
Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 96–111, doi:10.4204/EPTCS.386.9

© H. Fernau, L. Kuppusamy, and I. Raman
This work is licensed under the
Creative Commons Attribution License.

When Stars Control a Grammar’s Work

Henning Fernau
Abteilung Informatikwissenschaften

Universität Trier, Germany
fernau@uni-trier.de

Lakshmanan Kuppusamy
School of Computer Science and Engineering

VIT, Vellore, India
klakshma@vit.ac.in

Indhumathi Raman
Department of Computing Technologies,

School of Computing, SRMIST, Chennai, India
indhumar2@srmist.edu.in

Graph-controlled insertion-deletion (GCID) systems are regulated extensions of insertion-deletion
systems. Such a system has several components and each component contains some insertion-
deletion rules. The components are the vertices of a directed control graph. A rule is applied to
a string in a component and the resultant string is moved to the target component specified in the
rule. The language of the system is the set of all terminal strings collected in the final component.
We impose the restriction in the structure of the underlying graph to be a star structure where there is
a central, control component which acts like a master and transmits a string (after applying one of its
rules) to one of the components specified in the (applied) rule. A component which receives the string
can process the obtained string with any applicable rule available in it and sends back the resultant
string only to the center component. With this restriction, we obtain computational completeness for
some descriptional complexity measures.

1 Introduction

Insertion-deletion systems are part of formal languages which are extensively analyzed. The motivation
for the systems comes from both linguistics [14, 16] and molecular biology. The action of inserting or
deleting some strands do occur often in DNA processing [17] and RNA editing [2]. These two operations
together were introduced as a formal languages theory framework in [11] and further studied in [10, 19].
The corresponding grammatical mechanism is called insertion-deletion system (abbreviated as ins-del
system). The insertion operation means inserting a string η in between the strings w1 and w2, whereas
the deletion operation is deleting a substring δ from the string w1δw2.

In the literature, several variants of ins-del systems have been considered. We refer to the survey
article [20] for details concerning the state-of-the-art around 2010. One of the important variants of ins-
del systems is graph-controlled ins-del systems (abbreviated as GCID systems), introduced in [6] and
further studied in [8]. In such a system, the concept of components is introduced, which are associated
with insertion or deletion rules. The transition is performed by choosing any applicable rule from the set
of rules of the current component and by moving the resultant string to the target component specified
in the rule in order to continue processing it. Several restrictions of graph control have been studied,
e.g., matrix ins-del systems (see [18, 5] and more papers cited there), time-varying ins-del systems [1],
or path-controlled ins-del systems [4]. In this paper, we consider star control (which also has been
considered in [9] in an implicit way when dealing with graph-controlled systems with two components.
This models a kind of master-slave system in the sense that the central component always dispatches
work to the slave components who, after finishing their work, return the result to the master component.

http://dx.doi.org/10.4204/EPTCS.386.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

H. Fernau, L. Kuppusamy, and I. Raman 97

k = the number of components
n = max{|η | : (i,(u,η ,v)I, j) ∈ R} m = max{|δ | : (i,(u,δ ,v)D, j) ∈ R}
i′ = max{|u| : (i,(u,η ,v)I, j) ∈ R} j′ = max{|u| : (i,(u,δ ,v)D, j) ∈ R}
i′′ = max{|v| : (i,(u,η ,v)I, j) ∈ R} j′′ = max{|v| : (i,(u,δ ,v)D, j) ∈ R}

Table 1: Size (k;n, i′, i′′;m, j′, j′′) of a GCID system

Graph-controlled insertion-deletion systems whose underlying control graph is a tree are equivalent to
ins-del P systems [13, 8]. Hence, our restriction can be viewed as a special case of ins-del P systems. We
want to point to one technicality here: with P systems (and similarly with several restrictions of graph
control), there is the possibility to stay in the same membrane with the here command (which corresponds
to allowing loops in graph control); in the model that we consider in this paper, this is disallowed: when
the master saw the ‘current work’ (and worked on it one step), it has to pass it to some slave immediately,
and after the slave performed one step, the work is handed back to the master, etc. Therefore, results in
the literature concerning seemingly related models do not always compare well to this star model.

The descriptional complexity of a GCID system is measured by its size s=(k;n, i′, i′′;m, j′, j′′), where
the parameters represent resource bounds as given in Table 1. Slightly abusing notation, the language
class generated by GCID systems of size s is denoted by GCID(s). We attach subscripts P and S when
referring to path-controlled or star-controlled GCID systems, respectively.
The main results of this paper are the following ones.

1. (Theorem 9) RE = GCIDS(6;1,1,0;2,0,0) = GCIDS(6;1,0,1;2,0,0);

2. (Theorem 11) RE = GCIDS(4;2,1,1;1,0,0).

Our proofs are based on the Special Geffert Normal Form of type-0 grammars, which characterizes
the class RE, the recursively enumerable languages. Formal definitions follow in the next section.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in formal language theory. Here,
we recall a few notations for the understanding of the paper. Let N denote the set of positive integers,
and [ℓ . . .k] = {i ∈ N : ℓ≤ i ≤ k}. Given an alphabet (finite set) Σ, Σ∗ denotes the free monoid generated
by Σ. The elements of Σ∗ are called strings or words; λ denotes the empty string. For a string w ∈ Σ∗,
|w| is the length of w and wR denotes the reversal (mirror image) of w. LR and L R are also understood
for languages L and language families L , collecting all reversals of words from L and all reversals of
languages from L , respectively. For the computational completeness results, as our main tool we use
the fact that type-0 grammars in Special Geffert Normal Form (SGNF) describe RE.

Definition 1 A type-0 grammar G = (N,T,P,S) is said to be in SGNF if

• N decomposes as N = N′∪N′′, where N′′ = {A,B,C,D} and N′ contains at least the two nonter-
minals S and S′;

• the only non-context-free rules in P are AB → λ and CD → λ ;

• the context-free rules are of the form (i) S′ → λ , or (ii) X → Y1Y2, where X ∈ N′ \{S′} and Y1Y2 ∈
((N′ \{X})(T ∪{B,D}))∪ ({A,C}(N′ \{X})).

98 When Stars Control a Grammar’s Work

The way the normal form is constructed is described in [6], based on [7]. We can assume that S′

does not appear on the left-hand side of any non-erasing rule. This also means that the derivation in G
undergoes two phases. In phase I, only context-free rules are applied. This phase ends with applying the
context-free deletion rule S′ → λ (which is the only rule that has S′ on its left-hand side). Then only,
non-context-free deletion rules AB → λ and CD → λ are applied in phase II. Notice that the symbol
from N′, as long as present, separates A and C from B and D; this prevents a premature start of phase II.
One of the features of SGNF derivations is that any string that can be derived can contain at most one
substring AB or CD in its so-called center. If such a substring is present, the derivation is in phase II;
also, then no nonterminal from N′ occurs. In phase I, exactly one such nonterminal is present (in the
center). Therefore, we can differentiate two cases within (ii) for X ,Y ∈ N′ \ {S′} with X ̸= Y : either,
we have a rule X → bY , with b ∈ {A,C}, or we have a rule X → Y b, with b ∈ T ∪{B,D}. This case
distinction is often necessary when simulating type-0 grammars in SGNF, as we will see later.

We write ⇒r to denote a single derivation step using rule r, and ⇒G (or ⇒ if no confusion arises)
denotes a single derivation step using any rule of G. Then, L(G) = {w ∈ T ∗ | S ⇒∗ w}, where ⇒∗ is the
reflexive transitive closure of ⇒.

2.1 Graph-Controlled Insertion-Deletion Systems

Definition 2 A graph-controlled insertion-deletion system (GCID for short) with k components is a con-
struct Π = (k,V,T,A,H, i0,F,R), where (i) k is the number of components, (ii) V is an alphabet, (iii)
T ⊆V is the terminal alphabet, (iv) A ⊂V ∗ is a finite set of strings, called axioms, present in the initial
component, (v) H is a set of labels associated (in a one-to-one manner) to the rules in R, (vi) i0 ∈ [1 . . .k]
is the initial component, (vii) F ⊆ [1 . . .k] is the set of final components and (viii) R is a finite set of rules
of the form l : (i,r, j), where l ∈ H is the label of the rule, r is an insertion rule of the form (u,η ,v)I , with
insertion string η and context (u,v), or deletion rule of the form (u,δ ,v)D, with deletion string δ and
context (u,v), where u,v ∈V ∗, η ,δ ∈V+ and i, j ∈ [1 . . .k].

