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In this paper we deal with three models of weighted automata that take weights in the field of real

numbers. The first of these models are classical weighted finite automata, the second one are crisp-

deterministic weighted automata, and the third one are weighted automata over a vector space. We

explore the interrelationships between weighted automata over a vector space and other two models.

1 Introduction

Weighted automata belong to the fundamental models of computation in computer science. They can be

understood as an extension of conventional automata in which the transitions and states carry numeri-

cal or other values called weights. These weights may model quantitative properties like the cost, the

amount of resources needed for the execution of a transition, the reliability or probability of the success-

ful execution of the transitions, or many other things. Different models of weighted automata differ in

the algebraic structures within which the weights are taken, as well as in the way in which these weights

are manipulated.

In this paper, we deal with weighted automata that take weights in the field of real numbers. Such

automata have been the subject of study since the very beginning of the theory of weighted automata,

since the seminal work of Schützenberger [23] who studied weighted automata over the field. Today, they

are very popular due to their significant applications, primarily in formal specification and verification of

systems, as well as in the field of machine learning, where they are successfully used as an alternative to

recurrent neural networks. We discuss three models of weighted automata with weights taken in the field

of real numbers.

The first of these models are classical weighted finite automata. The common way of viewing deter-

ministic and nondeterministic finite automata as labelled graphs has also been used for weighted finite

automata from the very beginning of their studying. From such a point of view, a weighted finite au-

tomaton is represented by a directed multi-graph whose edges carry two labells, the input letter and the

weight, while nodes carry two weights, the initial and terminal weight. The computation along a path

in the graph is performed by concatenation of the input letters and multiplication of the initial weight

of the starting node, the weights of edges along the path, and the terminal weight of the final node, and

then the sum of the weights of all paths labelled with the same input word is computed and assigned

to this input word. This determines the behavior of the considered weighted finite automaton, that is,

the word function computed by that automaton. Such an understanding of the behaviour can be called
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the dept-first semantics. Another way of looking at weighted finite automata, through vector and matrix

operations, has also been present since their very beginnings. From that point of view, the behaviour of

a weighted finite automaton can be expressed as the product of the row vector representing the initial

weights, matrices representing the weights of the transitions induced by input letters, and the column

vector representing the terminal weights. Such a representation of a weighted finite automaton is called a

linear representation, while such an understanding of the behaviour can be called the breadth-first seman-

tics. In the case of weighted finite automata over a semiring these two semantics are the same. The linear

algebraic approach proved to be extremely powerful and useful, especially in the study of simulations

and bisimulations, as well as in the reduction of the number of states. That approach was successfully

applied to nondeterministic finite automata [8], fuzzy finite automata [9, 10, 11, 25, 24] and weighted

finite automata over an additively-idempotent semiring [13], and research is underway in which that ap-

proach is applied in the context of weighted automata over the max-plus semiring and the field of real

numbers. The mentioned approach also plays a key role in this paper.

The second model of weighted automata that we deal with here are the so-called crisp-deterministic

weighted automata. These are classical automata with a single initial state and deterministic transitions

in which the set of terminal states is replaced by a function which assigns a terminal weight to each

state. When such an automaton starts working from the initial state and performs a sequence of transi-

tions conducted by a given input word, the weight assigned to that word is the terminal weight of the

destination state. Those automata were studied for the first time in [16], in the context of fuzzy automata,

and the most general definition of crisp-deterministic weighted automata was given in [17]. The name

crisp-deterministic was introduced in [7] to distinguish it from a related type of automata for which the

name deterministic weighted automata is used. An extensive study of crisp-deterministic weighted au-

tomata was carried out in [17], and in [7, 16, 18, 19, 20, 22] various procedures for converting a weighted

finite automaton into an equivalent crisp-deterministic weighted automaton were provided. Such proce-

dures are called crisp-determinization. If we allow a crisp-deterministic weighted automaton to have an

infinite set of states, as we do in this paper, then any weighted finite automaton can be converted into

an equivalent crisp-deterministic weighted automaton, and the basic problem is to perform such a con-

version that will provide an equivalent crisp-deterministic weighted automaton with a finite number of

states, as small as possible. For information on crisp-determinization of weighted tree automata we refer

to [14, 15].

The main role in the crisp-determinization is played by the concept of the Nerode automaton assigned

to the weighted finite automaton that is determinized. The construction of the Nerode automaton was first

introduced in [16] as a counterpart to the accessible subset construction on which the determinization

of classical nondeterministic finite automata is based. According to that construction, the states of a

Nerode automaton are vectors with entries from the underlying structure of weights, but in the mentioned

papers dealing with crisp-determinization, such nature of states was neglected, and the Nerode automaton

was considered as an ordinary crisp-deterministic weighted automaton. If the vector nature of states is

taken into account, this leads us to the third model of weighted automata that is considered here, to

weighted automata over a vector space or weighted automata with vector states. Various forms of such

automata were studied in [2, 3, 4, 5, 12, 21], and a related model of automata, called automata with

fuzzy states, was studied within the framework of fuzzy automata theory (see [26] and sources cited

there). The concept of a weighted automaton over a vector space discussed here differs slightly from

the corresponding concepts studied in the cited articles. The first difference concerns the underlying

vector space. Except in [12], in all the other mentioned articles, it is assumed that this vector space is

finite-dimensional. Here we not only allow that space to be infinite-dimensional, but also introduce an

extremely interesting weighted automaton over an infinite-dimensional space, the so-called derivative
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automaton. The second difference concerns the set of states of these automata. In all the mentioned

articles, except in [4], states are assumed to be all vectors from the underlying vector space V . However,

in that case the set of states is always infinite and a huge number of states are unreachable from the initial

state, and therefore redundant. For this reason, we take the set of states to be a subset of V , which can be

both finite and infinite. The third difference relates to transition functions. In almost all cited articles, the

transition functions induced by the input letters were required to be linear operators on V . In [21], a more

general model of weighted automata over a vector space was proposed, where the transition functions do

not have to be linear. This leads to the distinction between linear and nonlinear weighted automata over

a vector space. Here we give a definition of a linear weighted automaton over a vector space which also

includes the cases when the set of states is not the entire vector space and when the underlying vector

space is infinite-dimensional.

