
Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 51–66, doi:10.4204/EPTCS.386.6

© M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen

This work is licensed under the

Creative Commons Attribution License.

Approximate State Reduction of Fuzzy Finite Automata*

Miroslav Ćirić Ivana Micić Stefan Stanimirović

University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, Niš, Serbia

miroslav.ciric@pmf.edu.rs, ivana.micic@pmf.edu.rs, stefan.stanimirovic@pmf.edu.rs

Linh Anh Nguyen

Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland, and
Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

nguyen@mimuw.edu.pl

In this paper we introduce a new type of approximate state reductions where the behaviors of the

reduced and the original automaton do not have to be identical, but they must match on all words

of length less than or equal to some given natural number. We provide four methods for performing

such reductions.

1 Introduction

Minimization and state reduction are related problems that belong to the fundamental problems of au-

tomata theory and have many significant applications. Minimization is the problem of finding an au-

tomaton with a minimal number of states equivalent to a given automaton. However, this problem cannot

be solved efficiently (in polynomial time) for fuzzy finite or nondeterministic finite automata as their

particular type (cf. [7] for more details). Therefore, the so-called state reduction problem for fuzzy finite

automata is studied instead, where the goal is to find an automaton equivalent to the given automaton

that is not necessarily minimal, but that can be treated sufficiently small or close enough to the minimal

one when comparing the number of states. In turn, the state reduction algorithm can be performed ef-

ficiently. Ćirić et al. discussed this problem in [4], and then in [5], [17] and [16], where they proposed

state reduction methods that construct sequences of fuzzy matrices. The drawback of these methods

is that these sequences can be infinite when the underlying structure of truth values is not locally fi-

nite. However, even when the sequences of matrices are finite, the number of different elements in

sequences can be high. For the reasons above, different authors have proposed an approximate approach

not only in the context of state reduction but also in some other close contexts, such as containment and

equivalence of fuzzy automata, as well as simulations and bisimulations between fuzzy automata (see

[3, 8, 9, 10, 11, 13, 12, 15, 18, 19, 21] and articles cited there).

In the approximate state reduction problem, the main goal is to construct an automaton with a smaller

number of states than a given automaton with behaviour that does not have to be identical to the behavior

of a given automaton, but “close enough” to it. Dominantly, scholars have defined the closeness between

the behaviors of two automata by the concept of the degree of equality of fuzzy sets [3, 21, 19, 11].

However, when we take membership values from the real unit interval, the conventional metric on that

interval can also be used to define closeness [8, 20]. Furthermore, a different fuzzy similarity measure

has been proposed recently in [15, 14] via relational lifting. In this paper, we approach approximate state

*This research was supported by the Science Fund of the Republic of Serbia, Grant no 7750185, Quantitative Automata

Models: Fundamental Problems and Applications - QUAM

http://dx.doi.org/10.4204/EPTCS.386.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

52 Approximate state reduction of fuzzy finite automata

reductions differently. Namely, we require that the behaviors of a given automaton and its reduced one

may not be strictly equivalent, but equivalent for all words with length not exceeding a given natural

number k. This relaxation from the strict equivalence comes naturally, as when working with fuzzy

automata in practical situations, one encounters words with finite (bounded) length. It is important to

emphasize that Nguyen et al. recently employed a similar idea in [12] to generalize fuzzy simulations

and fuzzy bisimulations for fuzzy automata [11]. In this paper, k-equivalence means the equivalence of

a given fuzzy automaton and its reduced one for all words not exceeding length k. Similarly, k-reduction

means a state reduction resulting in an automaton k-equivalent to the given automaton.

This paper provides four k-reduction methods based on state reduction methods developed in [17]

that output a fuzzy automaton strictly equivalent to the given fuzzy automaton. Precisely, the first two

methods consist of constructing a descending sequence of fuzzy quasi-order matrices. Theorems 4.1

and 4.2 prove that the fuzzy automaton formed by the different row vectors of the kth member of that

sequence of matrices (the numbering starts from 0) is k-equivalent to the given fuzzy automaton. More-

over, if the number of different elements in this sequence is not greater than k, then the resulting fuzzy

automaton is also strictly equivalent to the given fuzzy automaton. In locally finite structures, such as

the Gödel or Łukasiewicz structure, the sequence necessarily has a finite number of different elements.

Therefore, we can always pick a sufficiently high k ∈ N in these structures, so the resulting fuzzy au-

tomaton is also strictly equivalent to the given fuzzy automaton. On the other hand, for some non-locally

structures satisfying some additional conditions [4, 17], such as the product structure, a reduced fuzzy

automaton strictly equivalent to the original fuzzy automaton can be constructed from different row

vectors of the infimum of this sequence. Therefore, by choosing the kth member of the sequence, the re-

sulting k-equivalent reduced fuzzy automaton can be regarded as an approximation of the reduced fuzzy

automaton strictly equivalent to the original fuzzy automaton.

The other two methods for performing state reduction introduced in [17] consist of constructing

a family of fuzzy quasi-order matrices such that a reduced fuzzy automaton built from different row

vectors of the infimum of this family is strictly equivalent to the original fuzzy automaton. These methods

generally give better reductions than the first two, but their time complexity is generally higher. Here we

transform that family into a sequence of fuzzy quasi-order matrices and prove that the fuzzy automaton

formed by different row vectors of the kth member of that sequence (the numbering again starts from 0)

is k-equivalent to the original automaton (Theorems 4.3 and 4.4). We also point out the advantages and

disadvantages of the four proposed methods.

2 Preliminaries

Throughout this paper, N will denote the set of all natural numbers (including the zero).

A resuduated lattice is defined as an algebra L=(L,∨,∧,⊗,→,0,1), with four binary operations and

two constants 0 and 1, which satisfies the following conditions:

(R1) (L,∨,∧,0,1) is a bounded lattice with the least element 0 and the greatest element 1;

(R2) (L,⊗,1) is a commutative semigroup with the identity 1;

(R3) the pair (⊗,→) satisfies the adjunction or residuation property: for all a,b,c ∈ L,

a⊗b 6 c ⇔ a 6 b → c.

Here 6 stands for the ordering in the lattice from (R1). The operation → is called the residuum, and

⊗ is called the multiplication. If the bounded lattice from (R1) is complete, then L is called a complete

residuated lattice. As it is customary in the theory of algebraic structures to use the same notation for an

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 53

algebra and its carrier set, here we denote the residuated lattice and its carrier set with the same symbol

L as well.