Often, the component is part of the label name. This will also (implicitly) define H. We shall omit the
label l of the rule wherever it is not necessary for the discussion.

We now describe how GCID systems work. Applying an insertion rule of the form (u,η ,v)I means
that the string η is inserted between u and v; this corresponds to the rewriting rule uv → uηv. Similarly,
applying a deletion rule of the form (u,δ ,v)D means that the string δ is deleted between u and v; this
corresponds to the rewriting rule uδv→ uv. A configuration of Π is represented by (w)i, where i∈ [1 . . .k]
is the number of the current component and w ∈V ∗ is the current string. We also say that w has entered
or moved to component Ci. We write (w)i ⇒l (w′) j if there is a rule l : (i,r, j) in R, and w′ is obtained
by applying the insertion or deletion rule r to w. For brevity, we write (w)i ⇒ (w′) j if there is some
rule l in R such that (w)i ⇒l (w′) j. To avoid confusion with traditional grammars, we write ⇒∗ for the
transitive reflexive closure of ⇒ between configurations. The language L(Π) generated by Π is defined
as {w ∈ T ∗ | (x)i0 ⇒∗ (w)i f for some x ∈ A and some i f ∈ F}.

The underlying control graph of a GCID system Π with k components is defined to be a graph with
k nodes labelled C1 through Ck and there exists a directed edge from Ci to C j if there exists a rule
of the form (i,r, j) in R of Π. We also associate an undirected graph on k nodes to a GCID system
of k components as follows: there is an undirected edge from a node Ci to C j if there exists a rule of
the form (i,r1, j) or (j,r2, i) in R of Π. We call a GCID system with k components star-controlled if
its underlying undirected control graph has the edge set {{C1,Ci} | i ∈ [2 . . .k]}. This means that the
corresponding directed control graph may contain arcs like (C1,Ci), (Ci,C1), but no loops.

H. Fernau, L. Kuppusamy, and I. Raman 99

Below, we provide a few examples for a better understanding of how the above-defined system works.
As star-controlled systems have to have at least two components to produce anything non-trivial, it is
interesting to observe that even with only two components, non-regular languages can be obtained.

Example 3 The language {anbn | n ≥ 0} can be generated by a star-controlled insertion-deletion sys-
tem with two components, alphabet {a,b,A,B}, the axiom set {AB} in C1, final component {C1} and
the following rules: r1.1 : (1,(A,a,λ)I,2), r2.1 : (2,(B,b,λ)I,1), r1.2 : (1,(λ ,A,λ)D,2) and r2.2 :
(2,(λ ,B,λ)D,1). A possible derivation of a terminal string is:

(AB)1 ⇒r1.1 (AaB)2 ⇒r2.1 (AaBb)1 ⇒r1.2 (aBb)2 ⇒r2.2 (ab)1.

Observe that (aBb)2 ⇒r2.1 (aBbb)1 is possible, but now the derivation is stuck, as any rule in C1 checks
for the presence of the nonterminal A. Yet, as the nonterminal B is present, the configuration (aBbb)1
cannot lead to a terminal word. The size of this system is (2;1,1,0;1,0,0). A very similar system can
be given for this language that is of size (2;1,0,1;1,0,0). For the very similar language {anbn | n ≥ 1},
even a system with two rules r1 : (1,(a,a,λ),2) and r2 : (2,(b,b,λ),1) would suffice, with axiom ab.

Recall that the class REG of regular languages is the lowest class of the Chomsky hierarchy. It can
be characterized by right-linear grammars whose rules have the form A → Ba or A → λ for nonterminal
symbols A,B and a terminal symbol a. We use this characterization to prove that star-controlled GCID
systems can generate all regular languages. The previous example then shows that even non-regular
languages can be generated.

Theorem 4 Each regular language (and also some non-regular languages) can be generated by a
GCIDS system of size (2;3,0,1;2,0,0), where the initial component C1 is also the only final one.

Later, we will see that with both components being final, many more languages can be described.
Proof We only sketch the construction in the following. For each rule of the form A→ aB of a right-linear
grammar G that we start with, we introduce the insertion rule (λ ,aB$,A) into the first component of the
simulating GCIDS system Π. For each erasing rule A → λ , we add the insertion rule (λ ,a$,A) into the
first component of Π. In both cases, $ is a special marker symbol that is taken care of in the second
component that contains all possible deletion rules of the form (λ ,$A,λ) for any nonterminal A of G.
For instance, if G contains the rules S → aX and X → λ , enabling the derivation S ⇒ aX ⇒ a, then the
simulation is performed as follows: (S)1 ⇒ (aX$S)2 ⇒ (aX)1 ⇒ (a$X)2 ⇒ (a)1 . □

By adding more nonterminal symbols, one can also achieve this result with GCIDS systems of size
(2;2,0,1;2,0,0). We leave it open if GCIDS systems with only two components and only one final
component can generate each recursively enumerable language.

Example 5 The copy language {ww | w ∈ {a,b}∗} can be generated by a star-controlled insertion-
deletion system Π = (3;{a,b,A,B},{a,b},{AB},H,1,{1},R), where H = {r1.1,r1.2,r1.3,r2.1,r2.2,
r3.1} and R is the set of rules depicted in Table 2; Π has size (3;1,0,1;1,0,0). Starting with the axiom AB
in C1, if we apply r1.3, then we can apply r2.2 only in C2 and that produces λ in C1. The nonterminals A
and B serve as markers and if an a is introduced to the left of A in C1 (by r1.1), then one a is introduced
to the left of B (by r2.1) in C2. Similarly, if one b is introduced to the left of A in C1 (by r1.2), then a b
is introduced to the left of B (by r3.1) in C3. This guarantees to have the pattern of the copy language
produced by the system Π. But, there is a caveat here. If one can apply r1.1 in C1, then in C2, r2.2 can
also be applied and in such a case, the pattern of the copy language is not followed. However, then back
in C1, only r1.3 can be applied, which means for the string to move to C2 and there, the derivation stops.

100 When Stars Control a Grammar’s Work

Component C1 Component C2 Component C3
r1.1 : (1,(λ ,a,A)I,2) r2.1 : (2,(λ ,a,B)I,1) r3.1 : (3,(λ ,b,B)I,1)
r1.2 : (1,(λ ,b,A)I,3) r2.2 : (λ ,A,λ)D,1)
r1.3 : (1,(λ ,B,λ)D,2)

Table 2: Star-controlled ins-del system for generating Copya,b = {ww | w ∈ {a,b}∗}.

C3C1C2

(a) Star-shaped control graphs underlying the
star-controlled systems depicted in Exam-
ple 5.

C6 C4

C3

C5

C1C2

(b) Control graphs underlying the star-
controlled systems in our main theorems.

Figure 1: Control graphs underlying different GCID systems in this paper.

As C2 is not a final component, by definition the strings over the terminal alphabet {a,b} that are not
also leading into the final component are not collected into the language generated by Π.

A sample derivation for aabaab is given below.

(AB)1 ⇒r1.1 (aAB)2 ⇒r2.1 (aAaB)1 ⇒r1.1 (aaAaB)2 ⇒r2.1 (aaAaaB)1 ⇒r1.2 (aabAaaB)3

⇒r3.1 (aabAaabB)1 ⇒r1.3 (aabAaab)2 ⇒r2.2 (aabaab)1.

The control graph underlying the construction is shown in Figure 1.

3 Computational Completeness

In this section, we present the main results of our paper. First, we discuss some limitations for getting
computational completeness results and then, we describe two important cases of resource restrictions
that characterize RE.

3.1 GCIDS systems with insertion and deletion length one

In [19], it has been proved that ins-del systems with size (1,1,1;1,1,1) characterize RE. Notice that it is
proved in [12, 15] that ins-del systems of size (1,1,1;1,1,0) or (1,1,0;1,1,1) cannot characterize RE.
It is therefore obvious that we need at least 2 components in a graph-controlled ins-del system of sizes
(1,1,1;1,1,0) and (1,1,0;1,1,1) to characterize RE. In [3], we characterized RE by path-controlled
GCID systems of size (k;1, i′, i′′;1, j′, j′′) for different combinations of k ≥ 1, i′, i′′, j′, j′′.