This paper is the beginning of our extensive investigations of weighted automata with weights taken

in the field of real numbers, and our aim here is to examine some general relations between weighted

automata over vector spaces and other two models. First, by Theorem 4.1, we show that any crisp-de-

terministic weighted automaton can be naturally turned into a language-equivalent weighted automaton

over a vector space, where the set of vector states can be any set of vectors that has the same cardinal-

ity as the set of states of that crisp-deterministic weighted automaton. Then by Theorem 4.2 we show

that any finite-dimensional linear weighted automaton over a vector space can be turned into a com-

pletely language-equivalent weighted finite automaton, and conversely, any weighted finite automaton

can be turned into a completely language-equivalent finite-dimensional linear weighted automaton over

a vector space. Actually, we show that the previously mentioned Nerode automaton of a weighted finite

automaton A is a finite-dimensional linear weighted automaton over a vector space that is completely

equivalent to A . Theorem 4.3 gives us an elegant procedure for checking whether a given finite weighted

automaton over a vector space is linear. At the end of the paper, we introduce the concept of the derivative

automaton of a given word function and prove that it is a linear weighted automaton over a vector space

that computes this word function and generates its prefix closure. In addition, we show that the derivative

automaton is a minimal weighted automaton over a vector space which computes this word function.

2 Preliminaries

Throughout this paper, N denotes the set of all natural numbers (without zero) and R denotes the field of

real numbers. For i, j ∈ N such that i ≤ j we use the notation [i.. j] = {k ∈N | i ≤ k ≤ j}.

A vector space over R is a triple (V,+, ·) such that:

∗ V is a non-empty set, whose members are called vectors;

∗ + : V ×V →V given by + : (α ,β ) 7→ α +β , for α ,β ∈V , is the vector addition operation;

∗ · : R×V →V given by · : (r,α) 7→ r ·α , for r ∈R, α ∈V , is the scalar multiplication operation;

∗ vector addition and scalar multiplication satisfy the following axioms:

(V1) (V,+) is a commutative group,

(V2) r · (α +β ) = r ·α + r ·β ,

(V3) (r+ s) ·α = r ·α + s ·α ,

(V4) (r · s) ·α = r · (s ·α),

(V5) 1 ·α = α ,

for all r,s ∈ R and α ,β ∈V .
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Note that a vector space over an arbitrary field can be defined in the same way.

The basic example of a vector space over R is the vector space R
n consisting of all n-tuples of

real numbers, with vector addition and scalar multiplication defined coordinatewise. Another example

of a vector space over R that is important here is the vector space R
T consisting of all functions from

a set T into R, with vector addition and scalar multiplication defined by (α +β )(t) = α(t)+β (t) and

(r ·α)(t) = r ·α(t), for all α ,β ∈ R
T , r ∈ R and t ∈ T . Such vector spaces are called function spaces.

Let V and W be vector spaces over R. A function h : V → W is called a homomorphism or linear

transformation of V into W if h(α + β ) = h(α) + h(β ) and h(r ·α) = r · h(α), for all α ,β ∈ V and

r ∈ R. If h is a bijective homomorphism, then it is called an isomorphism of V into W , and we say

that V and W are isomorphic vector spaces. A vector space V over R is said to be finite-dimensional if it

is isomorphic to the vector space R
n, for some n ∈ N. In this case n is the unique natural number having

this property and it is called the dimension of V . A vector space which is not finite-dimensional is called

inifinite-dimensional. A homomorphism (linear transformation) of a vector space V into itself is called a

linear operator on V .

Let V be a vector space over R. A linear combination of vectors α1,α2, . . . ,αk ∈V is any expression

of the form r1 ·α1 + r2 ·α2 + · · ·+ rk ·αk, where r1,r2, . . . ,rk ∈ R. For any set S ⊆V , the set of all linear

combinations of vectors from S is called the span of S and denoted by span(S). In other words,

span(S) = {α ∈V |(∃k ∈N)(∃α1,α2, . . . ,αk ∈ S)(∃r1,r2, . . . ,rk ∈R)α = r1 ·α1+r2 ·α2+ · · ·+rk ·αk}.

It is well-known that span(S) is a vector space with vector addition and scalar multiplication inherited

from V , i.e., it is a subspace of V .

Given natural numbers m,n ∈ N. A matrix of type m×n with entries in the field of real numbers R,

or a real m×n-matrix, is defined as a mapping M : [1..m]× [1..n] → R. For a pair (i, j) ∈ [1..m]× [1..n]
the value M(i, j) is called the (i, j)-entry of the matrix M. The set of all real matrices of type m× n is

denoted by R
m×n. Similarly, a vector of length n with entries in R, or real vector is defined as a mapping

ν : [1..n] → R. For each i ∈ [1..n] the value ν(i) is called the ith entry or ith coordinate of the vector ν .