The main examples of complete residuated lattices are those whose carrier set is the real unit interval

I= [0,1] and the multiplication is some triangular norm on I, such as, for example, the Gödel structure,

product structure and Łukasiewicz structure. For more information about complete residuated lattices

and the mentioned structures on I we refer to the books [2, 1] and other papers listed below, in the list of

references.

Let L be an arbitrary complete residuated lattice. For arbitrary m,n ∈ N \ {0}, by L
m×n we denote

the set of all m×n matrices with entries in L, and by L
n the set of all vectors of size n with entries in L

(by the size of a vector we mean the number of its coordinates). A fuzzy subset of a non-empty set A is

defined as any function α : A → L, and a fuzzy relation on A is defined as any fuzzy subset of A×A, that

is, as any function M : A×A → L. For a ∈ A, the value α(a) is called the membership degree of a in the

fuzzy set α . Here we deal mostly with fuzzy subsets of a finite set, as well as with fuzzy relations on a

finite set, and then, when dealing with a finite set A = {a1,a2, . . . ,an}, a fuzzy subset α of A is identified

with a vector from L
n whose ith coordinate is α(ai), while a fuzzy relation M on A is identified with a

matrix from L
n×n whose (i, j)-entry is M(ai,a j). Without risk of confusion, the vector corresponding to

the fuzzy subset α is denoted by the same symbol α , and its ith coordinate is denoted by α(i), while

the matrix corresponding to the fuzzy relation M is denoted by the same symbol M, and its (i, j)-entry is

denoted by M(i, j).
For a matrix M ∈ L

n×n and a fixed i ∈ [1..n], where [1..n] = {1,2, . . . ,n}, the vector whose jth coor-

dinate is M(i, j), for any j ∈ [1..n], is called the ith row vector of M, and for a fixed j ∈ [1..n], the vector

whose ith coordinate is M(i, j), for any i ∈ [1..n], is called the jth column vector of M.

The product M ·N of two matrices M,N ∈ L
n×n (fuzzy relations on A) is a matrix from L

n×n (a fuzzy

relation on A) defined by

(M ·N)(i, j) =
n∨

s=1

M(i,s)⊗N(s, j),

for all i, j ∈ [1..n], the products α ·M and M ·β of vectors α ,β ∈ L
n (fuzzy subsets of A) and a matrix

M ∈ L
n×n (fuzzy relation on A) are vectors from L

n (fuzzy subsets of A) defined by

(α ·M)(i) =
n∨

s=1

α(s)⊗M(s, i), (M ·β)(i) =
n∨

s=1

M(i,s)⊗β (s),

for every i ∈ [1..n], and the product α ·β of two vectors from L
n (fuzzy subsets of A) is the element from

L defined by

α ·β =
n∨

s=1

α(s)⊗β (s).

The last product α ·β is called the scalar product or dot product of vectors (fuzzy subsets) α and β .

The ordering 6 on L
n×n is defined entrywise by

M 6 N ⇔ M(i, j)6 N(i, j), for all i, j ∈ [1..n],

for all M,N ∈ L
n×n, and similarly, the ordering 6 on L

n is defined coordinatewise by

α 6 β ⇔ α(i)6 β (i), for each i ∈ [1..n],

54 Approximate state reduction of fuzzy finite automata

for all α ,β ∈ L
n. It is easy to verify that these orderings on L

n×n and L
n are compatible with matrix

products and vector-matrix products, that is,

α 6 β ⇒ α ·M 6 β ·M, M ·α 6 M ·β

M 6 N ⇒ K ·M 6 K ·N, M ·K 6 N ·K, α ·M 6 α ·N, M ·α 6 N ·α

for all α ,β ∈ L
n and K,M,N ∈ L

n×n. The supremum and infimum of a family {Ms}s∈I of matrices from

L
n×n are respectively matrices from L

n×n defined by

(∨

s∈I

Ms

)
(i, j) =

∨

s∈I

Ms(i, j),
(∧

s∈I

Ms

)
(i, j) =

∧

s∈I

Ms(i, j),

for all i, j ∈ [1..n].
The matrix In ∈ L

n×n defined by In(i, j) = 1, for i = j, and In(i, j) = 0, for i 6= j, i, j ∈ [1..n], is

called the identity matrix of order n. A matrix M ∈ L
n×n is reflexive if In 6 M, it is transitive if M2 6 M,

where M2 = M ·M, and it is symmetric if M(i, j) = M(j, i), for all i, j ∈ [1..n]. A reflexive and transitive

matrix is called a fuzzy quasi-order matrix, and a symmetric fuzzy quasi-order matrix is called a fuzzy

equivalence matrix.

For matrices M,N ∈ L
n×n, the right residual of N by M is a matrix M\N ∈ L

n×n defined by

(M\N)(j,k) =
n∧

i=1

M(i, j)→ N(i,k), (1)

for all j,k ∈ [1..n], and the left residual of N by M is a matrix N/M ∈ L
n×n defined by

(N/M)(i, j) =
n∧

k=1

M(j,k)→ N(i,k), (2)

for all i, j ∈ [1..n]. Matrix residuals are related with matrix multiplication by the following residuation

(adjunction) property:

K ·M 6 N ⇔ M 6 K\N ⇔ K 6 N/M, (3)

for all K,M,N ∈ L
n×n. Next, for α ,β ∈ L

n, the right residual of β by α is a matrix α\β ∈ L
n×n given by

(α\β)(i, j) = α(i)→ β (j), (4)

for all i, j ∈ [1..n], and the left residual of β by α is a matrix β/α ∈ L
n×n given by

(β/α)(j, i) = α(i)→ β (j), (5)

for all i, j ∈ [1..n]. It is clear that α\β = (β/α)⊤, that is, β/α = (α\β)⊤ (here M⊤ denotes the trans-

pose of a matrix M). The residuation property for these residuals is

α ·M 6 β ⇔ M 6 α\β , M ·α 6 β ⇔ M 6 β/α , (6)

for all α ,β ∈ L
n and M ∈ L

n×n.

The representation of the matrix M ∈ L
m×n in the form of the product M = L ·R, where L ∈ L

m×r

and R ∈ L
r×n, is called the r-factorization of that matrix M. The smallest number r for which there is an

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 55

r-factorization of the matrix M is denoted by ρ(M) and is called the Schein’s rank or factor rank of M.