However, if we impose star structure as the underlying control graph and the resultant string has to
move in/move out during every derivation step, then it is interesting to notice that the context-free rules
of SGNF, namely p : X → bY , q : X → Y b and h : S′ → λ can never be directly simulated by rules of
GCIDS(k;1, i′, i′′;1, j′, j′′) for any value of k ≥ 2, i′, i′′, j′, j′′ ≥ 0. Here, by a direct simulation of a rule r,
we mean that, assuming a sentential form w may yield the sentential form v by applying rule r within the
original grammar (which is, in our case, in SGNF), then the simulating star-controlled GCID system will

H. Fernau, L. Kuppusamy, and I. Raman 101

start in the central component C1 with the sentential form w and derive after a number of steps, possibly,
during the simulation, introducing and deleting symbols specific to r (called markers in the following),
the sentential form v and moving back to C1 to be ready for the next simulation step.

Proposition 6 The context-free rules of a grammar in SGNF, namely p : X → bY and q : X → Y b (with
X ̸= Y), as well as h : S′ → λ , can never be directly simulated by rules of GCIDS(k;1, i′, i′′;1, j′, j′′) for
any value of k ≥ 2, i′, i′′, j′, j′′ ≥ 0.

Proof To directly simulate p : X → bY using insertion-deletion rules, we need two insertion rules (one to
insert b and one to insert Y ; here we recall that the insertion length is 1) and one deletion rule to delete X .
Hence, we need three basic insertion-deletion rules. Further, if we need to introduce r ≥ 1 markers, then
we can insert only one marker at a time using an insertion rule which will account for r insertion rules.
At the end of the derivation, we need to delete all the r markers using r deletion rules (since we can only
delete one symbol at a time). This amounts to having r insertion rules and r deletion rules to deal with
the markers and 3 basic insertion-deletion rules to simulate p : X → bY . This sums up to 2r+3 rules.

We need to distribute these 2r+ 3 rules among the k components of the GCID system. Let C1 be
the central (initial and final) component. As the system is star-structured, in a rule (i,(x,y,z)δ , j),δ ∈
{I,D}, i, j ∈ [1 . . .k], we have i ̸= j, as loops are not allowed, and |{i, j}∩{1}| = 1. Hence, the order
of rule applications in any derivation will start at the central node and then alternate between central
and non-central nodes. Therefore, (i) the last rule of the simulation should be placed in a non-central
component and not in C1 and (ii) the total number of rules for simulation is even. Since 2r+ 3 is not
even, the statement follows. □

By its definition, a derivation of a GCIDS system has to alternate between the central component and
any other component. By putting exactly the same rules in two components and declaring one of the two
components as being central, while both are final, one obtains:

Proposition 7 GCID(1;n, i′, i′′;m, j′, j′′)⊆GCIDS(2;n, i′, i′′;m, j′, j′′) holds for any value of i′, i′′, j′, j′′≥
0 and n,m ≥ 1.

For example, this entails GCIDS(2;1,1,1;1,1,1) = RE and similar computational completeness re-
sults based on what is known for ins-del systems. By way of contrast, computational completeness results
for 2-component graph-controlled systems do not necessarily carry over to our star-controlled systems,
as there, ‘loops’ might be allowed.

3.2 GCIDs systems with insertion or deletion length of more than one

To simplify the presentation and proofs of our further results, the following observations from [3] are
used, adapted to our case.

Proposition 8 [3] Let k,n, i′, i′′,m, j, j′′ be non-negative integers.

1. GCIDS(k;n, i′, i′′;m, j′, j′′) = [GCIDS(k;n, i′′, i′;m, j′′, j′)]R;

2. RE = GCIDS(k;n, i′, i′′;m, j′, j′′) iff RE = GCIDS(k;n, i′′, i′;m, j′′, j′).

Theorem 9 RE = GCIDS(6;1,1,0;2,0,0) and RE = GCIDS(6;1,0,1;2,0,0).

Proof Consider a type-0 grammar G = (N,T,P,S) in SGNF as in Definition 1. We construct a GCID
system Π = (6,V,T,{S},H,1,{1},R) of size (6;1,1,0;2,0,0) such that L(Π) = L(G). The alphabet V
contains rule markers, apart from the symbols of G. More specifically, for each rule γ → δ ∈ P labeled r,
we have r ∈ V . Moreover, if γ → δ ̸= S′ → λ , we also have single-primed markers r′ ∈ V . Finally, for

102 When Stars Control a Grammar’s Work

C1 C2 C3
p1.1 : (1,(X , p,λ)I,2) p2.1 : (2,(λ ,X ,λ)D,1) p3.1 : (3,(p′, pv,λ)I,1)
p1.2 : (1,(p, p′,λ)I,3) p2.2 : (2,(λ , p′′p′′′,λ)D,1)
p1.3 : (1,(p′,b,λ)I,5)

p1.4 : (1,(λ , pp′,λ)D,4)
p1.5 : (1,(p′′′, piv,λ)I,4)
p1.6 : (1,(p′′′,Y,λ)I,2)
q1.1 : (1,(X ,q,λ)I,2) q2.1 : (2,(λ ,X ,λ)D,1) q3.1 : (3,(q′,b,λ)I,1)
q1.2 : (1,(q,q′,λ)I,3)
q1.3 : (1,(q′,Y,λ)I,4)
h1.1 : (1,(S′,h,λ)I,2) h2.1 : (2,(λ ,S′h,λ)D,1)
f 1.1 : (1,(A, f ,λ)I,6) f 2.1 : (2,(λ ,A f ′,λ)D,1)

f 1.2 : (1,(λ , f B,λ)D,2)
g1.1 : (1,(C,g,λ)I,6) g2.1 : (2,(λ ,Cg′,λ)D,1)

g1.2 : (1,(λ ,gD,λ)D,2)
C4 C5 C6

p4.1 : (4,(p′′, p′′′,λ)I,1) p5.1 : (5,(b, p′′,λ)I,1)
p4.2 : (4,(λ , piv pv,λ)D,1)
q4.1 : (4,(λ ,qq′,λ)D,1)

f 6.1 : (6,(B, f ′,λ)I,1)
g6.1 : (6,(D,g′,λ)I,1)

Table 3: Star-controlled GCIDS(6;1,1,0;2,0,0) simulating the rules of SGNF.

context-free rules of the form X → bY , even markers r′′,r′′′,riv,rv ∈V . We refer to Table 3, showing the
simulation of the different rule types of SGNF. The columns of the table correspond to the components
of Π. The rows of Table 3 correspond to the rules simulating the ‘linear rules’ p : X → bY and q : X →Y b,
with X ∈ N′ and b ∈ N′′∪T , h : S′ → λ , as well as f : AB → λ and g : CD → λ .

We now prove that L(G) ⊆ L(Π) as follows. We show that if w ⇒ w′ in G, then (w)1 ⇒∗ (w′)1
according to Π. The claim then follows by induction.
Context-free rule q : X → Y b. Here, w = αXβ and w′ = αY bβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗.
The simulation performs as follows:

(αXβ)1 ⇒q1.1 (αXqβ)2 ⇒q2.1 (αqβ)1 ⇒q1.2 (αqq′β)3 ⇒q3.1 (αqq′bβ)1

⇒q1.3 (αqq′Y bβ)4 ⇒q4.1 (αY bβ)1 .

Context-free rule p : X → bY . Here, w = αXβ and w′ = αbY β for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗.
The simulation performs as follows:

(αXβ)1 ⇒p1.1 (αX pβ)2 ⇒p2.1 (α pβ)1 ⇒p1.2 (α pp′β)3 ⇒p3.1 (α pp′pv
β)1

⇒p1.3 (α pp′bpv
β)5 ⇒p5.1 (α pp′bp′′pv

β)1 ⇒p1.4 (αbp′′pv
β)4 ⇒p4.1 (αbp′′p′′′pv

β)1

⇒p1.5 (αbp′′p′′′piv pv
β)4 ⇒p4.2 (αbp′′p′′′β)1 ⇒p1.6 (αbp′′p′′′Y β)2 ⇒p2.2 (αbY β)1 .

