internet of Things (IoT) refers to a heterogeneous network of physical and virtual objects
embedded with electronics, software, sensors and connectivity to enable objects to achieve greater value
and service by exchanging data with other connected objects via the internet [16]. “Thing” in terms of
IoT, may be a person with a heart monitor implant, a farm animal with a biochip transponder, a field
operation robot that assists in a search and rescue mission or any other natural or man-made object that
can be assigned an IP address and provided with the ability to transfer data and to interoperate within the
existing Internet infrastructure [21].

An example of IoT-enabled environment is an integrated transport system that can be dynamically
routed and reorganized in response to changing traffic needs and conditions [26]. In healthcare, IoT has
been used to follow-up on patient recovery and to assess that against a number of parameters unique to
the patient by the use of IoT enabled devices [8]. The data gathered can also be used to compare patient
responses to treatment in different environmental contexts on a global scale. Smart IoT devices can
also be used to monitor and control energy use. In agriculture and food production, IoT can be used to
manage production by monitoring and tracking variables that influence food production such as weather,
politico-economic indicators, natural disasters, consumption, crop and animal diseases, etc. [14]. In
assisted living, a ubiquity of IoT devices and services can help to address the need for independent
living for the growing numbers of people living with physical disability, long-term conditions, social and
age-related concerns [23].

Figure 1 shows the basic IoT system architecture. The physical sensing layer contains embedded
devices that make use of sensors to gather real world data. The gateway layer provides the mechanism
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Figure 1: IoT Basic Architecture

and protocols for devices to expose their sensed data to the Internet (e.g. Wi-Fi, Ethernet, GSM, etc.). The
middle-ware layer facilitates and manages the communication between the real world sensed activities
and the application layer. The application layer maps onto applications that can be used by the consumer
to send commands to real word objects over the Internet via mobile applications, webapps, etc.

IoT is a rapidly growing trend within major industries. In 2015, Samsung anticipated that 90% of
its products will be IoT enabled by 2017 [3] and its entire product by 2020. Gartner also envisions an
accelerated increase in IoT devices estimating about 21 billion of devices being IoT enabled by 2020
[2]. The size and heterogeneity of the predicted growth adds extra complexity and urgency to the extant
connection and integration problem [7]. Furthermore, IoT systems are likely to be distributed across
different application domains and geographical locations creating hidden dependencies across domains,
platforms and services. This has serious implications on how IoT systems are developed and evolved.
Thus, the need for an intelligent, connection-aware framework has become a necessity.

Service Oriented Architecture (SOA) offers a powerful framework for supporting the connectivity,
interoperability and integration in IoT systems, it forms the backbone of present day IoT frameworks.
While SOA goals are to primarily enhance IoT application interoperability, its monolithic usage in recent
IoT frameworks further amplifies the problem of scalability especially with the enormous number of
predicted “things”. IoT systems tend to expand and with time, a capable SOA framework becomes too
immovable to handle system extensibility. Microservice aims to fragment different IoT systems based on
the System of Systems(SOS) paradigm to adequately cater for system evolution and extensibility. This
paper reviews current IoT integration frameworks and proposes a partly explored, but promising solution
to the problem of poor service integration, scalability, extensibility and fault tolerance in IoT.

This paper is organized as follows: Section 2 will contain the motivation and challenges in IoT archi-
tecture. In Section 3, we will present some requirements for IoT framework design and review a number
of prominent IoT frameworks. Section 4 will discuss our approach to designing an IoT framework to
support device connectivity, integration, interoperability, fault tolerance and scalability. In Section 5, we
conclude our paper.

2 Motivation and Challenges

Interoperability refers to the ability of disparate IoT devices and services to exchange information and to
use the information that has been exchanged. Current IoT initiatives focus largely on applications and de-
vices that address disparate needs, but provide little scope for interoperation and connection. They lack a
shared set of terms for describing services, service constraints, and service strategies. This reduces over-
all system visibility, creates redundant functionality, redundant services, presents problems for change
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management and limits the scope for resource coordination and reuse. IoT solutions need to support
connection and interoperability as a building block to provide mechanisms, processes and security that
enable disparate devices and services to be joined up. The benefit is that IoT devices and services can
interact with each other and create greater efficiencies, improve ease of use, provide better capability,
greater choice, lead to economies of scale and potentially lower unit cost [13]. Poor interoperability and
connection are exacerbated by a number of factors including:

• Lack of standardized description of services. Presently, there is still the lack of standards for
naming convention of IoT device services, data information and description. This has posed a great
challenge in the issue of integration. Recent trends in context awareness and data management
have applied the semantic web technologies of Ontology Web Language (OWL) but still, there
exist no standard methods to describe IoT services both at the high and low semantic level [10]. We
have thus seen these naming conventions been disparate as a result of cultural, social backgrounds
or coding habits whereby different terms are used to represent similar or the same entity. The
solution of integrating heterogeneous IoT will largely benefit from integrated modelling techniques
to provide appropriate knowledge acquisition and representation of the IoT domain.