The concepts of r-factorization and Schein’s rank are defined for arbitrary matrices, but have particularly

good properties when applied to fuzzy quasi-order matrices (cf. [16]). As shown in [6, 17], a fuzzy

quasi-order matrix Q has the same number of different row vectors and different column vectors, which

is denoted by d(Q). In the general case, ρ(Q) 6 d(Q), but for every fuzzy quasi-order matrix Q with

entries in a complete residuated lattice L in which for all a,b ∈ L from a∨b = 1 it follows a = 1 or b = 1

(for instance, this holds if L is linearly ordered), we have that ρ(Q) = d(Q) (cf. [16]).

For undefined notions and notation we refer to [2, 1].

3 Fuzzy finite automata and the state reduction problem

Throughout this paper, if not noted otherwise, L will denote an arbitrary complete residuated lattice

and X will denote an arbitrary non-empty alphabet. By X∗ we denote the free monoid over X , whose

identity, called the empty word, is denoted by ε , while by X+ we denote the free semigroup over X , i.e.,

X+ = X∗ \{ε}.

A fuzzy finite automaton over L and X is defined as a tuple A = (A,σ ,δ ,τ), where A is a non-empty

finite set, while σ , τ and δ are functions such that σ ,τ : A →L and δ : A×X ×A → L. The function δ is

often replaced by the family of functions {δx}x∈X , where δx : A×A →L is given by δx(a,b) = δ (a,x,b),
for all a,b ∈ A and x ∈ X . We call A the set of states, σ the fuzzy set of initial states, τ the fuzzy set of

terminal states, and δ and δx, x ∈ X , the fuzzy transition functions. The number of states of A will be

denoted by |A |.
The behavior of the fuzzy finite automaton A is a function JAK : X∗ → L (i.e., a fuzzy subset of X∗)

defined by

JAK(u) =
∨

(a0,a1,...,ak)∈Ak+1

σ(a0)⊗δ (a0,x1,a1)⊗δ (a1,x2,a2) · · ·δ (ak−1,xk,ak)⊗ τ(ak), (7)

for u = x1x2 . . .xk ∈ X+, x1,x2, . . . ,xk ∈ X , and

JAK(ε) =
∨

a∈A

σ(a)⊗ τ(a). (8)

We say that JAK is the fuzzy language recognized (accepted) by the fuzzy finite automaton A , or in short

just the fuzzy language of A .

As we noted in the previous section, fuzzy subsets of a finite set with n elements can be treated as

fuzzy vectors. i.e., as vectors from L
n, while fuzzy relations on such a set can be treated as fuzzy matrices,

i.e. as matrices from L
n×n. When such a way of viewing is applied to the fuzzy finite automaton A , then

σ and τ are treated as vectors from L
n, called respectively the initial fuzzy vector and terminal fuzzy

vector, while δx, x ∈ X , are treated as matrices from L
n×n, called the transition fuzzy matrices. Then the

tuple is called the linear representation of the fuzzy finite automaton A , while n is called the dimension

of A . Such a way of looking at σ , τ and δx’s will be applied here as well. In the vector-matrix form, the

behavior of the fuzzy finite automaton A is represented as follows:

JAK(u) = σ ·δx1
·δx2

· · ·δxs
· τ = σ ·δu · τ , (9)

for u = x1x2 . . .xs ∈ X+, x1,x2, . . . ,xs ∈ X , where δu = δx1
·δx2

· · ·δxk
, and

JAK(ε) = σ · τ . (10)

56 Approximate state reduction of fuzzy finite automata

As can be seen, here we treat σ as a row vector and τ as a column vector.

Two fuzzy finite automata A and B over L and X are said to be equivalent if

JAK(u) = JBK(u), for every u ∈ X∗, (11)

i.e., if JAK = JBK, and for an arbitrary k ∈N, we say that A and B are k-equivalent if

JAK(u) = JBK(u), for every u ∈ X∗ such that |u|6 k. (12)

If A and B are equivalent or k-equivalent, we also say that A is equivalent to or k-equivalent to B , and

vice versa.

Let Q ∈ L
n×n be an arbitrary fuzzy quasi-order matrix. Let 1 ≤ i1 ≤ . . . ≤ ik ≤ n be the smallest

indices of all pairwise distinct rows of Q. As mentioned earlier [6, 17], they are also the smallest indices

of all pairwise distinct columns of Q. Let Qr ∈ L
k×n (respectively, Qc ∈ L

n×k) be the matrix consisting of

the rows (respectively, columns) i1, . . . , ik of Q. Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L

and X with n states. Then, a new fuzzy finite automaton, with the linear representation

AQ = (k,σ Q,{δ Q
x }x∈X ,τ

Q),

is defined by putting that

σ Q = σ ·Qc,

δ Q
x = Qr ·δx ·Qc, for all x ∈ X ,

τQ = Qr · τ .

It is clear that σ Q,τQ ∈L
k and δ Q

x ∈ L
k×k, for each x ∈ X , so AQ is a well-defined fuzzy finite automaton.

Since Q = Qc ·Qr (cf. [16, Theorem 4.1], the behavior of AQ is given in the vector-matrix form by

JAQK(u) = σ ·Q ·δx1
·Q ·δx2

· · · · ·Q ·δxs
·Q · τ , (13)

for every u = x1x2 . . .xs ∈ X+, where x1,x2, . . . ,xs ∈ X , and

JAQK(ε) = σ ·Q · τ . (14)

As we mentioned earlier, fuzzy matrices can be identified with fuzzy relations between finite sets. Since

in the theory of fuzzy sets, the ”rows” of fuzzy relations are known as aftersets, and the ”columns” are

known as foresets, the fuzzy finite automaton AQ was called in [17] the afterset automaton of A corres-

ponding to the fuzzy quasi-order matrix Q, but it can also be rightly called the row automaton. It was

also shown in [17] that if in the construction of the automaton AQ instead of the rows (aftersets) of the

matrix Q we use its columns (foresets), then essentially nothing changes, because an isomorphic fuzzy

finite automaton is obtained.

Let us note that the number of states of AQ is d(Q)6 n, that is, AQ has less than or equal number of

states with A . Therefore, by constructing the automaton AQ we can reduce the number of states of the

automaton A , provided that these two automata are equivalent. Consequently, the main question here is

under what conditions on Q the automaton AQ is equivalent to A? This question can also be formulated

as: under what conditions on Q the construction of AQ preserves the fuzzy language of the automaton

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 57

A? More answers to these questions were provided in [5] and [17]. Right invariant matrices were defined

in [5, 17] as solutions of the system of matrix equations

(ri-1) U · τ 6 τ ;

(ri-2) U ·δx 6 δx ·U, for all x ∈ X ,

where U is an unknown matrix taking values in L
n×n, and left invariant matrices were defined as solutions

of the system

(li-1) σ ·U 6 σ ;

(li-2) δx ·U 6U ·δx, for all x ∈ X .