H. Fernau, L. Kuppusamy, and I. Raman 103

One might wonder that the h : S′ → λ and the f : AB → λ rules could easily be simulated by the
rules (1,(λ ,S′,λ)D,1) and (1,(λ ,AB,λ)D,1), respectively. However, the underlying control graph of
our star-controlled GCID forbids loops and hence, we have given a different simulation for these rules.
Since the correctness of the h-rule simulation is trivial, it remains to discuss the simulation of the rule
f : AB → λ . The simulation of g : CD → λ is similar and hence omitted.
Non-context-free rules f : AB → λ . This means that we expect w = αABβ and w′ = αβ for some α ∈
{A,C}∗, β ∈ ({B,D}∪T)∗. Within Π, this can be simulated as follows.

(αABβ)1 ⇒ f 1.1 (αA f Bβ)6 ⇒ f 6.1 (αA f B f ′β)1 ⇒ f 1.2 (αA f ′β)2 ⇒ f 2.1 (αβ)1 .

Conversely, a derivation (w)1 ⇒∗ (w′)1, with w ̸= w′ and w,w′ ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗ has
to start like (w)1 ⇒ (v) j in Π. If some rule from C1 is applied to w, the rule will insert a rule marker
into the string w and branch to C2 (when simulating context-free rules) or to C3 (when simulating non-
context-free rules). The introduction of rule markers in C1 will take care of the non-interference among
the non-context-free and context-free rules. We now discuss the possibilities in detail. In our discussion,
we distinguish between sentential forms containing or not containing a symbol from N′.

Our inductive arguments will also show that, in Π, no sentential form is derivable that contains two
occurrences of symbols from N′. More generally, we can show the following. Assume that we can
derive some configuration (w)1 in Π such that the string v contains no marker symbols, where v = µ(w)
is obtained by applying the morphism µ that acts like the identity on V apart from the letters f , f ′,g,g′

that will be erased. Then the sentential form v is also derivable in G. In particular, if w ∈ T ∗, then v = w,
i.e., each word in L(Π) also belongs to L(G).

We will also prove by induction that, if (w)1 is derivable in Π and if w contains at most one occurrence
of N′ and no markers but possibly f , f ′,g,g′, then also µ(w) is derivable in Π and then, only using
the rules f 1.1, f 6.1, g1.1 and g6.1, we can derive µ(w) in Π from w. This also means that, in each
such string w derivable in Π, the number of occurrences of symbols from { f ,g} equals the number of
occurrences of symbols from { f ′,g′}. We also call this the balance condition. Therefore, we can start
our inductive hypothesis with strings that can be derived both in G and in Π and observe the maintenance
of the balance condition along our arguments.

Let us first assume (by induction) that the sentential form w1 = αXβ for some α ∈ {A,C}∗, β ∈
({B,D} ∪ T)∗ and X ∈ N′ is derivable in G and the configuration (w1)1 is derivable in Π. We will
prove (as induction step) that if (w1)1 ⇒∗ (u)1, w1 ̸= u, and u ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗ is the
first sentential form from {A,C}∗(N′∪{λ})({B,D}∪T)∗ that appears in a derivation of Π in C1, then
w1 ⇒ u holds in G, except from a premature start of simulating non-context-free rules also discuss below
and where we argue that the balance condition is maintained.
Applying f 1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the only nonterminal
from N′, is possible but unintended. (A similar discussion applies to g1.1.) A successful application
yields the configuration (w2)6, with w2 = α1A f α2Xβ , where α1Aα2 = α . Now, the only applicable
rules are f 6.1 or g6.1.We get a configuration (w3)1 with µ(w3) = w1. It can be observed that on w3,
neither f 1.2 nor g1.2 are applicable, as these rules require AB or CD sitting in the center of w1, which
was not the case by assumption. Therefore, we could either continue our journey with inserting further
markers f , f ′,g,g′ (but always maintaining the balance condition) or finally apply r1.1, belonging to a
context-free rule r. Now, observe that, instead of applying r1.1 and then r2.1 (because f 2.1 and g2.1 are
inapplicable), yielding a configuration (u)1, we could also first apply r1.1 and r2.1 to w1, and then the
same f - and g-simulation rules as before, arriving at (u)1 in a different way. This proves (here as part of
the induction step) that, as claimed, we can exchange the sequence of rule applications in a way that we

104 When Stars Control a Grammar’s Work

apply f - and g-simulation rules after the other rules that are meant to simulate the context-free rules. We
also see by induction that the balance condition is always maintained.

Applying q1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the only nonterminal
from N′, yields the configuration (w2)2 with w2 = αXqβ . In C2, all rules (except q2.1 and p2.1) are
guarded by markers and the only applicable rule are q2.1 or p2.1 (in case there is a rule X → b′Y ′

in P) which delete X , yielding (w3)1 = (αqβ)1. Due to the rule markers, apart from the intended rule
q1.2, one could also apply f 1.1 or g1.1. In that case, having moved to C6, f 6.1 or g6.1 are applicable,
yielding some configuration (w′)1 with µ(w′) = w3. As discussed before, we can even continue like
this, but in order to make any further progress, we will have to apply q1.2 in some configuration (w′′)1
with µ(w′′) = w3. As we could also apply the non-context-free simulation rules afterwards, it suffices
to discuss what happens if we apply q1.2 to w3 as intended. Hence, we arrive at the configuration
(w4)3 with w4 = αqq′β . The required rule markers cause q3.1 to be the only applicable rule as desired.
Therefore, we arrive at the configuration (w5)1 = (αqq′bβ)1. Clearly, one could now (again) apply f 1.1
or g1.1, but this would only lead to prematurely introducing the markers f , f ′,g,g′ similar as discussed
before, again always maintaining the balance condition. Therefore, the only applicable rule that needs
to be discussed (apart from the intended one, which is q1.3) is q1.2 (again). With the string αqq′q′bβ ,
we are back to C3. Now, there are two possible subsequent configurations: (a) (αqq′bq′bβ)1, or (b)
(αqq′q′bbβ)1. In Case (a), we claim that there is no way to delete the second occurrence of q′ in the
future. Namely, the only way to delete q′ is if left to it, q is sitting. But as now some b ∈ {B,D}∪T is
to the left of q′, there is no way to introduce q in this position later, because the marker q always works
as a symbol that replaces the former N′-symbol. Therefore, a derivation following (a) cannot terminate.
The situation is different in Case (b). For instance, we can apply q1.3 to string αqq′q′bbβ , followed by
q4.1. Again, we have two configurations to study: (A) (αq′Y bbβ)1 or (B) (αY q′bbβ)1. In Case (A),
we can argue similarly to Case (a) above to see that this configuration cannot lead to a terminal string:
left to q′ will sit some symbol A or C. Case (B) is indeed different. Assuming that only rules of the
form Z → b′Z′ are simulated subsequently, there may be a derivation Y ⇒∗ γX with γ ∈ {A,C}+ that is
simulated by the GCID system as intended. Hence, we see now a configuration (αγXq′bbβ)1 and then,
after a short excursion into C2, we see (αγqq′bbβ)1. Now, we can actually terminate by using the rules
q1.3 and q4.1, leading to (αγY bbβ)1. However, we would arrive at the same string if we had followed
our intended plan. Then, we could get from (αY bβ)1 via (αγXbβ)1 to (αγqbβ)1. Now, after applying
q1.2 and q2.2 as intended, we can also see (αγqq′bbβ)1 and continue as above. This argument is also
valid (by a separate yet straightforward induction) if we happen to produce a string (αq(q′)kbkβ)1 for an
arbitrary k > 1. Therefore, we can avoid this process that we call rule inversion, and always follow our
standard derivation instead. We can hence assume that we apply q1.3 to w5 as desired. Therefore, we
arrive at the configuration (w5)1 = (αqq′Y bβ)4. If we actually apply q4.1, then we arrive at (αY bβ)1 as
intended, proving the inductive step in this case. But by the very structure of this component, no other
rules are applicable.

Applying p1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the only nonterminal
from N′, will insert a marker p to the right of X , yielding (w2)2 = (αX pβ)2. Recall that we are trying to
simulate the rule X → bY for some X ,Y ∈ N′ and b ∈ {A,C}. In C2, all rules (except p2.1 and q2.1) are
guarded by markers and the only applicable rule are q2.1 or p2.1 (in case there is a rule X → b′Y ′ in P)
which delete the nonterminal X , yielding a string w3 = α pβ , i.e., we arrive at the configuration (w3)1.
Since X is deleted in the previous step and there is no p′, p′′, the only applicable rule is p1.2 which inserts
a p′ after p, yielding the configuration (w4)3 = (α pp′β)3. In C3, guarded by rule markers, we have to
apply p3.1 as intended. Hence, we arrive at (w5)1 = (α pp′pvβ)1. If we re-apply p1.2, we achieve

H. Fernau, L. Kuppusamy, and I. Raman 105

an imbalance of the number of occurrences of p and p′. This is problematic insofar, as pp′ is deleted
together. Also, we would have to then re-apply p3.1 again, creating another imbalance. Alternatively, we
could apply f 1.1 or g1.1, which introduces a pair of non-primed and primed f /g-markers prematurely,
but maintaining their balance. This brings us to the conclusion that we should apply p1.3 in (w5)1.