• Poor context-awareness for services. The lack of adequate semantics for appropriate service con-
text description is still evident in recent IoT system design. Current IoT systems suffer from in-
sufficient context awareness of services due to inexpertly modeled semantics proliferating various
unevenly distributed ontologies and incoherent semantics for services [24]. For a proper context-
aware data processing in IoT domain, new approach should be utilized to modelling and designing
rule engines for services.

• Poor device service classification. Several IoT systems utilize cataloguing of device services based
on the device categorization. This type of practice attributes service to devices based on the unique
identifier of both devices and services [25]. These services are made discoverable if an inquest is
made to the service or device identifier. In IoT systems, this practice has long aided device dis-
covery and service discovery but from an M2M viewpoint, service discovery is still unconvincing
thus, if a device fails and is absent from the system it logs it as an unavailable service even if the
same service with different unique identifier is provisioned for by another device. There has to be
a new approach to service classification to accommodate such dynamic discovery of services.

• Poor information visualisation and analysis. Current initiatives provide little scope for tailored
data collection and visualisation. Tailored data visualisation and analysis from an object’s activities
and environment can provide invaluable insight into the well-being and the continued adequacy of
the system [9].

3 IoT Frameworks

For an IoT framework to be reliable and dependable, some minimal set of measures should be satisfied
to achieve integration and interoperability in IoT. These frameworks span across the IoT research com-
munities ranging from academic research to organisational research which focus on integrating things
in IoT. Since IoT paradigm itself is still in evolving state, we propose a set of minimal measures to be
satisfied by IoT frameworks for integration. These are:

• Contract decoupling: An IoT system contains heterogeneous devices with disparate communica-
tion protocols. An integration framework should be competent enough to efficiently handle con-
tract decoupling. Contract decoupling is the ability of service consumers and service producers to
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independently evolve without terminating the contract between them [19]. For example, a service
might be in a JSON format and the service consumer needs an input in XML. The framework
should provide support to transform the message to the format that fulfils the contract between
them.

• Scalability: Given the evolving nature of IoT and the predictions and calculations by [3] and [2],
an efficient integration framework should be scalable and evolvable enough to support the billions
of things soon to be connected to the internet.

• Ease of testing: An integration framework should support ease of testing and debugging. It should
provide support for debugging defects and failures, integration testing, component testing, system
testing, compatibility testing, installation test, functional and non-functional testing, performance
testing and security testing.

• Ease of development: An IoT integration framework should provide a means of easy development
for developers. The framework should exclude all complexities and provide proper documentation
for non-developers and developers with basic programming knowledge to easily understand the
internals of the framework.

• Fault tolerance: An IoT system has to be dependable and resilient. An intelligent integration
framework should effectively handle faults as IoT devices can eventually toggle between offline
and online states. The framework should provide self-healing mechanisms for transient faults
(network faults, node level faults, etc.), unauthorised access error, server crash failure, omission
failure (when the server does not receive incoming requests from client), timing fault, etc.

• Lightweight implementation: Integration frameworks should have a lightweight overhead both in
its development and deployment stage. It should be lightweight and easy to install, uninstall,
activate, deactivate, update, versioning and adaptable.

• Service coordination: Service coordination is the orchestration and choreography of services. Ser-
vice orchestration is the coordination of multiple services by a mediator acting as a centralised
component. Service choreography on the other hand, is the chaining of services together to ex-
ecute a particular transaction. Integration frameworks should support at least either or both to
achieve reliability.

• Inter domain operability: The framework should further be extensible to support inter domain
communication. For example, in a smart car domain, an integration framework should also provide
support for communication and interaction with traffic lights, road closure, etc. belonging to a
smart city domain.

Regardless of the research community or disparity in research, they all aim to achieve extensibility,
flexibility, scalability, design reuse and implementation reuse. The next sub-sections will present an
overview of some IoT frameworks.