It was proved in [5] that both right and left invariant fuzzy equivalence matrices provide equivalence

between A and the corresponding row automaton, while the same for fuzzy quasi-order matrices was

proved in [17]. At the same time, it has been proven that fuzzy quasi-order matrices give better reductions

than fuzzy equivalence matrices, in the sense that they produce fuzzy finite automata with a smaller

number of states.

Procedures for computing the greatest right and left invariant matrices, which are necessarily fuzzy

quasi-order matrices, were provided in [17]. For right invariant matrices, the procedure consists of

building a decreasing sequence of matrices, which is defined in the next section by formula (17). When

there are two equal consecutive members of that sequence, the sequence is finite and stabilizes at some

member which is the greatest right invariant matrix. For instance, if L is the Gödel structure or Boolean

algebra, then every such sequence is finite and the greatest right invariant matrix can be computed in

a finite number of steps. However, there are also cases when this sequence is infinite and the greatest

right invariant matrix can not be computed in a finite number of steps. For example, this may happen

when L is the product structure. All this also applies to left-invariant matrices, where the procedure for

computing the greatest such matrix is based on the decreasing sequence of matrices defined in the next

section by formula (20).

In paper [17], another way was also provided to get a fuzzy quasi-order matrix Q for which the con-

struction of AQ will preserve the language of A . Weakly right invariant matrices were defined in as

solutions of the system of matrix equations

(wri) U · τu 6 τu, for all u ∈ X∗,

where U is an unknown matrix taking values in L
n×n and τu = δu · τ , and weakly left invariant matrices

were defined as solutions of the system

(wli) σu ·U 6 σu, for all u ∈ X∗,

where σu = σ · δu. As shown in [17], both for any weakly right invariant or weakly left invariant fuzzy

quasi-order matrix Q, the row automaton AQ is equivalent to A , and the greatest weakly right invariant

fuzzy quasi-order, i.e., the greatest solution of (wri), can be expressed as
∧

u∈X∗

τu/τu, (15)

while the greatest weakly left invariant fuzzy quasi-order, i.e., the greatest solution of (wli), can be ex-

pressed as
∧

u∈X∗

σu\σu. (16)

58 Approximate state reduction of fuzzy finite automata

In general, the greatest weakly right invariant fuzzy quasi-order matrix provides better reduction than the

greatest right invariant one, but its computation may be significantly more complex. There may also be a

problem of efficient computation of these matrices, because the families {τu | u ∈ X∗} and {σu | u ∈ X∗}
can be infinite, and even when they are finite, the number of their members can be too large.

All the mentioned problems that concern the computation of the greatest invariant and weakly in-

variant fuzzy quasi-order matrices actualize the issue of approximate state reductions of fuzzy finite

automata, which will be discussed in the next section.

Note that in [16] a method for additional reduction of the number of states of the automaton AQ is

offered, which is based on the r-factorization of the fuzzy quasi-order matrix Q. Namely, let Q = L ·R
be an r-factorization of Q, i.e., L ∈ L

n×r and R ∈ L
r×n. Then we can construct a fuzzy finite automaton

AL|R with the linear representation

AL|R = (r,σ L|R,{δ
L|R
x }x∈X ,τ

L|R),

where

σ L|R = σ ·L,

δ
L|R
x = R ·δx ·L, for all x ∈ X ,

τL|R = R · τ .

Then σ L|R,τL|R ∈ L
r and δ

L|R
x ∈ L

r×r, so AL|R is a well-defined fuzzy finite automaton with r states.

According to (13), (14) and Q = L · R we have that JAL|RK = JAQK. Therefore, when we reduce the

number of states of the fuzzy finite automaton A using the greatest fuzzy quasi-order matrix Q, an addi-

tional reduction of the number of states could be performed with the help of an r-factorization of Q.

Clearly, the smallest number of states we can obtain in this way is ρ(Q), the Schein’s rank of Q.

4 Approximate state reduction: k-reduction

As we already noted in the introduction, there were already several articles dealing with approximate state

reduction, mainly in the context of studying approximate simulations and bisimulations between fuzzy

finite automata. The approach used in those articles was to, starting from a given fuzzy finite automaton,

construct a new fuzzy finite automaton with a smaller number of states, whose fuzzy language does not

have to be identical to the fuzzy language of the original automaton, but is sufficiently similar to that

fuzzy language, in relation to a certain measure of similarity. In most papers, that measure was based on

subsethood and equality degrees between fuzzy sets.

In this paper, we use a different approach. We require that between fuzzy languages of the original

and the reduced fuzzy finite automaton there is an exact match for all words of length less than or equal to

k, while membership degrees for longer words do not matter to us. In the terminology from the previous

section, this means that these fuzzy languages are k-equivalent. Such an approach is quite natural if we

keep in mind that in practical applications of automata the length of input words is always limited, so

the only thing that matters to us is that the membership degrees match for words whose length does not

exceed that limit.

A procedure for reduction of the number of states of a fuzzy finite automaton A , which results in

a fuzzy finite automaton that is k-equivalent to A , will be called a k-reduction. The following theorem

provides such a procedure that is based on the procedure for reduction of the number of states, provided

in [17], that results in an automaton which is strictly equivalent to the original automaton.

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 59

Theorem 4.1 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us inductively define a sequence of matrices {Qk}k∈N ⊂ L
n×n as follows:

Q0 = τ/τ , Qk+1 = Qk ∧
∧

x∈X

[(δx ·Qk)/δx], for every k ∈ N. (17)

Then for an arbitrary k ∈ N the following statements hold:

(a) Qk is a fuzzy quasi-order matrix;

(b) AQk
is k-equivalent to A;

(c) if Qk = L ·R is an r-factorization of Qk, for some r 6 d(Qk), then AL|R is k-equivalent to A;

(d) if Qs = Qs+1, for some s 6 k, then Qk = Qs and both AQk
and AL|R are equivalent to A .

Proof. (a) By its definition, Q0 is the greatest solution of the inequation U · τ 6 τ , where U is an un-

known matrix taking values in L
n×n. Since In is also a solution to this inequation, we conclude that

In 6 Q0. Moreover, we have that

Q2
0 · τ = Q0 ·Q0 · τ 6 Q0 · τ 6 τ ,

which means that Q2
0 is also a solution of U ·τ 6 τ , and since Q0 is the greatest solution to this inequation,

we conclude that Q2
0 6 Q0. This proves that Q0 is a fuzzy quasi-order matrix.