The set of all real vectors of length n is denoted by R
n.

The zero matrix of type m× n, denoted by Om×n, is a matrix of type m× n whose all entries are 0.

Similarly, the zero vector of length n, denoted by on, is a vector of length n whose all entries are 0. For

each n ∈ N, a matrix of type n× n is called a square matrix of order n. The identity matrix of order n,

denoted by In, is a square matrix of order n which satisfies In(i, i) = 1, for each i ∈ [1..n], and In(i, j) = 0,

for all i, j ∈ [1..n] such that i 6= j. The transpose of a matrix M is denoted by M⊤. For a matrix M ∈R
m×n

and k ∈ [1..n], by ck(M) we denote the kth column vector of M.

For all pairs of matrices from R
m×n the matrix addition is defined pointwise:

(M+N)(i, j) = M(i, j)+N(i, j), (1)

for all M,N ∈ R
m×n

, i ∈ [1..m] and j ∈ [1..n]. It is an associative and commutative operation on R
m×n,

and in particular, (Rm×n
,+,Om×n) forms a commutative monoid. The matrix product is defined between

matrices from R
m×n and R

n×p as follows: for M ∈ R
m×n and N ∈R

n×p their product is a matrix M ·N ∈
R

m×p with entries given by

(M ·N)(i,k) =
n

∑
j=1

M(i, j) ·M( j,k), (2)

for all (i, j) ∈ [1..m]× [1..p]. The matrix product is associative whenever it is defined, i.e., (M ·N) ·P =
M · (N ·P), for all M ∈ R

m×n, N ∈ R
n×p and P ∈ R

p×q. In particular, (Rn×n
,+, ·,On×n, In) is a semiring.
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Given a matrix M ∈ R
m×n and vectors µ ∈ R

m and ν ∈ R
n. When µ is treated as a matrix of type 1×m

(row vector) and ν as a matrix of type n× 1 (column vector), the vector-matrix product µ ·M and the

matrix-vector product M ·ν are defined as matrix products. The scalar product or dot product of vectors

µ ,ν ∈ R
n is an element of R given by

µ ·ν =
n

∑
i=1

µ(i) ·ν(i). (3)

A matrix M ∈ R
m×n is said to be in the row echelon form if it satisfies the following properties:

∗ If a row of M does not consist entirely of zeros, then the first nonzero entry in this row is 1. It is

called a leading 1.

∗ If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of

the matrix M.

∗ In any two successive rows of M that do not consist entirely of zeros, the leading 1 in the lower

row occurs farther to the right than the leading 1 in the higher row.

Moreover, M is said to be in the reduced row echelon form if, in addition to these three properties, it also

satisfies the condition

∗ Every column of M that contains a leading 1 has zeros everywhere else.

Every matrix N ∈ R
m×n can be transformed to a row echelon form or a reduced row echelon form by

applying some sequence of elementary row operations (multiplying a row by a nonzero scalar, inter-

changing two rows, and adding a multiple of one row to another). It should be noted that the reduced

row echelon form of the matrix N is unique, in the sense that reducing the matrix N to the reduced row

echelon form by applying any sequence of elementary row operations always yields the same matrix

in the reduced row echelon form. This matrix will be denoted by RREF(N). The rank of a matrix N,

denoted by rank(N), is defined as the number of nonzero rows in RREF(N).

For matrices M1 ∈ R
m×n1 , M2 ∈ R

m×n2 , . . . , Mk ∈ R
m×nk , where k,m,n1,n2, . . . ,nk ∈ N, by concate-

nating them from left to right we obtain a matrix [M1 |M2 | . . . |Mk ]∈R
m×n, where n= n1+n2+ · · ·+nk,

which is called the augmented matrix (obtained from M1, M2,. . . , Mk).

For undefined notions and notation concerning vector spaces, vectors and matrices we refer to the

book [1].

3 Three models of weighted automata

In terms of real matrices and their properties, we will investigate three models of weighted automata with

weights in the field of real numbers.

3.1 Weighted finite automata

Let X be an alphabet. A weighted finite automaton over R and X is defined as a tuple A = (A,σ ,δ ,τ),
where A is a non-empty finite set, while σ ,τ : A → R and δ : A×X ×A → R. The function δ is often

replaced by the family of functions {δx}x∈X , where δx : A×A → R is given by δx(a,b) = δ (a,x,b), for

all a,b ∈ A and x ∈ X . We call A the set of states, σ the initial weights function, τ the terminal weights

function, and δ and δx, x ∈ X , the transition weights functions.
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The behavior of the weighted finite automaton A is a word function JAK : X∗ → R defined by

JAK(u) = ∑
(a0,a1,...,ak)∈Ak+1

σ(a0) ·δ (a0,x1,a1) ·δ (a1,x2,a2) · · ·δ (ak−1,xk,ak) · τ(ak), (4)

for u = x1x2 . . .xk ∈ X+, x1,x2, . . . ,xk ∈ X , and

JAK(ε) = ∑
a∈A

σ(a) · τ(a). (5)

We say that A computes the function JAK.