3.1 Eclipse Smarthome Framework

The Eclipse Smart Home (ESH) framework is designed for ease of resolution of IoT system and problems
by developers who benefits from its interfaces, automation rules, persistence mechanism, and its SOA
implementation [1]. The ESH is a connection and integration framework for IoT smart home domain
and it is independent of the connectivity features of the hardware but rather, makes emphasis on the
implementation of a connector to the framework. This connector is called binding and is expected to be
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implemented at least once and only once for a particular communication protocol. The ESH has become
largely famous as it is open sourced and thus, widely implemented as a smart home solution by a large
market. This has contributed to its extensive number of shared API available for a range of commercial
products [1].
The ESH is explicitly fixated on home automation and it is built on five major stacks [4]. These are:

• Operating System: This is the core support for the basic functions of the computer. The ESH
equably runs on Linux (Ubuntu, Yocto-based Linux distribution), macOS and Windows.

• The Application Container or Runtime Environment: It is fully written in Java and uses the OSGi
Runtimes (Eclipse Equinox) together with Apache Karaf and bundles it with Jetty HTTP server.

• Communication and Connectivity: The wide acceptance of ESH has seen its vast implementation
thus, providing connectivity and communication between numerous off-the-shelf home automation
products. Examples are, Belkin WeMo, Philips Hue, Sonos, etc. As its focus is specifically to
home automation, it therefore provides support for offline communication capabilities within the
”Intranet of Things” paradigm.

• Data Management and Messaging: The SOA approach of the ESH framework sees its implementa-
tion of an internal ”Event Bus”. This bus is accessed and exposed externally through implemented
protocol binding e.g. SSE or MQTT. The structure of the ESH also provides a persistence mecha-
nism for database storage and also a rule engine to orchestrate runtime behaviour of things.

• Remote Management: The ESH framework is designed to make provision for remote monitoring,
firmware update and configuration of connected devices.

The ESH primarily functions as a piece of software incorporated into hardware to provide a collective
point for coordination of the connectivity of things between each other and to an external network. The
ESH framework was incorporated and implemented by openHAB to provide open source software to
ease IoT application development.

3.2 Calvin Framework

The Calvin framework [18] is a hybrid framework of both the IoT and Cloud programming models to
explicate the complexity of distributed computing, diverse programming languages and communication
protocols. The framework is developed by consolidating theories from Actor model and Flow Based
Computing. It divided the IoT application development into four separate and sequentially executed
aspects which are:

• Describe: In a primitive sense, Calvin characterises an actor to consist of actions, communication
ports and conditions that could trigger an action. These actors communicate with each other via
the communication ports by exchange of tokens. In Calvin, the actors are software components
mirroring: devices, services and computations. In the ”describe” aspect, developers detail and
express the actions, input/output relations and the preconditions required to trigger an action of an
actor. It is also necessary in this aspect to prioritise the order between actions while separating the
actor from the resources it represents in other to enhance the speed of shifting an actor from one
runtime to another.

• Connect: The next phase is to connect the ports of the already described actors by using a lightweight
intuitive and declarative language called the CalvinScript. The parameters needed by the actors
are included and their pattern of connection initialised in this aspect
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• Deploy: This aspect focus on the deployment of the described and connected component in a dis-
tributed runtime environment. Actors described and connected are lightweight thereby enabling
migration between a mesh network of runtimes. The ”deploy” aspect improvises a simple deploy-
ment pattern by passing the application script of an intended application for deployment into the
runtime environment. The application script is always deployed to the closest accessible runtime.
The runtime is then instantiated and all actors connected locally. Due to the distributed nature of
the implemented runtime environment, actors can manoeuvre across accessible runtimes based on:
locality, performance requirements, connectivity requirements and resources. In this aspect, the
prescribed deployment algorithm takes into consideration some factors that may affect or influence
the performance of the application, workload on existing actors, network congestion and runtime
overload.

• Manage: This aspect involves the management of migrating actors between runtimes, error recov-
ery, scaling, resource usage and updates by the distributed execution environment.

The Calvin framework combines both IoT and Cloud models by designing the IoT system to leverage
on the Cloud system to perform complex calculations and computations which are rarely possible with
resource constrained actors. The framework thus prescribes a runtime API for connection and commu-
nication between runtimes and actors. The Calvin framework model propounds a distributed runtime
environment and exhibits multi-tenancy as actors can share runtimes with actors from other applications.
It also supports restrictions of high resource consuming actors at the “manage” aspect. For example,
image processing actors may sometimes be fully restricted or limited from a runtime.