Hence, we arrive at (w6)5 = (α pp′bpvβ)5, with b ∈ {A,C}. In C5, we have to apply a rule that puts
some marker r′′ to the right of an occurrence of b. As b ∈ {A,C}, the b occurring between p′ and pv is
the rightmost of all occurrences of A,C within w6. Let us first discuss what happens if we do apply some
r5.1 (but possibly r ̸= p) to this described rightmost occurrence and mark the situation when some b
within α is affected as (∗), not to forget its discussion. We get to (w7)1 = (α pp′br′′pvβ)1. Apart from
now applying f 1.1 or g1.1, we could also apply p1.2 or p1.3, and finally also p1.4 (as intended). The
scenario of prematurely introducing the f /g-markers has been sufficiently discussed before. If we apply
rule p1.2, we again create an imbalance concerning p/p′. Let us defer the discussion of applying p1.3
at this configuration (w7)1 a bit as (+); we rather discuss applying p1.4. We arrive at the configuration
(w8)4 = (αbr′′pvβ)4. Now, only r4.1 would be applicable, leading to (w9)1 = (αbr′′r′′′pvβ)1. We are
now in safer waters, as we have to use rule r1.5 to get to (w10)4 = (αbr′′r′′′riv pvβ)4, because if we apply
p1.6 directly, we have no chance to delete pv in the future. If we apply r4.1 again on w10, we create
an imbalance between the number of r′′ and r′′′, but this balance is necessary for deleting these markers
in C2. By using r4.2 alternatively on w10, one can see that the only chance to continue the route is when
we have r = p. In that case, we move to C1 with w11 = αbp′′p′′′β . If we now re-apply p1.5, at C4, we
have to apply p4.1 and create an imbalance between p′′ and p′′′, hence preventing us from a terminating
derivation. If we introduce f - or g-markers, we are forced to introduce primed versions in C6; we have
discussed these premature but balanced introductions of these markers before. Hence, we have to discuss
applying p1.6 as intended. We enter C2 with w12 = αbp′′p′′′Y β . Now, we can either delete Y with some
fitting rule s2.1 and return to the configuration (w11)1, hence making no progress, or we apply p2.2 as
intended, finally getting to the configuration (w12)1 = (αbY β)1 as desired.

In order to conclude that the induction step has been shown, we still have to consider two scenarios,
marked as (∗) and (+) above. In (+), we look at (w7)1 = (α pp′br′′pvβ)1 ⇒p1.3 (α pp′bbr′′pvβ)5 .
Assume we apply a rule s5.1 next. As the case when we find b ∈ {A,C} within α is similar to the
discussion (∗) that is still to come, we focus on two cases of configurations: (1) (α pp′bs′′br′′pvβ)1 or
(2) (α pp′bbs′′r′′pvβ)1. In both configurations, we can again apply p1.3, but this makes the whole case
fail even more. We can now derive (under the conclusion that r = p) in the same way as in the main line
of derivation, leading to (αbs′′bY β)1 (Case (1)) or to (αbbs′′Y β)1 (Case (2)). In both cases, there is no
way to make use of s′′, because this means we have to move to C4, or we mis-use another p-type rule
at some point, when p1.4 makes us enter C4 again, but then continuing with the s-markers (using s4.1).
Let us clarify this by assuming that we simulate t : Y → b′Y ′ next. Following the standard simulation up
to t1.4, we get (αbs′′bb′t ′′tvβ)4 (Case (1)) or (αbbs′′b′t ′′tvβ)4 (Case (2)). We could now use s4.1, s1.6
and s2.2 to introduce another nonterminal from N′ at the position of s′′, but behold: we have now another
left-over double-primed marker t ′′ whose removal can only be achieved by switching between two rule
simulations in the ‘next round’. Therefore, we will never be able to terminate this derivation.

For scenario (∗), we reconsider (w6)5 = (α pp′bpvβ)5, with α = α1bα2, so that for a suitable rule r
that should introduce Z ∈ N′, (w7)1 = (α1br′′α2 pp′bpvβ)1. We could try to continue with (w7)1 ⇒p1.4

(α1br′′α2bpv
β)4 ⇒r4.1 (α1br′′r′′′α2bpv

β)1 ⇒r1.6 (α1br′′r′′′Zα2bpv
β)2 ⇒r2.2 (α1bZα2bpv

β)1

but then there is never a chance to lose pv again. Therefore, also this scenario will never see a derivation
producing a terminal string.

106 When Stars Control a Grammar’s Work

Component C1 Component C2 Component C3 Component C4 Component C5
p1.1 : (1,(X , p,λ)I,2) p2.1 : (2,(λ ,X ,λ)D,1) p3.1 : (3,(λ , p′′,λ)D,1) p4.1 : (4,(p, p′,λ)I,1) p5.1 : (5,(λ , pp′,λ)D,1)
p1.2 : (1,(p, p′′,λ)I,4)
p1.3 : (1,(p′,b,λ)I,5)
p1.4 : (1,(p′′,Y,λ)I,3)

Table 4: A direct simulation attempt for a p-rule p : X → bY .

We are now discussing a string w derivable in G and as configuration (w)1 in Π, with w = αABβ , with
α ∈ {A,C}∗ and β ∈ ({B,D}∪T)∗. The case of a string of the form αCDβ can be discussed in a very
similar fashion. First observe that we cannot apply any rule p1.x or q1.x or h1.x due to the absence of
nonterminals from N′ or of required markers. We could in fact start with g1.1, followed by g6.1, and
even repeat this, so that some g-markers are attached to C-occurrences. Similarly, we can consider such
derivations to occur prematurely, because finally we have to use the f -rule as explained next.
Applying f 1.1 to w = αABβ , we get a string w1 by inserting f anywhere after an A-occurrence within w.
Let αA = α1Aα2 indicate this position, i.e., w1 = α1A f α2Bβ . w1 is transferred to component C6. So,
f 6.1 is applied and the string, yielding w2 = α1A f α2β1B f ′β2, which enters C1, where Bβ = β1Bβ2.
Notice that the configuration (w2)1 could have also been created by a premature application of f 1.1
and f 6.1 in some earlier phase of the derivation. This explains how a string that satisfies the balance
condition could finally yield a terminal string, although it is not following the standard simulation as
described in the beginning of the proof. As α2 cannot contain any B-occurrence, now applying f 1.2
necessitates α2 = β1 = λ , and then, w3 = α1A f ′β2 is sent to C2. There, the only applicable rule is f 2.1
as intended, producing w4 = α1β2, sent to C1 as intended. As mentioned at several places, instead of
applying f 1.2 on w2, one could also possibly apply f 1.1 again, or also g1.1. We can consider all these
attempts as premature ones, they only affect the left part of the string and have to be finally successfully
matched by using rules f 1.2 or g1.2, followed by executing another deletion rule in C2.
It could be that a string w = αβ was derived in G (and hence possibly the configuration (w)1 in Π by
induction) with α ∈ {A,C}∗ and β ∈ ({B,D}∪T)∗ and neither α ends with A and β starts with B nor
α ends with C and β starts with D. We can still apply rules f 1.1 or g1.1, moving the resultant string to
C6, where f 6.1 or g6.1 are applicable, moving us back to C1. Yet, the crucial observation is that neither
f 1.2 nor g1.2 are ever applicable now, as they require the presence of the substring AB or CD (within w),
respectively. Only then, the substrings f B or gD can be created.

This concludes our argument concerning the inductive step of the correctness proof of our suggested
simulation.