Assume that n is the number of elements of A, i.e., A = {a1,a2, . . . ,an}. In many situations, instead

of as functions, it is more convenient to treat σ and τ as vectors in R
n, and δx, x ∈ X , as n× n matrices

with entries in R. In other words, σ will be identified with a vector in R
n whose ith coordinate is σ(ai),

and τ will be identified with a vector in R
n whose ith coordinate is τ(ai). In order to clearly distinguish

between matrices and vectors, we will use capital letters of the Latin alphabet to denote matrices, while

vectors will be denoted by small letters of the Greek alphabet. Therefore, {Mx}x∈X will be a family of

n×n matrices over R such that the (i, j)-entry of Mx is equal to δx(ai,a j). A weighted finite automaton

A is then treated as a tuple A = (n,σ ,{Mx}x∈X ,τ), where we cal n the dimension, σ the initial weights

vector, τ the terminal weights vector, and Mx, x ∈ X , the transition weights matrices of A . We cal this

tuple the linear representation of the weighted finite automaton A .

When A is given by the linear representation, its behavior is represented by

JAK(u) = σ ·Mx1
·Mx2

· · ·Mxk
· τ = σ ·Mu · τ , (6)

for u = x1x2 . . .xk ∈ X+, x1,x2, . . . ,xk ∈ X , where Mu = Mx1
·Mx2

· · ·Mxk
, and

JAK(ε) = σ · τ . (7)

In applications of automata in the theory of discrete event systems, apart from the function JAK
computed by the automaton A , another function plays an important role – the function JAKg generated

by the automaton A . For a weighted finite automaton A = (n,σ ,{Mx}x∈X ,τ) this function can be defined

with:

JAKg(u) = ‖σu‖∞, (8)

for every u ∈ X∗, where σu = σ ·Mu, for u ∈ X+, and σε = σ , while ‖ · ‖∞ denotes the maximum norm

(called also a uniform norm) on R
n that is given by

‖α‖∞ = max
i∈[1..n]

|αi|, (9)

for each α = (α1,α2, . . . ,αn) ∈ R
n.

Let us note that in the case of convential nondeterministic finite automata, JAKg is the language con-

sisting of all words for which a transition is defined, i.e., of all words which ”lead somewhere”(cf. [6]). A

nondeterministic finite automaton can be considered as a weighted finite automaton over the two-element

Boolean semiring, and then JAKg consists of all words u for which σu is a non-zero Boolean vector, i.e.,

for which

max
i∈[1..n]

|αi|= 1,
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where σu = (α1,α2, . . . ,αn) ∈ {0,1}n. From conventional nondeterministic finite automata, such a defi-

nition was also extended to the case of fuzzy finite automata, where JAKg(u) is interpreted as the degree

to which the word u leads somewhere. A similar interpretation can be given here as well, when it comes

to weighted finite automata over the field of real numbers, where JAKg(u) = ‖σu‖∞ could be interpreted

as the maximal probability of the existence of a transition determined by u, i.e. the probability that u

leads somewhere. In order for this to be consistent with the conventional view of probability, the values

for ‖σu‖∞, which are always non-negative, can be translated by some monotone function (for example,

by the function 1− e−x), to values from the real unit interval [0,1].

3.2 Crisp-deterministic weighted automata

Another model of weighted automata is a crisp-deterministic weighted automaton, which is defined as a

tuple D = (D,d0,∆,θ), where D is a non-empty set of states, d0 ∈ D is a distinguished state that is called

the initial state, ∆ : D×X → D is a function called the transition function, and θ : D → R is a function

called the terminal weights function, or the terminal weights vector, if θ is considered as a vector in the

space R
D. Here it is not necessary that the set D is finite, so we will also allow the possibility that D is

infinite. If the set of states D is finite, then D is called a finite crisp-deterministic weighted automaton

A finite crisp-deterministic weighted automaton can be considered as a special weighted finite au-

tomaton A = (D,σ ,δ ,τ) in which for every a ∈ D and x ∈ X there exists a′ = ∆(a,x) ∈ D such that

δ (a,x,a′) = 1, while δ (a,x,b) = 0, for every b ∈ D \ {a′}, and there exists a ∈ D such that σ(a) = 1,

while σ(b) = 0, for every b ∈ D \ {a} (then we assume that d0 = a). In other words, a finite crisp-

deterministic weighted automaton is a weighted finite automaton with a single initial state and a deter-

ministic transition function, in which all weights are concentrated in the terminal weights vector.

The transition function ∆ of a crisp-deterministic weighted automaton D = (D,d0,∆,θ) extends to a

function ∆∗ : D×X∗ → D by putting ∆∗(a,ε) = a and ∆∗(a,ux) = ∆(∆∗(a,u),x), for all a ∈ D, u ∈ X∗

and x ∈ X , and the behavior JDK : X∗ → R of D is given by

JDK(u) = θ(∆∗(d0,u)), (10)

for every u ∈ X∗.

From the transition function ∆∗ : D×X∗ → D we can extract a family of functions {∆u}u∈X∗ , where

∆u : D → D is defined by ∆u(a) = ∆∗(a,u), for all u ∈ X∗ and a ∈ D. These functions will be also called

transition functions. If u = x1x2 . . .xk, for x1,x2, . . . ,xk ∈ X , then

∆u(a) = ∆xk
(. . . (∆x2

(∆x1
(a)))),

for every a ∈ D, that is, ∆u is the composition ∆u = ∆x1
∆x2

· · ·∆xk
of transition functions ∆x1

,∆x2
, . . . ,∆xk

.