3.3 SOCRADES

SOCRADES [20] is a service –oriented based integration architecture which provides generic compo-
nents to aid the modelling of well detailed processes. It targets smart objects in manufacturing domain,
which represents their behaviour as web services so as to enhance their capabilities. SOCRADES in-
corporates the pattern, concept and code of SIRENA [6] (a European Union funded project) to propose
and design an integration infrastructure for web service and a framework for device supervision and life
cycle which flawed in SIRENA.

SOCRADES is composed of four main parts which are the Device layer, SOCRADES middle-ware
(comprising of two sub parts, Application part and Device Service part), xMII and Enterprise applica-
tion.

• Device Layer: This layer consists of devices that are web service enabled and they connect to the
SOCRADES middle-ware layer using the Device Profile for Web Service (DPWS) model.

• SOCRADES Middle-ware: Devices in the device layer can connect to the Enterprise Application
as they support web service. The SOCRADES middle-ware serves as a bridge between the device
layer and the enterprise application. The main aim of this component is to simplify the manage-
ment of devices in the device layer. Some other features and components of the SOCRADES
middle-ware are: access to devices, service discovery, device supervision, service life cycle man-
agement, cross-layer service catalogue, and security support (optional). The SOCRADES middle-
ware component also extends the functionality of the xMII component to other components and
vice versa.

• xMII Component: This component is a System Applications and Products(SAP) in Data processing
product: SAP xApp Manufacturing Integration and Intelligence (SAP xMII). It has features for:



O. Uviase & G. Kotonya 7

non-web service device enabled connectivity, visualisation service, graphical modelling, execution
of business rules and connectivity to earlier SAP software via specific protocols. This component
is integrated into the GUI of the Enterprise Application in a mash-up form by generating rich web
content to suit the purpose.

• The Enterprise Application: This component consists of a GUI which exposes the system to the
users. It receives data from the xMII component via specific protocols or by integrating xMII web
content with the Enterprise Application GUI.

SOCRADES is practically a web service integration architecture designed to support device connectivity
and integration into an enterprise application such as in an ERP system. It is concisely based on the SOA
paradigm.

3.4 AllJoyn

AllJoyn [5] is an open source framework targeting the connection and integration of things irrespective of
their communication module, operating system and manufacturers. The framework provides a proximal
network discovery between devices by abstracting out the details of the physical transport and providing a
simple-to-use API for connecting things. Thus, the complexity of discovering nearby devices is handled
by creating sessions (multiple sessions, point-to-point or group sessions) between devices for secure
communication between them. The AllJoyn framework consists of some implemented common services
and interfaces used by developers to integrate variety of devices, things or apps. The framework relies
optionally on cloud services as it runs on a local network. This enables devices and apps to communicate
within the network with only one gateway agent designed to connect to the internet. This in turn reduces
security threat and the number of devices exposed to the internet threats. The framework comprises of
two major components: AllJoyn Apps and AllJoyn Routers. These components can both dwell on the
same or different physical device.

• AllJoyn Apps: The Apps is a component of the framework that communicates directly with the
AllJoyn Router and communicates with other Apps via the router. The AllJoyn App comprises of
sub components which are the: AllJoyn App Code, AllJoyn Service Framework and AllJoyn Core
Library.

– AllJoyn App Code: This holds the logic for the AllJoyn Apps. It provides access to the
AllJoyn Core API by connecting it with the AllJoyn Service framework or the AllJoyn Core
Library components to provide such access.

– AllJoyn Service Framework: This is the component that implements the common services
such as on-boarding a new device for the first time, sending notifications and controlling
a device. These services allow the communication and interoperation between apps and
devices.

– AllJoyn Core Library: This component provides access to the API for interaction with the
AllJoyn network. It provides support for: session creation, object creation and handling,
interface definition of methods, properties and signals and service/device discovery and ad-
vertisement.

• AllJoyn Routers: This component facilitates the communication between different Apps compo-
nent. The AllJoyn framework comprises of three common pattern of communication between
Apps and Routers.
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– Bundled Router: Here, the Router is bundled with an App based on a one to one relationship.
– Standalone Router: The Router is run as a standalone process on a system and it allows the

connection to multiple Apps on the same device as the Router. This ensures that devices
consume less overall resources.