Finally, Proposition 8 shows that star-controlled GCID systems of size (6;1,0,1;2,0,0) are compu-
tationally complete, as well. □

Remark 10 The reader might wonder if it would be possible to merge some of the components of the
previous construction (Theorem 9), but this will create malicious derivations in each case. Also, the
simulation of a p-rule cannot follow a simple pattern as that of the q-rule (see Rem. 10), as we want to
avoid the derivation of strings with more than one occurrence of a symbol from N′. Here, we explain
why a simple, not complex looking and seeming correct p : X → bY rule simulation does not work with
the size (5;1,1,0;2,0,0). Consider, if we attempt to construct a p-rule simulation for Π as in Table 4.

A sample derivation of p-rule with the size (5;1,1,0;2,0,0) is as follows.

(αXβ)1 ⇒p1.1 (αX pβ)2 ⇒p2.1 (α pβ)1 ⇒p1.2 (α pp′′β)4 ⇒p4.1 (α pp′p′′β)1 ⇒p1.3 (α pp′bp′′β)5

⇒p5.1 (αbp′′β)1 ⇒p4 (αbp′′Y β)3 ⇒p1.4 (αbY β)1.

H. Fernau, L. Kuppusamy, and I. Raman 107

However, the simulation does not always work in the intended way as one need not apply p1.3 and
instead p1.4 can be applied first. Therefore, the corresponding b is not inserted, however the Y has been
inserted. With suitable a Y -rule that (finally) creates X again, later one could eliminate the markers pp′

together and that will be a problem as a malicious string could be generated. For example, consider the
grammar G contains the rules p : X → bY and u : Y → b′X, b,b′ ∈ {A,C}, b ̸= b′, besides some other
rules. Then, with the rules of Table 4, we can have the following derivation.

(αXβ)1 ⇒p1.1,p2.1,p1.2,p4.1,p1.4,p3.1 (α pp′Y β)1 ⇒∗simulating
Y→b′X (α pp′b′Xβ)1 ⇒∗

as earlier for X (α pp′b′pp′Y β)1

⇒p1.3 (α pp′b′pp′bY β)5 ⇒p5.1 (αb′pp′bY β)1 ⇒p1.3 (αb′pp′bbY β)5 ⇒p5.1 (αb′bbY β)1.

We are supposed to get αbb′bY β with G, but we could derive αb′bbY β with Π, but not in G.

Our next computational completeness result even further reduces the deletion complexity, making it
context-free.

Theorem 11 RE = GCIDS(4;2,1,1;1,0,0).

Component C1 Component C2 Component C3 Component C4
p1.1 : (1,(λ , p,X)I,2) p2.1 : (2,(λ ,X ,λ)D,1) p3.1 : (2,(λ , p,λ)D,1)
p1.2 : (1,(p,bY,λ)I,3)
q1.1 : (1,(λ ,q,X)I,2) q2.1 : (2,(λ ,X ,λ)D,1) q3.1 : (2,(λ ,q,λ)D,1)
q1.2 : (1,(q,Y b,λ)I,3)
h1.1 : (1,(λ ,hh′,S′)I,2) h2.1 : (3,(λ ,S′,λ)D,1) h3.1 : (3,(λ ,h,λ)D,1)
h1.2 : (1,(λ ,h′,λ)D,3)
f 1.1 : (1,(λ , f ′,A)I,2) f 2.1 : (2,(A, f ,B)I,1) f 3.1 : (3,(3,(λ , f ′′,λ)D,1) f 4.1 : (4,(f ′, f ′′ f 2, f)I,1)
f 1.2 : (1,(λ ,A,λ)D,4) f 2.2 : (2,(B, f 4,λ)I,1) f 3.2 : (3,(λ , f ′,λ)D,1) f 4.2 : (4,(f 2, f ′′′ f 3, f 4)I,1)
f 1.3 : (1,(λ , f ,λ)D,2) f 2.3 : (λ , f 2,λ)D,1)
f 1.4 : (1,(λ ,B,λ)D,4)
f 1.5 : (1,(λ , f 3,λ)D,3)
f 1.6 : (1,(λ , f ′′′,λ)D,3)
f 1.7 : (1,(λ , f 4,λ)D,2)

Table 5: Star-controlled GCID of size (4;2,1,1;1,0,0) simulating rules of SGNF.

Proof Consider a type-0 grammar G = (N,T,P,S) in SGNF as in Definition 1. We construct a GCID
system Π=(4,V,T,{S},H,1,{1},R) of size (4;2,1,1;1,0,0) such that L(Π)= L(G). The set V contains
the symbols of G as well as some rule markers. We refer to Table 5 for the direct simulation of SGNF. The
rules simulating g : CD → λ are similar to the ones simulating the f : AB → λ rule and hence omitted.

We now prove that L(G)⊆ L(Π). We show that if w ⇒ w′ in G, then (w)1 ⇒∗ (w′)1 according to Π.
From this fact, the claim follows by a simple induction, split into different cases, as discussed now.
Context-free rule p : X → bY . Here, w = αXβ and w′ = αbY β for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗.
The simulation performs as follows:

(w)1 = (αXβ)1 ⇒p1.1 (α pXβ)2 ⇒p2.1 (α pβ)1 ⇒p1.2 (α pbY β)3 ⇒p3.1 (αbY β)1 = w′.

Context-free rule q : X → Y b is simulated in a similar fashion to the simulation of the p-rule.
Context-free rule h : S′ → λ is simulated as follows for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗:

(w)1 = (αS′β)1 ⇒h1.1 (αhh′S′β)2 ⇒h2.1 (αhh′β)1 ⇒h1.2 (αhβ)3 ⇒h3.1 (αβ)1 = w′.

108 When Stars Control a Grammar’s Work

Non-context-free rule f : AB → λ . This means that we expect w = αABβ and w′ = αβ for some α ∈
{A,C}∗, β ∈ ({B,D}∪T)∗. Within Π, this can be simulated as follows.

(αABβ)1 ⇒ f 1.1 (α f ′ABβ)2 ⇒ f 2.1 (α f ′A f Bβ)1 ⇒ f 1.2 (α f ′ f Bβ)4 ⇒ f 4.1 (α f ′ f ′′ f 2 f Bβ)1 ⇒ f 1.3 (α f ′ f ′′ f 2Bβ)2

⇒ f 2.2 (α f ′ f ′′ f 2B f 4
β)1 ⇒ f 1.4 (α f ′ f ′′ f 2 f 4

β)4 ⇒ f 4.2 (α f ′ f ′′ f 2 f ′′′ f 3 f 4
β)1 ⇒ f 1.5 (α f ′ f ′′ f 2 f ′′′ f 4

β)3

⇒ f 3.1 (α f ′ f 2 f ′′′ f 4
β)1 ⇒ f 1.6 (α f ′ f 2 f 4

β)3 ⇒ f 3.2 (α f 2 f 4
β)1 ⇒ f 1.7 (α f 2

β)2 ⇒ f 2.3 (αβ)1.

We next prove that L(Π) ⊆ L(G). More precisely, we show the following (by induction). If (u)1 is
a configuration that is derivable in Π such that u contains the same number of markers from { f ′,g′} as
from { f 4,g4} (we call this property of the symbols from { f ′,g′, f 4,g4} also a balanced situation) and
such that the word u′ that is obtained from u by deleting all symbols from { f ′,g′, f 4,g4} belongs to
(N ∪T)∗, then u is derivable in G. In particular, by induction we can assume that any such u that we
discussed for proving the inductive step satisfies u′ ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗. To avoid clumsy
formulations, we will discuss the markers from { f ′,g′, f 4,g4} only in particular situations and argue why
we maintain the property of being in a balanced situation. Hence, consider a derivation (w)1 ⇒∗ (w′)1,
with w ̸= w′ and w,w′ ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗; it has to start like (w)1 ⇒ (v) j in Π. If some
rule from C1 is applied to w, the rule will insert a rule marker into the string w and move to C2, or an A
or B is deleted and the string moves to C4. The introduction of rule markers in C1 will take care of the
non-interference among the non-context-free and context-free rules. We will now discuss more details.

Let us first assume (by induction) that the sentential form w1 = αXβ for some α ∈ {A,C}∗, β ∈
({B,D}∪ T)∗ and X ∈ N′ is derivable in G and the configuration (w1)1 is derivable in Π. We prove
(as induction step) that if (w1)1 ⇒∗ (u)1, w1 ̸= u, and u ∈ {A,C}∗(N′ ∪{λ})({B,D}∪T)∗ is the first
sentential form in {A,C}∗(N′∪{λ})({B,D}∪T)∗ that appears in a Π-derivation, then w1 ⇒ u in G.