Suppose that Qs is a fuzzy quasi-order matrix, for some s ∈ N0. Let us observe that for every x ∈ X

the matrix Mx = (δx ·Qs)/δx is the greatest solution of the inequation U ·δx 6 δx ·Qs, with an unknown

matrix U . We also have that In 6 Qs, whence

In ·δx = δx · In 6 δx ·Qs,

which means that In is also a solution to the inequation U ·δx 6 δx ·Qs, and consequently, In 6 Mx, since

Mx is the greatest solution of this inequation.

On the other hand, we have that

M2
x ·δx = Mx ·Mx ·δx 6 Mx ·δx ·Qs 6 δx ·Qs ·Qs = δx ·Q

2
s = δx ·Qs,

which means that M2
x is also a solution of U ·δx 6 δx ·Qs, and thus, M2

x 6 Mx. Hence, Mx = (δx ·Qs)/δx

is a fuzzy quasi-order matrix, for each x ∈ X , and the matrix Qs+1 is also a fuzzy quasi-order matrix,

as the intersection of the family of fuzzy quasi-order matrices Mx = (δx ·Qs)/δx, x ∈ X , and the fuzzy

quasi-order matrix Qs.

Let us also note that Qs+1 is the greatest solution of the system of linear matrix inequations

U ·δx 6 δx ·Qs, x ∈ X , (18)

contained in Qs, where U is an unknown matrix taking values in L
n×n.

(b) According to (17), we have that Q0 · τ 6 τ and Qt+1 ·δx 6 δx ·Qt , for arbitrary t ∈ N0 and x ∈ X .

On the other hand, from Qt 6 Q0 it follows that Qt · τ 6 Q0 · τ 6 τ , whereas from In 6 Qt we obtain that

τ = In · τ 6 Qt · τ . Furthermore, since Qt+1 ·δx 6 δx ·Qt , Q2
t = Qt and In 6 Qt+1, we have that

Qt+1 ·δx ·Qt 6 δx ·Q
2
t = δx ·Qt , δx ·Qt = In ·δx ·Qt 6 Qt+1 ·δx ·Qt .

Therefore, we have proved that

Qt · τ = τ , Qt+1 ·δx ·Qt = δx ·Qt , (19)

60 Approximate state reduction of fuzzy finite automata

for all t ∈ N0 and x ∈ X .

Now we have that

JAQk
K(ε) = σ ·Qk · τ = σ · τ = JAK(ε),

and for u = x1x2 . . .xs ∈ X+, where x1,x2, . . . ,xs ∈ X and s 6 k, we have that

JAK(u) = σ ·δx1
·δx2

· . . . ·δxs
· τ 6 σ ·Qk ·δx1

·Qk ·δx2
· . . . ·Qk ·δxs

·Qk · τ = JAQk
K(u),

and

JAQk
K(u) = σ ·Qk ·δx1

·Qk ·δx2
· . . . ·Qk ·δxs

·Qk · τ 6 σ ·Qs ·δx1
·Qs−1 ·δx2

· . . . ·Q1 ·δxs
·Q0 · τ

= σ ·δx1
·Qs−1 ·δx2

· . . . ·Q1 ·δxs
·Q0 · τ = σ ·δx1

·δx2
· . . . ·Q1 ·δxs

·Q0 · τ

= . . .= σ ·δx1
·δx2

· . . . ·δxs
·Q0 · τ = σ ·δx1

·δx2
· . . . ·δxs

· τ = JAK(u).

Therefore, we have proved that JAQk
K(u) = JAK(u), for every u ∈ X∗ such that |u|= s 6 k, which means

that the fuzzy automaton AQk
is k-equivalent to A .

(c) This follows by the fact that JAQk
K = JAL|RK (cf. [16]).

(d) Assume that Qs = Qs+1, for some s 6 k. As shown in [17], then Qs = Qt , for every t > s, t ∈ N0,

and JAQs
K = JAK holds. Therefore, we have that Qk = Qs, so JAQk

K = JAL|RK = JAQs
K = JAK.

It is worth noting that in assertion (c) of Theorem 4.1 we are talking about the r-decomposition of

the matrix Qk for some r ∈ N for which ρ(Qk) 6 r 6 d(Qk), rather than on the ρ(k)-decomposition,

which would give a smallest row automaton. The reason is that the r-decomposition could be done

using an algorithm provided in [16], which consists in removing those row vectors of Qk that can be

represented as linear combinations of other row vectors. The result of that procedure strongly depends

on the choice and order of the vectors we remove, so that one can get an r-decomposition for any r such

that ρ(Qk)6 r 6 d(Qk).
Let us also note that the use of the r-decompositions in k-reductions (and reductions in general) is

useless if the underlying complete residuated lattice L satisfies the condition that a∨ b = 1 implies that

a = 1 or b = 1, since in this case we have that ρ(Qk) = d(Qk) (as shown in [16]), so there is no reduction

whatsoever. For instance, this holds when L is linearly ordered, what includes all the cases when L is

the structure defined on the real unit interval by means of triangular norms.

Similarly to Theorem 4.1, we can prove the following theorem, which provides an alternative way

for k-reduction.

Theorem 4.2 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us inductively define a sequence of matrices {Pk}k∈N ⊂ L
n×n as follows:

P0 = σ\σ , Pk+1 = Pk ∧
∧

x∈X

[δx\(Pk ·δx)], for every k ∈N. (20)

Then for an arbitrary k ∈ N the following statements hold:

(a) Pk is a fuzzy quasi-order matrix;

(b) APk
is k-equivalent to A;

(c) if Pk = L ·R is an r-factorization of Pk, for some r 6 d(Pk), then AL|R is k-equivalent to A;

(d) if Ps = Ps+1, for some s 6 k, then Pk = Ps and both APk
and AL|R are equivalent to A .

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 61

The third way to perform the k-reduction is given by the next theorem.

Theorem 4.3 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us define a sequence of matrices {Q̂k}k∈N ⊂ L
n×n as follows:

Q̂k =
∧

|u|6k

τu/τu, (21)

for each k ∈ N. Then for an arbitrary k ∈ N0 the following statements hold:

(a) Q̂k is a fuzzy quasi-order matrix and Qk 6 Q̂k, where Qk is as in Theorem 4.1;

(b) A
Q̂k

is k-equivalent to A;

(c) if Q̂k = L ·R is an r-factorization of Q̂k, for some r 6 d(Q̂k), then AL|R is k-equivalent to A .