– Router on a different device: The Router is run on a different device allowing connections
from Apps. This is used for embedded devices that are resource constrained and thus, will
utilise the ”Thin” version of the AllJoyn framework so as to contend with their limited re-
sources.

The AllJoyn framework concisely pursues a common ground for the connection, interaction and integra-
tion of things, devices and apps regardless of their individual OS, programming language and manufac-
turers.

3.5 FRASAD

The FRASAD [17] is a development framework aimed at allowing developers design their IoT appli-
cations using sensor node domain concepts. This concept is model driven and as such the application
code is generated from the designed model via a transformation process. The FRASAD (FRAmework
for Sensor Application Development) framework is an extension of [22] by the addition and integration
of two layers to the existing sensor node architecture. These two additional layers are the Application
Layer (APL) and the Operating System Abstraction Layer (OAL). The essence of these two layers is to
magnify the level of abstraction and thus concealing the lower levels. To achieve this, the framework
employs the use of a robustly designed Domain Specific Language (DSL) to model the sensor nodes and
separate the operating system from the application. The OAL is then contracted to explicate the mod-
elled application based on the specific operating system for implementation. The OAL can be seen as an
application generator: its core function is to generate the application code to be deployed in the targeted
platform. The FRASAD framework inherently follows the Model Driven Architecture (MDA) approach
by adopting three models/levels of abstraction. They are:

• The Computation Independent Model (CIM): used to represent the actual information without
exposing the structure of the system or the technology used for its implementation.

• The Platform Independent Model (PIM): This is the model that houses the application logics and
requirements.

• The Platform Specific Model (PSM): The PIM is translated to the PSM based on the specific
operating system of implementation, using a specifically designed DSL for mapping processes.
The PSM is operating system specific and may use languages supported by the operating system.

FRASAD in summary, is a framework which uses a multi-layered MDA with interaction between lay-
ers via some predefined interface. It utilises the node-centric model to facilitate the programming of
individual sensor nodes using its rule-based programming model.

3.6 ARIoT

The ARIoT framework [12], consolidates the technology of Augmented Reality (AR) by slightly extend-
ing the IoT infrastructure. The core of the framework is to: dynamically identify IoT targeted objects
within proximity of an IoT space, recognition and tracking of IoT objects feature information (examples
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are, object id, attribute values, object manufacturers, etc.) and augmenting the interactive contents of the
IoT object as services to a client.

In this framework, IoT objects are set up to hold feature information and contents for services. An
AR client system (e.g mobile phone) employs the AR technology to detect nearby IoT objects that meets
the set-up criteria, through a defined standard wireless service discovery protocols. After the IoT object
is identified via a standard protocol, there is message exchange between the AR client and IoT objects
to further identify and filter out objects based on their distance and perspective (relative distance from
other objects or their direction relative to the AR client). The AR client can then use the features and
contents information from the exchanged message to track targeted objects, and augment the contents on
the clients’ display screen. Individual IoT objects are independently attributed to their own recognition
and tracking mode i.e. IoT object 1 may send information for Speeded Up Robust Features (SURF)
algorithm for tracking and IoT object 2 can use a different model/algorithm for tracking.

In summary, ARIoT integrates AR technology into the IoT infrastructure to provide a much friendlier
environment to select target objects and subject them to control, interactions and tracking. The AR client
is mostly a mobile device which contains an implemented algorithm to identify, recognise and track IoT
objects via predefined standard protocols. This framework improves on scalability by eliminating the use
of a central server via AR client, allowing IoT objects to directly communicate and exchange information
on a need to know basis.

3.7 AVIoT

The AVIoT [11] is an IoT framework for visualising and managing IoT objects present in a specific envi-
ronment (e.g. a smart home). This framework aims to allow users to apply its web-based visual authoring
tools to abstract and program the behaviour of IoT things. Hence, end users can easily monitor and define
the behaviour of IoT things without prior internal knowledge of the architecture or connection system of
the sensors. The AVIoT framework is proposed to allow visual configuration and management of things
within an IoT environment with ease. This framework follows a principled process of: Abstraction of
Sensors and Actuators, Interactive IoT Visualisation, and Interactive IoT Authoring.