3.3 Weighted automata over a vector space

Let V be a vector space over the field R of real numbers. The third model of weighted automata is a

weighted automaton over a vector space (with vector states), defined as a tuple A = (S,σ ,δ ,Θ), where

S ⊆ V is a nonempty set of vectors, called the set of vector states, σ ∈ S is a vector called the initial

vector state, δ : S×X → S is a deterministic transition function, and Θ : S → R is a function called the

terminal weights function. Here we also allow S to be infinite. Furthermore, in some sources S is taken

to be the entire space V , but here we allow S to be only a subset of the space V to enable it to be finite. If

the set S of vector states is finite, then A is called a finite weighted automaton over a vector space, and



74 Weighted Automata over Vector Spaces

if V is a finite-dimensional vector space of dimension n, then A is also said to be a finite-dimensional

weighted automaton over a vector space of dimension n. If the cardinality of the set of states of A is less

than or equal to the cardinality of the set of states of any other weighted automaton over the vector space

V , that we say that A is a minimal weighted automaton over the vector space V .

As with crisp-deterministic weighted automata, δ can be extended to a function δ ∗ : S×X∗ → S by

δ ∗(α ,ε) = α and δ ∗(α ,ux) = δ (δ ∗(α ,u),x), for all α ∈ S, u∈ X∗
,x ∈ X , and the function δ ∗ determines

a family of functions {δu}u∈X∗ , where δu : S → S is defined by δu(α) = δ ∗(α ,u), for all u∈X∗ and α ∈ S.

These functions are also called transition functions. If u = x1x2 . . .xk, for x1,x2, . . . ,xk ∈ X , then

δu(α) = δxk
(. . . (δx2

(δx1
(α)))),

for every α ∈ V , that is, δu is the composition δu = δx1
δx2

· · ·δxk
of transition functions δx1

,δx2
, . . . ,δxk

.

Then A can be equivalently represented as a tuple A = (S,σ ,{δx}x∈X ,Θ). In addition, for every u ∈ X∗,

with σu we denote a vector from S given by σu = δ ∗(σ ,u) = δu(σ).
The behavior JAK : X∗ → R of the weighted automaton A over a vector space V is given by

JAK(u) = Θ(δ ∗(σ ,u)), (11)

for every u ∈ X∗. On the other hand, the function JAKg generated by A is defined with

JAKg(u) = ‖δ ∗(σ ,u)‖ = ‖δu(σ)‖, (12)

for each u ∈ X∗, where ‖ ·‖ denotes some norm on the vector space V . If V is a finite-dimensional space

we will assume that ‖ · ‖ is the maximum norm ‖ · ‖∞ (see (9)), and if V = R
T is some function space

(later we will consider the function space R
X∗

), then we will assume that ‖ · ‖ is the supremum norm

‖ · ‖∞ (also called the uniform norm) that is given by

‖ f‖∞ = sup
t∈T

| f (t)|,

for every f : T → R (clearly, for T = [1..n] we obtain (9), i.e., the maximum norm).

4 Relationships between different types of weighted automata

Let A and B be weighted automata of any of the three types discussed in the previous section, where

they can be of different types. If JAK = JBK, then A and B are said to be language-equivalent. On the

other hand, if each of these automata is a weighted finite automaton or a weighted automaton over a

vector space, where they do not have to be of the same type, and if JAK= JBK and JAKg = JBKg, then A

and B are said to be completely language-equivalent.

Theorem 4.1 Let D = (D,d0,∆,θ) be a crisp-deterministic weighted automaton over R, let V be a

vector space and let S ⊆V be a set of vectors which has the same cardinality as D.

Then D can be turned into a language-equivalent weighted automaton over the vector space V

having S as its set of states.

Proof. Let φ : S → D be an arbitrary bijective function between S and D. Then we can define an initial

vector state σ ∈ S by

σ = φ−1(d0).
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Let {δx}x∈X be a family of transition functions defined in the following way: For each x ∈ X ,

δx(α) = φ−1(∆(φ(α),x)), for every α ∈ S.

Let the terminal weights function Θ : S → R be defined by

Θ(α) = θ(φ(α)), for every α ∈ S.

Then A = (S,σ ,{δx}x∈X ,Θ) is a weighted automaton over the vector space V having S as its set of states.

Clearly, for each α ∈ S and u ∈ X∗ we have

δu(α) = φ−1(∆(φ(α),u).

Furthermore, for every u ∈ X∗ the following holds

JAK(u) = Θ(δ ∗(σ ,u)) = Θ(δu(σ)) = θ(φ(δu(σ))) = θ(φ(φ−1(∆(φ(σ),u)))) =

= θ(φ(φ−1(∆(φ(φ−1(d0)),u)))) = θ(∆(d0,u)) = JDK(u)

and therefore, A and D are language-equivalent.

T. Li, G. Rabusseau and D. Precup in [21] defined a nonlinear weighted finite automaton over the

field of real numbers R as a tuple (σ ,{δx}x∈X ,Θ), where σ ∈R
n is a vector of initial weights, {δx}x∈X is

a family of transformations such that δx : Rn →R
n, for each x ∈ X , which are called transition functions,

and θ :Rn →R is a termination function. This definition is almost identical to our definition of a weighted

automaton over a vector space. The difference is that the set S of vector states is not explicitly stated in

the mentioned paper, but we can assume that S is the smallest set of vectors from R
n that contains σ and

is closed for all transformations from the family {δx}x∈X , that is, S = {σu}u∈X∗ , where σu = δ ∗(σ ,u) =
δu(σ), for each u ∈ X∗. Another difference is that the transformations {δx}x∈X are defined on R

n, but

nothing changes significantly if we replace them with their restrictions on S. The third difference is that

Lee, Rabusseau and Precup considered automata over the finite-dimensional vector space R
n, while in

our definition we provide the possibility that the underlying vector space V be also infinite-dimensional.