Proof. (a) We have that Q̂k is a fuzzy quasi-order matrix as the infimum of a family of fuzzy quasi-order

matrices τu/τu, u ∈ X∗, |u|6 k.

Consider an arbitrary u ∈ X∗ such that |u|6 k. Then u = x1x2 . . .xs, where x1,x2, . . . ,xs ∈ X and s 6 k,

and we get

Qk · τu = Qk ·δx1
·δx2

· . . . ·δxs
· τ 6 Qs ·δx1

·δx2
· . . . ·δxs

· τ 6 δx1
·Qs−1 ·δx2

· . . . ·δxs
· τ

6 δx1
·δx2

·Qs−2 · . . . ·δxs
· τ 6 . . .6 δx1

·δx2
· . . . ·Q1 ·δxs

· τ 6 δx1
·δx2

· . . . ·δxs
·Q0 · τ

6 δx1
·δx2

· . . . ·δxs
· τ = τu.

Therefore, Qk · τu 6 τu. i.e., Qk 6 τu/τu, for every u ∈ X∗ such that |u|6 k, so

Qk 6
∧

|u|6k

τu/τu = Q̂k.

(b) According to the definition of Q̂k we obtain that Q̂k · τu 6 τu, for every u ∈ X∗, |u|6 k, and since

τu = In · τu 6 Q̂k · τu, we conclude that

Q̂k · τu = τu, for every u ∈ X∗, |u|6 k. (22)

Consider again an arbitrary u ∈ X∗ such that |u|6 k. According to (22) we get

JA
Q̂k

K(u) = σ · Q̂k ·δx1
· Q̂k ·δx2

· Q̂k · . . . · Q̂k ·δxs
· Q̂k · τ = σ · Q̂k ·δx1

· Q̂k ·δx2
· Q̂k · . . . · Q̂k ·δxs

· τ

= σ · Q̂k ·δx1
· Q̂k ·δx2

· Q̂k · . . . · Q̂k · τxs
= σ · Q̂k ·δx1

· Q̂k ·δx2
· Q̂k · . . . · τxs

= . . .

= σ · Q̂k ·δx1
· Q̂k ·δx2

· Q̂k · τx3...xs
= σ · Q̂k ·δx1

· Q̂k ·δx2
· τx3...xs

=

= σ · Q̂k ·δx1
· Q̂k · τx2x3...xs

= σ · Q̂k ·δx1
· τx2x3...xs

= σ · Q̂k · τx1x2x3...xs

= σ · τx1x2x3...xs
= σ · τu = JAK(u).

Therefore, we have proved that A
Q̂k

is k-equivalent to A .

(c) This is proved in the same way as the statement (c) in Theorem 4.1.

In a similar way we can prove the theorem that provides the fourth way to perform the k-reduction.

Theorem 4.4 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us define a sequence of matrices {P̂k}k∈N ⊂ L
n×n as follows:

P̂k =
∧

|u|6k

σu\σu, (23)

for every k ∈ N.

62 Approximate state reduction of fuzzy finite automata

Then for an arbitrary k ∈ N the following statements hold:

(a) P̂k is a fuzzy quasi-order matrix and Pk 6 P̂k, where Pk is as in Theorem 4.2;

(b) A
P̂k

is k-equivalent to A;

(c) if P̂k = L ·R is an r-factorization of P̂k, for some r 6 d(P̂k), then AL|R is k-equivalent to A .

The previous four theorems provide four different methods for k-reduction of fuzzy finite automata.

The question naturally arises: Do we really need all four methods? In other words, are any of these

methods better than others, so that others are not necessary? In the sequel, we will show that each of

these methods has some advantages, but also some disadvantages in relation to the others, as well as in

relation to methods for full state reduction (reduction that ensures full equivalence) provided in [17].

First we note that the sequence of matrices we use in computing the greatest right invariant (and

also left invariant) fuzzy quasi-order matrix may be infinite, and in such cases, the efficiency of reduc-

tions using such matrices becomes questionable. In contrast, k-reductions by means of the kth members

of sequences defined by (17) and (20) can always be realized in a finite number of steps. In addition,

members of those arrays with smaller indices produce automata with fewer states than members with

larger indices (see example below), which means that k-reductions generally yield fewer fuzzy finite

automata than reductions that result in strictly equivalent fuzzy finite automata.

Regarding k-reductions by means of the kth members of sequences defined by (17) and (21), by

Qk 6 Q̂k it follows that Q̂k generally yields better reduction than Qk (see Example 4.5), for each k ∈ N0.

However, computing the matrix Q̂k can be significantly more difficult than computing the matrix Qk,

because it requires computing the vectors τu, for u ∈ X∗, |u| 6 k, and their the number can be more than

mk, where m is the number of input letters.

Finally, as far as k-reductions by means of the kth members of sequences defined by (17) and (20) are

concerned, they are not comparable. In some cases one of them will give better results, and in other cases

the another one. In Example 4.5 we have a case where Pk, for each k > 1, does not perform reduction,

while Qk does, but the opposite would happen on the reverse automaton of the automaton considered in

that example. The same can be said for k-reductions by means of the kth members of sequences defined

by (21) and (23).

In the following example, we assumed the structure of membership values to be the two-element

Boolean algebra B. The reason why we decided so is that B is a subalgebra of every complete residua-

ted lattice, and every automaton over the two-element Boolean algebra B can also be considered an

automaton over an arbitrary complete residuated lattice.

Example 4.5 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over the two-element Boolean algebra
B= {0,1} and an inpit alphabet X = {x,y} given by

σ =
[
1 1 0 0 0 1

]
, δx =

1 0 0 0 0 0

0 0 1 0 1 0

1 0 1 1 0 0

0 1 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

, δy =

1 0 0 0 0 0

1 1 0 0 0 0

1 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 0 0

1 0 1 1 0 0

, τ =

1

1

0

1

0

1

.

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 63

Applying formula (17) we get

Q0 =

1 1 1 1 1 1

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

, Q1 =

1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

, Q2 =

1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 0

1 1 1 1 1 1

,

Q3 = Q4 =

1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 0 0 1 0

1 1 1 1 1 1

,

with d(Q0) = 2, d(Q1) = 3, d(Q2) = 4 and d(Q3) = 5, where Q3 = Q4 is the greatest right invariant
fuzzy quasi-order matrix, and applying (21) we get

Q̂0 =

1 1 1 1 1 1

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

, Q̂1 =

1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

,

with d(Q̂0) = 2 and d(Q̂1) = 3, where Q̂1 is the greatest weakly right invariant fuzzy quasi-order matrix.