• Abstraction of Sensors and Actuators: In this process, physical things that are present in an IoT
environment are abstracted and virtualised to interact with other virtual things by defining it as
a node. This node will be defined based on the generic features of things such as name, type of
thing, type of visualisation, position, children (if any) and functional string behaviour (contains
a script code which can be assessed at runtime). Things are abstracted and virtualised to contain
physical sensors, virtual sensors, virtual actuators and physical actuators. While physical sensors
and actuators are the real-world things, the virtual sensors core function is to detect events of
significance which the end user has expressed interest in. The virtual actuators’ core function is
to adapt the end user pre-defined behaviour to the physical actuators. The virtual actuators do
not hold values like the virtual sensors, rather, they trigger the actions of the physical actuators.
The interaction between the abstracted components follows the order of physical sensor ->virtual
sensor ->virtual actuator ->physical actuator.

• Interactive IoT Visualisation: This is the visualisation of virtual things within the IoT environ-
ment to promote the management of physical things. This phase uses a client – web browser or
web application and a server to facilitate the visualisation and management of virtual things. The
assumption is that the server has identified the devices and holds information on their various con-
nectivity modules. The server is also used as storage for information with regards to visualisation
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and authoring of things. This phase exploit REST as the interface for communication between the
client and server. For 3D visualisation, the server holds a virtual plan of an indoor environment
in their 3D model state. This can be queried by a running client to provide a 3D visualisation of
things at runtime. The 3D visuals are rendered like wire frames and visual icons are displayed
based on the location of the physical things to identify sensors and actuators.

• Interactive IoT Authoring: In this phase, virtual things can be edited, added, or deleted from the
given set of physical things. Things can also be relocated by the end user to a different position and
rediscovered in the new location by the server. The physical sensor interacts with the real world
and outputs observed numeric data which is received by the virtual sensor. The major focus of the
virtual sensors is on events (pre-configured) that are of concern to the end user. This information
is translated and passed to the virtual actuator which then acts by triggering the appropriate action
of the physical actuators.

The AVIoT is an IoT framework for visualisation and authoring of things in a smart environment by the
end users. It is implemented on the web and fully focused on indoor IoT environments. The framework
allows for end users to abstract and define things in order of hierarchy by utilising its web application
tools for visualisation and authoring.

3.8 Summary

Each of the IoT frameworks discussed, have applied various software architectures (MDA, SOA, etc.).
The most prominent and productive architecture can be seen to be the SOA. SOA is somewhat benefi-
cial in IoT integration frameworks as it provides contract decoupling and heterogeneous protocol sceptic
interoperability.The frameworks reviewed have their disadvantages and advantages which are either at-
tributed to the selected architecture to provide an IoT solution or the pattern of implementation. For
example, The ESH has its strengths in providing support for heterogeneous communication protocols
while providing means of creating “bindings” for new protocols. It supports a wide range of off-the-
shelf products, it is easy to develop and deploy. Regardless, the ESH is limited to smart home, it depends
on an enterprise bus for message transport which may become a single point of failure, It has no support
for merging services for example, if a device X requires a composite service of temperature and humidity,
it has to make individual request for each of these services especially if the services is available on two
different devices Y and Z. The ESH components are monolithically designed and makes it hard enough
to fit into a larger system as a sub-system.

The obvious strength of the Calvin framework are, its flexibility due to the use of a cloud system.
Despite this strength, the Calvin framework shows some limitations as, developers need to learn a new
sketchy language, there is no service combination, no provision for service management and there is high
threat to system security e.g. as actors migrate between runtimes, there is no sonsideration for security
threat factor. Hence an actor whose security has been compromised will pose a threat to several other
actors on different runtimes.

The SOCRADES framework provides support for heterogeneous system, its Enterprise Application
component presents users with an easy to use GUI thus reducing deployment time and providing ease of
system management. Nonetheless, single point failure is present in its use of an enterprise service bus,
there is no intrinsic knowledge of the services and it lacks support for merging fine-grained services to
coarsed services on demand.

Decisively, the monolithic implementation of SOA, its evident single point of failure and complexity
in architecture due to the billions of things to provision for, further complicates the question of scalability,
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fault tolerance and reliability. An IoT connection and integration framework needs to be scalable enough
to support billions of things connected, it should tolerate common faults such as latency and provide a
means for identifying, merging, recreating and granting secured remote access to these services.