Therefore, the concepts of a nonlinear weighted finite automaton and a weighted automaton over a vector

space are almost the same. Let us note that the adjective ”finite” in the name of nonlinear weighted finite

automata does not refer to the finiteness of the set S of vector states, as in our definition, but to the finite

dimension of the space Rn. In addition, regardless of the adjective nonlinear in the name, in the nonlinear

weighted finite automaton among the transformations δx, x ∈ X , there can be both linear and nonlinear

ones.

Here, a weighted automaton A = (S,σ ,{δx}x∈X ,Θ) over a vector space V is defined to be linear if

for any x ∈ X the function δx is the restriction of some linear operator δ ′
x : span(S)→ span(S) to the set

S, and also, Θ is the restriction of some linear functional (linear form) Θ′ : span(S)→ R to the set S, i.e.,

δ ′
x (sα + tβ ) = sδ ′

x (α)+ tδ ′
x (β ), Θ′(sα + tβ ) = sΘ′(α)+ tΘ′(β ), (13)

for all x ∈ X , α ,β ∈ span(S) and s, t ∈ R. Otherwise, if some of the mappings δx, x ∈ X , and Θ can not

be represented in this way, then A is said to be a nonlinear weighted automaton over a vector space. If

V ⊆ R
n, for some n ∈ N, then A is linear if and only if for each x ∈ X there is a matrix Mx ∈ R

n×n such

that δx(α) = α ·Mx, for each α ∈ S, and there is also a vector τ ∈ R
n such that Θ(α) = α · τ , for each

α ∈ S (here α · τ denotes the scalar product of α and τ).
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Let us note that our linear weighted automata over a vector space are almost identical to automata

studied by Balle, Gourdeau and Panangaden in [3] (which are called there only weighted finite au-

tomata), the only difference is that there V was assumed to be a finite-dimensional space and S = V .

However, even this small difference concerning the set of vector states can be significant. Namely, let

A = (S,σ ,{δx}x∈X ,Θ) be any linear weighted automaton over the vector space V = R
n with the set of

vector states S ⊂V such that span(S) 6=V , for each x ∈ X let δx be the restriction of some linear operator

δ ′
x : span(S)→ span(S) to the set S, and let Θ be the restriction of some linear functional Θ′ : span(S)→R

to the set S. Then we can easily extend any δ ′
x to an operator δ ′′

x : V →V which is not linear, for example,

by taking δ ′′
x to concide with δ ′

x on span(S) and

δ ′′
x

([

s1 s2 . . . sn

])

=
[

s2
1 s2

2 . . . s2
n

]

,

for every
[

s1 s2 . . . sn

]

∈ V \ span(S), and we can extend Θ′ to a non-linear function Θ′′ : V → R.

Therefore, A ′′ = (V,σ ,{δ ′′
x }x∈X ,Θ

′′) is a non-linear weighted automaton over the vector space V with

the set of vector states V , but if we assume that the set of vector states is S, then A ′′ becomes linear.

The following theorem explains the connection between finite-dimensional linear weighted automata

over a vector space and weighted finite automata.

Theorem 4.2 Every finite-dimensional linear weighted automaton over a vector space can be turned

into a completely language-equivalent weighted finite automaton.

Conversely, every weighted finite automaton can be turned into a completely language-equivalent

finite-dimensional linear weighted automaton over a vector space.

Proof. Let A = (S,σ ,δ ,Θ) be a finite-dimensional linear weighted automaton over a vector space V of

dimension n. Since A is linear, we have that for each x ∈ X there exists a matrix Mx ∈ R
n×n such that

σ ·Mx = δ (σ ,x), and moreover, there exists a vector τ ∈R
n such that Θ(σ) =σ ·τ . In this way, we obtain

a weighted finite automaton A ′ which is given by the linear representation A ′ = (n,σ ,{Mx}x∈X ,τ).
Now, for every u ∈ X+ such that u = x1x2 · · ·xk, where x1,x2, . . . ,xk ∈ X , we have

JA ′K(u) = σ ·Mx1
·Mx2

· · · · ·Mxk
· τ = σ ·Mu · τ = δ ∗(σ ,u) · τ = Θ(δ ∗(σ ,u)) = JAK(u),

and

JA ′K(ε) = σ · τ = δ ∗(σ ,ε) · τ = Θ(δ ∗(σ ,ε)) = JAK(ε).

Finally, we have that

JA ′Kg(u) = ‖σu‖∞ = ‖σ ·Mu‖∞ = ‖δ ∗(σ ,u)‖∞ = JAKg(u),

for every u ∈ X∗.

Therefore, we have proved that the finite-dimensional linear weighted automaton A is completely

language-equivalent to the weighted finite automaton A ′.

Conversely, let A = (A,σ ,δ ,τ) be a weighted finite automaton with n states. We define a weighted

automaton AN = (SN ,σ
N
,δ N

,ΘN) over the vector space R
n in the following way: we set

SN = {σu |u ∈ X∗}, σ N = σ ,

and we define functions δ N : SN ×X → SN and ΘN : SN → R by

δ N(σu,x) = σu ·δx = σux, ΘN(σu) = σu · τ ,
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for every u∈X∗. The automaton AN is obviously well-defined and is called in [17] the Nerode automaton

of the automaton A . It remains to prove that the Nerode automaton AN is completely language-equivalent

to the original weighted finite automaton A .

For an arbitrary word u ∈ X∗ we have that

JANK(u) = ΘN((δ N)∗(σ ,u)) = ΘN(σu) = σu · τ = JAK(u).

and also,

JANKg(u) = ‖(δ N)∗(σ ,u)‖∞ = ‖σu‖∞ = JAKg(u).