Caveat: The reader might wonder why a context-free deletion of A or B as in rules f 1.2 or f 1.4 could
work at all. But notice that in C4, which is the target component of these rules, the presence of f -style
markers is checked in each of the rules. This prevents any successful derivation that interferes with, say,
a p-rule derivation by deleting an A or a B in the first component, simply because there are no p-rule
simulation rules in C4. We will hence tacitly assume that f 1.2 etc. are not applied within p-simulations.

Applying p1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪ T)∗ and as X ∈ N′ being the only
nonterminal of N′ that is in w1, the marker p will be inserted to the left of X , yielding (w2)2 = (α pXβ)2.
In C2, the only available and applicable rule among the rules meant to simulate context-free rules deletes
the nonterminal X (which is not S′) of N′. This results in (w3)1 = (α pβ)1. Alternatively, rule f 2.2 (or
g2.2) would be applicable in C2, bringing the string back to C1. There, one could return to C2 by using
f 1.1, g1.1, f 1.7 or g1.7. The last two possibilities (if applicable at all) would just undo the previous
step and hence offer no progress in the derivation, or they would exchange an occurrence of g4 with
an occurrence of f 4 or vice versa. The first two mentioned rules would add a symbol from { f ′,g′} to
the string obtained from w3 by previously adding a symbol from { f 4,g4}. Hence, if we think of the
statement that our inductive argument should prove, we keep up a balanced situation as required. Now,
in C1, the rule p1.1 cannot be applied again, as no X ∈ N′ is present. So, the only applicable rule
(within the rules in C1 that are meant to deal with simulating context-free rules) is p1.2 which results in
(w3)3 = (α pbY β)3. In C3, the introduced marker p is deleted and the resultant string w4 = αbY β is sent
to C1, thus the intended and desired derivation is correctly simulated. Notice that we could also apply
f 3.2 or g3.2 instead of p3.1, which would delete some f ′ or g′ that might have been introduced earlier.
However, this would then create an imbalanced situation, with less occurrences of symbols from { f ′,g′}
than from { f 4,g4} within a string in C1. As we will see, such an imbalance can never be resolved, so

H. Fernau, L. Kuppusamy, and I. Raman 109

that such a string will not yield a terminal string. There is one possibility after applying p1.1 and p2.1
that still needs to be discussed. It might be possible to apply f 1.1 on w3 = α pβ . This is only possible if
α = α1Aα2, so that we arrive at (u4)2 = (α1 f ′Aα2 pβ)2. Now, f 2.2 or g2.2 may be applicable, bringing
us back to C1. However, this will maintain a balanced situation as claimed. Moreover, as the reader can
check, this is indeed the only possible continuation, keeping in mind that AB will not occur as a substring
in the present string due to SGNF. So, in various ways, along with a simulation of a context-free rule, we
may add symbols from { f ′,g′, f 4,g4}, but this always happens in a balanced way if it might be fruitful.

The correctness of the simulation of the h-rule is easily seen. Notice that there are again possibilities to
introduce or delete symbols from { f ′,g′, f 4,g4} similar as discussed above for simulating p-rules.

Applying f 1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the marker f ′ will
be inserted to the left of some occurrence of A, yielding (w2)2 = (α1 f ′Aα2Xβ)2, with α = α1Aα2. As
w1 = αXβ indicates that we are simulating phase I of the work of the SGNF grammar G, the substring
AB is absent, preventing us from applying f 2.1. We might continue with f 2.2 or g2.2, though, which
introduces an occurrence of f 4 or g4, respectively. This is one possibility how we can obtain ‘pairs’ of
occurrences of symbols from { f ′,g′} and { f 4,g4}, but we clearly maintain a balanced situation. Still,
we might delete X with p2.1, say, but then we arrive at a typical imbalanced situation. We would have
to apply f 1.1 or f 1.2 or f 1.4 next, as no markers from the context-free rule simulations are present. In
the first case, we see that we maintain an imbalanced situation of which we can never get rid, while in
the second and third case, the derivation is blocked in C4 because of the lack of appropriate f -markers.

We could lead a similar discussion for applying f 1.7 to a string that contains one occurrence of N′-
symbols and at least one occurrence of f 4; in particular, the arguments concerning (im)balance remain
the same, because for this condition, it does not matter whether we add f ′ or delete f 4.

We shall discuss the cases for the f -rule simulation next, including that the rules f 1.i were applied in
a wrong manner. Recall the discussion of the Caveat above which ruled out a premature application
of f 1.2 or of f 1.4. We cannot start with any rules that require the presence of f -markers, apart from
those stemming from a balanced situation that we will discuss below. We therefore discuss a derivation
starting with f 1.1 on w1 as intended. Again by the absence of the marker f ′′, we have to apply f 2.1
next, shifting the discussion of a balanced situation as created after applying f 2.2 to what we say further
down. The role of rule f 2.1 is crucial insofar as it checks that the substring AB is present in the current
string. It is one of the important properties of SGNF that this substring can only occur once in a derived
string, and this also means that we are in phase II of the SGNF derivation. By induction, we can assume
this property also to hold for the string w1 that is under discussion. In other words, we can assume that
w1 = αABβ . Then, after applying f 1.1 and f 2.1, we are in the configuration (w2)1 = (α ′ f ′α ′′A f Bβ)1
with α = α ′α ′′, and α ′′ being a string that is either empty or it starts with an A. The intention would be
to apply f 1.2 on w2. As the marker f 2 is absent, we have to apply f 4.1 now. This is only possible if
α ′′ is empty. Hence, (w2)1 = (α f ′A f Bβ)1, and after applying f 1.2 and f 4.1, we necessarily arrive at
the configuration (w3)1 = (α f ′ f ′′ f 2 f Bβ)1. We now check the other possibilities in configuration (w2)1.
Due to the absence of f 3, f ′′′ and f 4, only f 1.1, f 1.3, or f 1.4 are applicable. If we apply f 1.1, then as
there is no second substring AB nor the f -marker f 2 present, we have to introduce f 4 next to obtain a
configuration (u)1 where u contains two occurrences of f ′ and one occurrence of f and one of f 4. So, on
(u)1, we might apply f 1.2, followed by f 4.1. As argued above for the main line of derivation, this means
that we arrive at a configuration (v)1 with v = α1 f ′α2 f ′ f ′′ f 2 f β1B f 4β2, with α1α2 = α and β1Bβ2 = β .
In fact, we could continue now with the derivation, closely following the main line, the only difference
being an additional f ′ and f 4 being present in the string. This indicates that balanced situations are not
necessarily a problem and also shows how they can arise. On applying f 1.3, we can delete f , but this

110 When Stars Control a Grammar’s Work

takes us back to (w2)2. This analysis tells us that, in configuration (w2)1, we have to apply f 1.2.
Now, we study the configuration (w3)1 = (α f ′ f ′′ f 2 f Bβ)1. If we apply f 1.1, we again have to