4 Proposed Approach

In building an accomplished scalable, adaptive and fault tolerant framework for IoT, the distributed sys-
tems architectural style is a favourable approach. This way, software components are remotely accessed,
via various remote access protocols. This architectural style consists of several patterns which include:
Client-server (2-tier, 3-tier or n-tier), Peer-to-Peer, Object request broker, Space based architecture,
Shared nothing architecture, REST, Service-Oriented, Cloud computing pattern, etc. To attain a scal-
able, evolvable and fault tolerant IoT framework, the software architectural patterns currently utilised,
should be improved to accommodate the IoT paradigm and fufil the presented minimal requirements. We
propose the adoption of Microservices which is a service based (service-oriented pattern) architecture.
Microservices are characterised by the use of simple API which are thin layered (light weighted com-
pared to SOA). While sceptics may argue microservices are same as SOA, the similarity is that they are
both service based architecture with emphasis on service use and reuse. They differ in terms of their ar-
chitectural style, architectural characteristics, service characteristics and capabilities. The term service
in the context of SOA, is defined by [15], as ”a mechanism to enable access to one or more capabilities,
where the access is provided using a prescribed interface and is exercised consistent with constraints
and policies as specified by the service description”. This definition defines services based on its own-
ership, accessibility and qualitative attributes. However, services could be further defined based on their
atomity (size of services) and interaction (in terms of service unification). Service atomity and classifica-
tion, presents a great distinctive feature between SOA and microservices. Interactions between different
services are conveniently handled in microservices architecture and as such will be advantageous in an
intrinsically asynchronous IoT system.

4.1 Microservices for IoT

The main aim of microservices is to coordinate distributed applications as a collective implementa-
tion of services running autonomously and independently based on its described process context [19].
The growth in technology has seen IoT devices evolve with different communication protocols, mak-
ing it difficult to achieve connectivity, scalability and integration especially in monolithically fabricated
frameworks. Another challenge is the transparency of the support for legacy protocols with or without
an upgrade. With the need to reduce power consumption to achieve an eco-friendly envinroment, IoT
devices has been designed to consume less energy and as such, limiting its resources (storage, process-
ing capacity, etc.). This has also become a challenge in IoT from their device perspective. Devices are
expected to run for a prolonged period, producing and consuming services, exchanging data and high
payload, etc. All these core fuctionalities will in turn impair their battery life.

Microservices architecture (share-as-little-as-possible) presents the possibility to resolve these chal-
lenges as it promotes independent service deployment, service atomity , deterrent to single point failure,
augment security transaction management and service choreography. The next sub-sections present an
envisioned design of an IoT system in microservices architecture, based on some complex challenging
issues in IoT.
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4.1.1 Service Identification and Classification

Microservices classifies services into

• Functional Services: services that support the operational functions of a smart system in an IoT
domain. In IoT, these services are mostly literals (i.e. numbers, letters, etc.). These services are
exposed to be utilised by an external system or device.

• Non-Functional Services: services that are related to non-operational tasks (such as: Logging,
authentication, monitoring, authoring, auditing, etc.) but must be utilised for a reliable operation
of the system. These services are not exposed and are utilised by a system or device wishing to
integrate into an existing IoT system.

The concept of service taxonomy (service description) as viewed in microservices architecture, is adopted
into IoT domain to reproduce an IoT architectural framework to facilitate service identification and clas-
sification.

Figure 2: Microservice for IoT Service Identification and Classification

Functional and non-functional services are clearly identified and separated. The API layer receives
request and can trigger the non-functional services on its own or via the functional services to hide the
non-functional service from the real world.

4.1.2 Service Atomity

The fundamental concept of microservices is its fine-grained services which are single-purposed and
thus perform optimally in executing that one functionality. In IoT, fine-grained services are common
especially among devices with communication protocol like the MQTT, AMQP etc. One challenge in
IoT is latency issue which sometimes emerge as a consequence of large, coarse-grained services been
consumed by IoT devices of limited resources. In microservices, the impact of fine-grained services aids
in software development, testing, deployment and maintenance. The IoT system can immensely benefit
from adopting this pattern of atomized services. Building minute services accurately in microservice
architecture is somewhat complex and similar problem can be faced when adapting it into IoT.
Figure 3 is bolstered to fit into IoT and expel the problem associated with granular services. In microser-
vices, the service granularity problem hinders performance and transaction management. If a transaction
requires services A, B and C, it takes the sum of TA, TB and TC (where TN is the time to process service
N) time to process. Thus, if it takes 200ms to process each service, then it will take 600ms to process
the transaction. A Service Assembler is introduced to handle consumer request and service coupling
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Figure 3: Microservice for IoT Service Atomity

(combining two or more services A, B and/or C to generate a new functional service X which adheres to
the service contract of the consumer based on the implementation details). With the introduction of the
service assembler component, consumer request for composite service transaction is processed and dis-
pensed by the assembler, thereby reducing the time spent on remote access call. The service assembler
basically combines fine grained services to a composite service which can be advertised as a separate
service depending on the amount of request for similar services or transaction.