Therefore, the Nerode automaton AN of A is completely language-equivalent to A .

Let A = (S,σ ,{δx}x∈X ,Θ) be a finite weighted automaton over the vector space V = R
n, and let

us assume that S = {α1,α2, . . . ,αm} and X = {x1,x2, . . . ,xs}. Let us form m× n-matrices N and Nxi
,

i ∈ [1..s], and a column vector (1×m-matrix) ϑ such that rows in N are α1,α2, . . . ,αm, rows in Nxi
are

δxi
(α1),δxi

(α2), . . ., δxi
(αm), and entries in ϑ are Θ(α1),Θ(α2), . . . ,Θ(αm), in that order, i.e.

N =











α1

α2

...

αm











, Nxi
=











δxi
(α1)

δxi
(α2)
...

δxi
(αm)











, i ∈ [1..s], ϑ =











Θ(α1)
Θ(α2)

...

Θ(αm)











We will call N the state matrix and ϑ the terminal vector, while for each i ∈ [1..s], we call Nxi
the desti-

nation matrix corresponding to the input letter xi.

The following theorem provides a procedure for testing the linearity of a finite weighted automaton

over a finite-dimensional vector space.

Theorem 4.3 Let A = (S,σ ,{δx}x∈X ,Θ) be a finite weighted automaton over the vector space V ⊆ R
n.

Then A is linear if and only if the matrix N has the same rank as the augmented matrix

[N | Nx1
| Nx2

| . . . | Nxs
| ϑ ].

Proof. First we prove that A is linear if and only if each of the following equations is solvable

N ·X1 = Nx1
, N ·X2 = Nx2

, . . . , N ·Xs = Nxs
, N ·χ = ϑ , (14)

where X1,X2, . . . ,Xn are unknown n×n-matrices, and χ is an unknown vector taking values in R
n.

Assume that A is linear, i.e., that there are matrices Mxi
∈ R

n×n, for each i ∈ [1..s], and a vector

τ ∈ R
n such that

δxi
(α j) = α j ·Mxi

, for all i ∈ [1..n], j ∈ [1..m], Θ(α j) = α j · τ , for each j ∈ [1..m]. (15)

According to the well-known row rule for matrix multiplication we obtain that

N ·Mxi
=









α1 ·Mxi

α2 ·Mxi

· · ·
αm ·Mxi









=









δxi
(α1)

δxi
(α2)
· · ·

δxi
(αm)









= Nxi
, N · τ =









α1 · τ
α2 · τ
· · ·

αm · τ









=









Θ(α1)
Θ(α2)
· · ·

Θ(αm)









= ϑ , (16)
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for every i ∈ [1..s], and we conclude that X1 = Mx1
, X2 = Mx2

, . . . , Xs = Mxs
and χ = τ are solutions of

equations from (14).

Conversely, let any of the equations from (14) is solvable, and assume that Xi = Mxi
, for i ∈ [1..s],

and χ = τ , are solutions to these equations. From there we obtain that (16) holds, which further implies

that (15) holds, and therefore, A is a linear weighted automaton over a vector space V .

Next we prove that each of the equations from (14) is solvable if and only if the rank of N is equal

to the rank of the augmented matrix N∗ = [N | Nx1
| Nx2

| . . . | Nxs
| ϑ ]. Let R be the reduced row echelon

form of the augmented matrix N∗, and let R be partitioned as follows:

R = [R0 |R1 |R2 | . . . |Rs |ν ]

where R0,R1,R2, . . . ,Rs are m× n-matrices and ν is a column vector of dimension m. Then R0 is the

reduced row echelon form of N, for each i ∈ [1..s], [R0 |Ri ] is the reduced row echelon form of [N |Nxi
],

and [R0 |ν ] is the reduced row echelon form of [N |ϑ ].
For an arbitrary i ∈ [1..s] we have that the equation N ·Xi = Nxi

is solvable if and only the equation

N · ck(Xi) = ck(Nxi
) is solvable for every k ∈ [1..n]. On the other hand, for every k ∈ [1..n] we have that

N · ck(Xi) = ck(Nxi
) is solvable if and only if rank(N) = rank([N |ck(Nxi

)]), and this holds if and only if

for every j ∈ [1..m] for which the jth row of R0 is the zero vector it follows that the jth coordinate of

ck(Nxi
) is equal to zero. Similarly, the equation N · χ = ϑ is solvable if and only if for every j ∈ [1..m]

for which the jth row of R0 is the zero vector it follows that the jth coordinate of ϑ is equal to zero.

Therefore, we conclude that all equations in (14) are solvable if and only if for every j ∈ [1..m] for

which the jth row of R0 is the zero vector, we have that all remaining entries in the jth row of the matrix

R = [R0 |R1 |R2 | . . . |Rs |ν ] are equal to zero, and this is equivalent to rank(N) = rank(N∗).
Let us note that if R0 does not have zero rows then all equations in (14) are solvable if and only if

rank(N) = rank(N∗) = rank([N |Nxi
]) = rank([N |ϑ ]) = rank([N |ck(Nxi

) ]) = m (6 n),

for all i ∈ [1..s] and k ∈ [1..n]. This completes the proof of the theorem.