introduce an occurrence of f 4 and can then follow the main line of derivation, which will finally lead
to a balanced situation. If we delete A or B, the derivation is stuck in C4. Hence, the only applicable,
promising rule is f 1.3, deleting f and moving to C2. After deleting f 2, we get back to C1 with nearly
the same (im)possibilities as just discussed, except that f 1.3 is no longer available. Therefore, such a
derivation cannot lead to a terminal string. Hence, in C2 the rule f 2.2 must be applied, giving, with
β ′β ′′ = β and β ′ being empty or ending with B, (w3)1 = (α f ′ f ′′ f 2 f Bβ ′ f 4β ′′)1. Again, we might add a
second f ′ with no fruitful continuation now, except for possibly creating other balanced situations finally.
If we delete A, then the derivation is stuck in C4. If we delete f 4 with f 1.7, we have to delete f 2 in C2
(unless we want to un-do f 1.7 by applying f 2.2) and then, whatever we apply next (f 1.1 or f 1.2 or f 1.4),
the derivation is stuck, ignoring the possibility to add more and more occurrences of f ′ and f 4. Therefore,
on w3, we have to apply f 1.4 which deletes one B. In C4, we can only apply any rule if β ′ is empty,
so that f 4.2 is applicable, resulting in (w4)1 = (α f ′ f ′′ f 2 f ′′′ f 3 f 4β)1. The next six rule applications will
delete all six f -markers; several ways to do this are possible. What could go wrong? Introducing a
second f ′-occurrence is again not interesting: it has to be matched by adding a f 4-occurrence; if we
delete f 2 instead, then the addition of f 4 is indirect insofar, as f 1.7 need not be executed to delete f 2.
After applying f 1.5, f 3.1, f 1.6 and f 3.2, we end up with a string from which one could delete any A-
or B-occurrence and try to restart with f 4.2. Yet, now the symbols f ′′′ and f 3 can only be deleted if one
introduces two additional occurrences of { f ′, f ′′}, requiring a complete re-start of the simulation; it is
not possible to get rid of f ′′′ and f 3 otherwise. Such a re-start would require the substring AB which is
currently not present. Hence, (α f 2 f 4β)1 can only be continued as intended, applying f 1.7 and f 2.3.
More on balanced situations. As we have been mentioning these over and over again in the previous argu-
ments, let us briefly discuss possibilities when we do have some balanced occurrences from { f ′,g′, f 4,g4}
in configuration (w1)1, e.g., w1 = αABβ where α ∈ {A,C}∗{ f ′} and β contains exactly one occurrence
from { f 4,g4}. Then, instead of applying f 1.1, we could start the derivation with f 1.7 or g1.7. Notice
that this yields a configuration (w2)2 that could have also been obtained when starting from (α ′ABβ ′)1
and applying f 1.1, where α ′ is obtained from α by deleting f ′ and β ′ is obtained from β by deleting
the unique occurrence of either f 4 or g4. This shows that balanced situations can lead to terminal strings
finally, as they may converge again to the main line of derivation. Importantly, no new terminal strings
can be derived that are not following the possibilities given by G.

This concludes the main arguments concerning the inductive step and hence the claim follows. □

4 Summary and Open Problems

In this paper, we focused on examining the computational power of graph-controlled ins-del systems
with a star as a control graph. We lowered the resource requirements to describe RE, all recursively
enumerable languages. We leave it open to explore the following possibilities.

1. GCIDS(k;2, i′, i′′;1, j′, j′′) ?
= RE for i′+ i′′ ≤ 1 and j′+ j′′ ≤ 1 and some k as small as possible,

2. GCIDS(k′;2,0,0;1, i′, i′′) ?
= RE for i′+ i′′ ≤ 1 and some k′ as small as possible.

Here we only considered GCID systems where the underlying graph is star-controlled and does not
contain loops. One may also consider a tree structure and / or the possibility to allow loops (i.e., rules
have option ‘here’ and the resultant string can stay back in the same component if such rules are applied),
which may give additional power and connect closer to ins-del P systems and also to the results of [9].

H. Fernau, L. Kuppusamy, and I. Raman 111

References

[1] A. Alhazov, R. Freund, S. Ivanov & S. Verlan (2022): Regulated Insertion-Deletion Systems. Journal of
Automata, Languages and Combinatorics 27(1-3), pp. 15–45, doi:10.25596/jalc-2022-015.

[2] R. Benne, editor (1993): RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood.

[3] H. Fernau, L. Kuppusamy & I. Raman (2017): On the computational completeness of graph-
controlled insertion-deletion systems with binary sizes. Theoretical Computer Science 682, pp. 100–121,
doi:10.1016/j.tcs.2017.01.019.

[4] H. Fernau, L. Kuppusamy & I. Raman (2019): On path-controlled insertion-deletion systems. Acta Infor-
matica 56(1), pp. 35–59, doi:10.1007/s00236-018-0312-2.

[5] H. Fernau, L. Kuppusamy & I. Raman (2021): On the generative capacity of matrix insertion-deletion sys-
tems of small sum-norm. Natural Computing 20(4), pp. 671–689, doi:10.1007/s11047-021-09866-y.

[6] R. Freund, M. Kogler, Y. Rogozhin & S. Verlan (2010): Graph-Controlled Insertion-Deletion Systems. In
I. McQuillan & G. Pighizzini, editors: Proceedings Twelfth Annual Workshop on Descriptional Complexity
of Formal Systems, DCFS, EPTCS 31, pp. 88–98, doi:10.4204/EPTCS.31.11.

[7] V. Geffert (1991): Normal forms for phrase-structure grammars. RAIRO Informatique théorique et Appli-
cations/Theoretical Informatics and Applications 25, pp. 473–498, doi:10.1051/ita/1991250504731.

[8] S. Ivanov & S. Verlan (2014): About One-Sided One-Symbol Insertion-Deletion P Systems. In A. Alhazov,
S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg & A. Salomaa, editors: Membrane Computing - 14th
Int. Conf., CMC 2013, LNCS 8340, Springer, pp. 225–237, doi:10.1007/978-3-642-54239-8_16.

[9] S. Ivanov & S. Verlan (2017): Universality and Computational Completeness of Controlled Leftist Insertion-
Deletion Systems. Fundamenta Informaticae 155(1-2), pp. 163–185, doi:10.3233/FI-2017-1580.

[10] L. Kari, Gh. Păun, G. Thierrin & S. Yu (1999): At the crossroads of DNA computing and formal languages:
Characterizing recursively enumerable languages using insertion-deletion systems. In: Discrete Mathematics
and Theretical Computer Science, DIMACS 48, AMS, pp. 329–338, doi:10.1090/dimacs/048/23.

[11] L. Kari & G. Thierrin (1996): Contextual Insertions/Deletions and Computability. Information and Compu-
tation 131(1), pp. 47–61, doi:10.1006/inco.1996.0091.

[12] A. Krassovitskiy, Y. Rogozhin & S. Verlan (2008): Further Results on Insertion-Deletion Systems with One-
Sided Contexts. In C. Martín-Vide, F. Otto & H. Fernau, editors: Language & Automata Theory & Applica-
tions, LATA, LNCS 5196, Springer, pp. 333–344, doi:10.1007/978-3-540-88282-4_31.

[13] S. N. Krishna & R. Rama (2002): Insertion-Deletion P Systems. In N. Jonoska & N. C. Seeman, editors:
DNA Computing, 7th Int. Workshop on DNA-Based Computers, 2001, LNCS 2340, Springer, pp. 360–370,
doi:10.1007/3-540-48017-X_34.

[14] S. Marcus (1969): Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées 14, pp.
1525–1534.

[15] A. Matveevici, Y. Rogozhin & S. Verlan (2007): Insertion-Deletion Systems with One-Sided Contexts. In:
MCU, LNCS 4664, Springer, pp. 205–217, doi:10.1007/978-3-540-74593-8_18.

[16] Gh. Păun (1997): Marcus Contextual Grammars. Studies in Linguistics and Philosophy 67, Kluwer,
doi:10.1007/978-94-015-8969-7_4.

[17] Gh. Păun, G. Rozenberg & A. Salomaa (1998): DNA Computing: New Computing Paradigms. Springer,
doi:10.1007/978-3-662-03563-4.

[18] I. Petre & S. Verlan (2012): Matrix insertion-deletion systems. Theoretical Computer Science 456, pp. 80–88,
doi:10.1016/j.tcs.2012.07.002.

[19] A. Takahara & T. Yokomori (2003): On the computational power of insertion-deletion systems. Natural
Computing 2(4), pp. 321–336, doi:10.1023/B:NACO.0000006769.27984.23.

[20] S. Verlan (2010): Recent Developments on Insertion-Deletion Systems. The Computer Science Journal of
Moldova 18(2), pp. 210–245.

https://doi.org/10.25596/jalc-2022-015
https://doi.org/10.1016/j.tcs.2017.01.019
https://doi.org/10.1007/s00236-018-0312-2
https://doi.org/10.1007/s11047-021-09866-y
https://doi.org/10.4204/EPTCS.31.11
https://doi.org/10.1051/ita/1991250504731
https://doi.org/10.1007/978-3-642-54239-8_16
https://doi.org/10.3233/FI-2017-1580
https://doi.org/10.1090/dimacs/048/23
https://doi.org/10.1006/inco.1996.0091
https://doi.org/10.1007/978-3-540-88282-4_31
https://doi.org/10.1007/3-540-48017-X_34
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/978-94-015-8969-7_4
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1016/j.tcs.2012.07.002
https://doi.org/10.1023/B:NACO.0000006769.27984.23

	Introduction
	Preliminaries
	Graph-Controlled Insertion-Deletion Systems

	Computational Completeness
	GCID_S systems with insertion and deletion length one
	GCID_s systems with insertion or deletion length of more than one

	Summary and Open Problems