We have that AQk
is k-equivalent to A , for each k ∈ {0,1,2}, while AQ3

is strictly equivalent to A ,

and we also have that |AQ0
|< |AQ1

|< |AQ2
|< |AQ3

|. On the other hand, A
Q̂0

is 0-equivalent to A , while

A
Q̂1

is strictly equivalent to A . We see that Q̂1 provides better reduction than Q3.

The sequence computed according to formula (20) is the following:

P0 =

1 1 0 0 0 1

1 1 0 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 0 0 0 1

, P1 =

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 1 0 1 1

1 0 0 0 0 1

, P2 = P3 =

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

,

with d(P0) = 2, d(P1) = 6 and d(P2) = 6, P2 = P3 is the greatest left invariant fuzzy quasi-order matrix,
while the sequence computed using (23) is the following:

P̂0 =

1 1 0 0 0 1

1 1 0 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 0 0 0 1

, P̂1 =

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 1 0 1 1

1 0 0 0 0 1

, P̂2 = P̂3 =

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

,

with d(P̂0) = 2, d(P̂1) = 6 and d(P̂2) = 6, while P̂2 is the greatest weakly left invariant fuzzy quasi-order

matrix. Although AP1
and A

P̂1
are 1-equivalent to A , and AP2

and A
P̂2

are strictly equivalent to A , this is

of no significance as there is no any reduction.

64 Approximate state reduction of fuzzy finite automata

5 Complexity issues

Let n denote the number of states of a fuzzy finite automaton A = (A,σ ,δ ,τ) and m the number of letters

in the input alphabet X , and let c∨, c∧, c⊗ and c→ be respectively computational costs of the operations

∨, ∧, ⊗ and → in the underlying complete residuated lattice L. If L is linearly ordered, we can assume

that c∨ = c∧ = 1, and if L is the Gödel structure, we can also assume that c⊗ = c→ = 1.

First we consider the computational time of the procedure from Theorem 4.1 (or Theorem 4.2), for a

given k ∈ N. It is clear that the time required to compute Q0 is O(n2c→). When we have computed Qs,

for some s ∈ N, s < k, and we are computing Qs+1 from Qs, we have the following:

1) For a fixed x ∈ X , the time required to compute the product δx ·Qs is O(n3(c⊗+ c∨)), and when

this product is computed, we need an additional time O(n3(c→ + c∧)) to compute the residual

(δx ·Qs)/δx. Thus, the total time required to compute (δx ·Qs)/δx is O(n3(c→+ c∧+ c⊗+ c∨)).

2) Now, to compute (δx ·Qs)/δx for all x ∈ X we need time O(mn3(c→+ c∧+ c⊗+ c∨)).

3) Next, when all matrices from 2) have been computed, to compute all infima in Qs ∧
∧

x∈X (δx ·
Qs)/δx and obtain Qs+1 we need time O(n2mc∧).

4) Finally, the total time required to compute Qs+1 from Qs is O(mn3(c→+ c∧+ c⊗+ c∨)).

Therefore, the time required to compute all matrices Q0, Q1, . . . , Qk, i.e., the total computational time

of the procedure from Theorem 4.1, amounts O(kmn3(c→+ c∧+ c⊗+ c∨)). This is also the total com-

putational time of the procedure from Theorem 4.2. That computational time can be even better in cases

where Qs = Qs+1, for some s < k, because then we do not have to compute all the matrices between Qs+1

and Qk which are all equal to each other. However, to achieve that better computational time, after com-

puting the matrix Qs+1 we need to check whether Qs+1 =Qs. The time required for such a check is O(n2),
and for all such checks it is at most O(kn2), which obviously does not affect the total computational time

order of our procedure.

Next we consider the computational time of the procedure from Theorem 4.3 (or Theorem 4.4), for

a given k ∈ N. To compute Q̂k we have to compute the family of vectors {τu}|u|6k. That family forms

a perfect m-ary tree with the root corresponding to the vector τ , and computing the members of the

family is reduced to filling that tree level by level, starting from the root. Consequently, the number of

members of that family is at most O(mk). When a vector τu, for some u ∈ X∗, |u| < k, is computed,

then for each x ∈ X we compute τxu according to the formula τxu = δx · τu. Therefore, the time needed

to compute this product, i.e., the time nedded to compute each member of the considered family, is

O(n2(c⊗ + c∨)). Moreover, when τu, for some u ∈ X+, |u| 6 k, is computed, the residual τu/τu can

be computed in time O(n2c→), so the time required to compute a single τu and the residual τu/τu is

O(n2(c⊗+c∨+c→)), and the total time required to compute the whole family {τu}|u|6k and all residuals

τu/τu, for u ∈ X∗, |u|6 k, amounts O(mkn2(c⊗+c∨+c→)). Finally, to compute Q̂k we have to apply the

operation ∧ between matrices τu/τu, u ∈ X∗, |u| 6 k, at most O(mk) times, and since the computational

time for a single application of the operation ∧ is O(n2c∧), the total computational time for all such

operations is O(mkn2c∧). Hence, the total time required to compute Q̂k, i.e., the total computational time

of the procedure from Theorem 4.3 is O(mkn2(c⊗+ c∨+ c→+ c∧)). This is also the total computational

time of the procedure from Theorem 4.4.

Applying the technique of [12], the procedures from Theorems 4.1–4.4 can be improved so that the

factor n2 in their complexity estimate is reduced to the sum of n and the number of non-zero fuzzy

transitions of the input fuzzy automaton A .

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 65

References

[1] Radim Bělohlávek & Vilém Vychodil (2005): Fuzzy Equational Logic. In: Fuzzy Equational Logic, Studies

in Fuzziness and Soft Computing 186, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 139–170, doi:10.

1007/11376422_3.

[2] Radim Bělohlávek (2002): Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Pub-

lishers, USA, doi:10.1007/978-1-4615-0633-1.

[3] Radim Bělohlávek & Michal Krupka (2009): On Approximate Minimization of Fuzzy Automata. Journal of

Multiple-Valued Logic and Soft Computing 15(2-3), pp. 125–135, doi:10.1142/9789812709677_0194.

[4] Miroslav Ćirić, Aleksandar Stamenković, Jelena Ignjatović & Tatjana Petković (2007): Factorization of

Fuzzy Automata. In Erzsébet Csuhaj-Varjú & Zoltán Ésik, editors: Fundamentals of Computation Theory,

Lecture Notes in Computer Science 4639, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 213–225,

doi:10.1007/978-3-540-74240-1_19.