Example 4.4 Let A = (S,σ ,{δx}x∈X ,Θ) be a finite weighted automaton with three vector states over the

vector space R
2 and an alphabet X = {x,y}, where the vector states σ = α1, α2 and α3, and the terminal

vector ϑ are given with

σ = α1 =
[

1 0
]

, α2 =
[

0 1
]

, α3 =
[

1 1
]

, ϑ =





0

0

1





,

while the transition graph is the one given in Figure 1.

Then the augmented matrix N∗ = [N | Nx | Ny | ϑ ] and its reduced row echelon form RREF(N∗) are

given by

N∗ =





1 0 0 1 1 1 0

0 1 0 1 0 1 0

1 1 1 1 0 1 1





, RREF(N∗) =





1 0 0 1 1 1 0

0 1 0 1 0 1 0

0 0 1 −1 −1 −1 1





,

and it is clear that rank(N) = 2 6= 3 = rank(N∗). From there we get that A is nonlinear.

Let us also note that the equations (14) become




1 0

0 1

1 1



 ·

[

x11 x12

x21 x22

]

=





0 1

0 1

1 1





,





1 0

0 1

1 1



 ·

[

y11 y12

y21 y22

]

=





1 1

0 1

0 1





,





1 0

0 1

1 1



 ·

[

x

y

]

=





0

0

1





.
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α1 α2

α3

x

y y

x,y

x

Figure 1: The transition graph of the automaton A from Example 4.4

It can be seen that none of these equations has a solution.

For a word function f : X∗ → R and a word u ∈ X∗, a word function fu : X∗ → R defined by

fu(v) = f (uv), for every v ∈ X∗
, (17)

is called the derivative of f with respect to u. Derivatives of conventional languages are also known as

right quotients, quotients or residuals of languages.

We define a weighted automaton A f = (S f ,σ
f
,δ f

,Θ f ) over a vector space RX∗
as follows: the set S f

of vector states is given by S f = { fu |u ∈ X∗}, σ f = f , and functions δ f : S f ×X → S f and Θ f : S f →R

are given by

δ f (g,x) = gx, Θ f (g) = g(ε), for all g ∈ S f and x ∈ X . (18)

It is clear that A f is well-defined, and we will call it the derivative automaton of the word function f .

For a word function f : X∗ → R, the prefix closure of f is a word function f : X∗ → R defined by

f (u) = sup
v∈X∗

| f (uv)| = ‖ fu‖∞, (19)

for every u ∈ X∗.

Theorem 4.5 The derivative automaton A f of a word function f ∈ R
X∗

is a linear weighted automaton

over the vector space R
X∗

that computes f and generates the prefix closure f of f .

In addition, A f is a minimal weighted automaton over a vector space which computes f .

Proof. For the sake of simplicity, let us assume that RX∗
=V .

First, we prove that A f is linear. To that end, define functions δx : V → V , for every x ∈ X , and

Θ : V → R as follows: δx(g) = gx and Θ(g) = g(ε), for all g ∈V and x ∈ X . Further, consider arbitrary

g,h ∈V and s, t ∈ R. Then for arbitrary x ∈ X and u ∈ X∗ we have that

(sg+ th)x(u) = (sg+ th)(xu) = sg(xu)+ th(xu) = sgx(u)+ thx(u) = (sgx + thx)(u),

so we conclude that (sg+ th)x = sgx + thx, and now we have that

δx(sg+ th) = (sg+ th)x = sgx + thx = sδx(g)+ tδx(h),

Θ(sg+ th) = (sg+ th)(ε) = sg(ε)+ th(ε) = sΘ(g)+ tΘ(h).
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Hence, δx, x ∈ X , and Θ are linear operators on V , and it is clear that δ
f

x (where δ
f

x (g) = δ f (g,x)) is the

restriction of δx to S f , for each x ∈ X , and Θ f is the restriction of Θ on S f . This means that A f is a linear

weighted automaton over the vector space V . Next, for an arbitrary u ∈ X∗ we have that

JA f K(u) = Θ((δ f )∗(σ f
,u)) = Θ((δ f )∗( f ,u)) = Θ( fu) = fu(ε) = f (uε) = f (u),

JA f Kg(u) = ‖(δ f )∗(σ f
,u)‖∞ = ‖(δ f )∗( f ,u)‖∞ = ‖ fu‖∞ = f (u),

which means that the automaton A f computes f and generates f .

Let A = (S,σ ,δ ,Θ) be an arbitrary weighted automaton over a vector space that computes f , and

let S′ = {σu |u ∈ X∗} ⊆ S. Define a function φ : S′ → S f by putting that φ(σu) = fu, for every u ∈ X∗.

First we prove that φ is well-defined, i.e., that for any u,v ∈ X∗, from σu = σv it follows fu = fv. Thus,

consider u,v ∈ X∗ such that σu = σv, and an arbitrary w ∈ X∗. Then

fu(w) = f (uw) = JAK(uw) = Θ(δ ∗(σ ,uw)) = Θ(δ ∗(δ ∗(σ ,u),w))

= Θ(δ ∗(σu,w)) = Θ(δ ∗(σv,w)) = Θ(δ ∗(δ ∗(σ ,v),w))

= Θ(δ ∗(σ ,vw)) = JAK(vw) = f (vw) = fv(w),

so we conclude that fu = fv. Therefore, we get that φ is a well-defined function, and it is obvious that φ is

surjective. This means that the cardinality of S f is less than or equal to the cardinality of S′, which is less

than or equal to the cardinality of S. From there, we conclude that A f is a minimal weighted automaton

over a vector space which computes f .
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of fuzzy quasi-orders. Information Sciences 275, pp. 168–198, doi:10.1016/j.ins.2014.02.028.
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