4.1.3 Service Coordination

Service coordination can be looked at as a systematic way by which services are arranged, allocated and
analysed. It is based on two main service communication concepts which are Service Choreography
and Service Orchestration. Service orchestration is the organisation of various services collectively by a
centralised component which can be seen as the mediator. The mediator coordinates different services
that are necessary to complete a particular transaction. Service orchestration is mostly dominant in
SOA, hence, IoT frameworks adopting the SOA paradigm utilise an integration hub or a middle-ware in
the overall architecture to provide this functionality. The deficiency in this approach is that the system
may experience lags in multiple service requests required to complete a single transaction. In SOA,
systems mostly rely on the combination of multiple composite (coarse-grained) services to complete
a single business request. In an IoT system, services are commonly fine-grained and as such, service
choreography will be enough for small scale IoT systems.

As commonly used in microservices, service choreography is the organisation of several services to
execute a single transaction without a central mediator. This initiates a chain reaction or service chaining,
where one service calls another service and the other service calls another until the last required service
is called. While this is inexpedient as it will increase the remote access call time for multiple service
requests, the addition of an autonomous service assembler component will be beneficial in reducing the
call time. Service chaining is uncomplicated in IoT considering its fine grained services which comprises
mostly of literals. The service assembler functions in a manner to eliminate the need for a new remote
service contract after service combination. Other components like the service auditor, service monitor
etc. are involved in the runtime operation of the service assembler as seen in Figure 4

4.1.4 Interoperability in IoT

The IoT paradigm is built around service sharing and to achieve interoperability, IoT frameworks should
allow service coupling and recoupling. In microservices, the API Layer is used rather than the Enterprise
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Figure 4: IoT Consolidated Service Topology

Service Bus (ESB) conventionally used in SOA. The benefit of this API approach to IoT is that it allows
for the level of granularity of services to be changed without affecting the consumers. For instance, a
coarse grained service can be dismantled into finer grains or vice versa to increase performance, scalabil-
ity and ease of deployment of the system. With the API component, the consumers do not need to change
service contract or adapt themselves. Rather, the API knows to call the split service when a call is made
to the coarse service. IoT will do better to benefit from an implemented intelligent API layer. Unlike
SOA middle-ware that utilises a mediator for service orchestration, message enhancement and protocol
transformation implemented within the ESB, an intelligent API layer for IoT will make use of smaller
components. These components are not enclosed within the API layer, but will be available at runtime to
execute similar functionality e.g. service combination, contract decoupling etc. These components will
compensate for heterogeneous protocol support which lacks in a standard microservice architecture.

Figure 5: Microservice for IoT Architecture
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Figure 5 represents a Microservice architecture for IoT. The introduction of the service coordina-
tion layer is to facilitate service identification, classification, combination and choreography. The figure
shows several microservices implementing the various required interface (e.g MQTT, REST, etc.) which
are provided by the physical sensing things. For example, if weather report is requested from the ap-
plication layer, it makes a call to the API Gateway which then calls the appropriate REST API and the
command sent via the Event Bus. On receiving the command, the event bus transports the request to the
service coordination layer (were necessary service identification, discovery, binding and routing is done).
The command is channelled through the relevant protocol and the physical device acts accordingly. In
the case of physically sensed activity, the event update is sent via the provided protocol to the service
coordination layer. This event update is pushed via the event bus to a well-suited REST API and the
update reflected on the mobile device.

5 Conclusion and Future Work

This paper has explored the lingering problems in integrating IoT devices and systems. It has reviewed
some existing framework with much focus on the adapted SOA paradigm. This paper has further pro-
posed an architectural framework for IoT which will also be advantageous from the developers’ point of
view. As more devices gets connected to the internet, there is a need for a highly scalable, extensible and
fault tolerant integration framework. Our belief is that adopting the microservice architecture in IoT to
remodel integration frameworks, will enhance the reliability of IoT systems. The proposed framework is
yet to be fully implemented and tested but it presents a direction of investigation for the IoT community
on ways the problem of scalability, fault tolerance, ease of deployment, inter-domain communication,
ease of development and lightweight implementation can be resolved.
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