[5] Miroslav Ćirić, Aleksandar Stamenković, Jelena Ignjatović & Tatjana Petković (2010): Fuzzy relation equa-

tions and reduction of fuzzy automata. Journal of Computer and System Sciences 76, pp. 609–633, doi:10.

1016/j.jcss.2009.10.015.

[6] Jelena Ignjatović, Miroslav Ćirić, Branimir Šešelja & Andreja Tepavčević (2015): Fuzzy relational inequali-

ties and equations, fuzzy quasi-orders, closures and openings of fuzzy sets. Fuzzy Sets and Systems 260, pp.

1–24, doi:10.1016/j.fss.2014.05.006.

[7] Lvzhou Li & Daowen Qiu (2015): On the State Minimization of Fuzzy Automata. IEEE Transactions on

Fuzzy Systems 23(2), pp. 434–443, doi:10.1109/TFUZZ.2014.2315620.

[8] Yongming Li (2008): Approximation and robustness of fuzzy finite automata. International Journal of Ap-

proximate Reasoning 47(2), pp. 247–257, doi:10.1016/j.ijar.2007.05.004.

[9] Ivana Micić, Zorana Jančić & Stefan Stanimirović (2022): Computation of solutions to certain nonlinear sys-

tems of fuzzy relation inequations. In Dimitros Poulakis & George Rahonis, editors: Algebraic Informatics,

9th International Conference, CAI 2022, Lecture Notes in Computer Science 13706, Thessaloniki, Greece,

pp. 192–202, doi:10.1007/978-3-031-19685-0_14.

[10] Ivana Micić, Linh Anh Nguyen & Stefan Stanimirović (2022): Characterization and computation of approx-

imate bisimulations for fuzzy automata. Fuzzy Sets and Systems 442, pp. 331–350, doi:10.1016/j.fss.

2022.05.003.

[11] Linh Anh Nguyen (2023): Fuzzy simulations and bisimulations between fuzzy automata. International Jour-

nal of Approximate Reasoning, pp. 113–131, doi:10.1016/j.ijar.2023.02.002.

[12] Linh Anh Nguyen, Ivana Micić & Stefan Stanimirović (2023): Depth-Bounded Fuzzy Simulations and Bisim-

ulations between Fuzzy Automata, doi:10.48550/arXiv.2307.03318. arXiv:2307.03318.

[13] Linh Anh Nguyen, Ivana Micić & Stefan Stanimirović (2023): Fuzzy minimax nets. IEEE Transactions on

Fuzzy Systems 31(8), pp. 2799–2808, doi:10.1109/TFUZZ.2023.3237936.

[14] Sha Qiao, Ping Zhu & Jun e Feng (2022): Fuzzy bisimulations for nondeterministic fuzzy transition systems.

IEEE Transactions on Fuzzy Systems 31(7), pp. 2450–2463, doi:10.1109/TFUZZ.2022.3227400.

[15] Sha Qiao, Ping Zhu & Witold Pedrycz (2023): Approximate bisimulations for fuzzy-transition systems. Fuzzy

Sets and Systems, p. 108533, doi:10.1016/j.fss.2023.108533.

[16] Aleksandar Stamenković, Miroslav Ćirić & Milan Bašić (2018): Ranks of fuzzy matrices. Applications in

state reduction of fuzzy automata. Fuzzy Sets and Systems 333, pp. 124–139, doi:10.1016/j.fss.2017.

05.028.

[17] Aleksandar Stamenković, Miroslav Ćirić & Jelena Ignjatović (2014): Reduction of fuzzy automata by means

of fuzzy quasi-orders. Information Sciences 275, pp. 168–198, doi:10.1016/j.ins.2014.02.028.

[18] Stefan Stanimirović & Ivana Micić (2022): On the solvability of weakly linear systems of fuzzy relation

equations. Information Sciences 607, pp. 670–687, doi:10.1016/j.ins.2022.05.111.

https://doi.org/10.1007/11376422_3
https://doi.org/10.1007/11376422_3
https://doi.org/10.1007/978-1-4615-0633-1
https://doi.org/10.1142/9789812709677_0194
https://doi.org/10.1007/978-3-540-74240-1_19
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.1016/j.fss.2014.05.006
https://doi.org/10.1109/TFUZZ.2014.2315620
https://doi.org/10.1016/j.ijar.2007.05.004
https://doi.org/10.1007/978-3-031-19685-0_14
https://doi.org/10.1016/j.fss.2022.05.003
https://doi.org/10.1016/j.fss.2022.05.003
https://doi.org/10.1016/j.ijar.2023.02.002
https://doi.org/10.48550/arXiv.2307.03318
https://arxiv.org/abs/2307.03318
https://doi.org/10.1109/TFUZZ.2023.3237936
https://doi.org/10.1109/TFUZZ.2022.3227400
https://doi.org/10.1016/j.fss.2023.108533
https://doi.org/10.1016/j.fss.2017.05.028
https://doi.org/10.1016/j.fss.2017.05.028
https://doi.org/10.1016/j.ins.2014.02.028
https://doi.org/10.1016/j.ins.2022.05.111

66 Approximate state reduction of fuzzy finite automata

[19] Stefan Stanimirović, Ivana Micić & Miroslav Ćirić (2022): Approximate bisimulations for fuzzy automata

over complete Heyting algebras. IEEE Transactions on Fuzzy Systems 30(2), pp. 437–447, doi:10.1109/

TFUZZ.2020.3039968.

[20] Chao Yang & Yongming Li (2018): ε-bisimulation relations for fuzzy automata. IEEE Transactions on Fuzzy

Systems 26(4), pp. 2017–2029, doi:10.1109/TFUZZ.2017.2760278.

[21] Chao Yang & Yongming Li (2020): Approximate bisimulations and state reduction of fuzzy automata under

fuzzy similarity measures. Fuzzy Sets and Systems 391, pp. 72–95, doi:10.1016/j.fss.2019.07.010.

https://doi.org/10.1109/TFUZZ.2020.3039968
https://doi.org/10.1109/TFUZZ.2020.3039968
https://doi.org/10.1109/TFUZZ.2017.2760278
https://doi.org/10.1016/j.fss.2019.07.010

	Introduction
	Preliminaries
	Fuzzy finite automata and the state reduction problem
	Approximate state reduction: bold0mu mumu kkkkkk-reduction
	Complexity issues

