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This work is a survey of the main results reported for the degree of extension of two models defining

non-regular languages, namely the context-free grammar and the extended automaton over groups.

More precisely, we recall the main results regarding the degree on non-regularity of a context-free

grammar as well as the degree of extension of finite automata over groups. Finally, we consider a

similar measure for the finite automata with translucent letters and present some preliminary results.

This measure could be considered for many mechanisms that extend a less expressive one.

1 Introduction

Language defining models play a central role in formal language theory, and in theoretical computer

science. There have been defined very many such models with various motivations depending on the

specific problems to be solved. In this work, we restrict ourselves to the most well-known devices:

Chomsky generative grammars and finite automata. Regular languages are classically represented by:

regular or right-linear grammars, many variants of finite automata, regular expressions, logical or al-

gebraic formalisms. Due to their limited expressiveness, some of these models have been extended to

more complex models such that the old model is just a particular case of the extended one. For instance,

context-free grammars are natural extensions of regular or right-linear grammars, finite automata with

valences [15], jumping automata [29], automata with translucent letters [31] are extensions of finite au-

tomata able to accept non-regular languages, etc. In their turn, context-free languages are classically

represented by: context-free grammars, pushdown automata, logical and algebraic formalisms. Mainly,

by the same reason as above, there have been proposed various extensions like context-sensitive gram-

mars, grammars with regulated rewriting [11], etc.

In this work, we recall a measure for evaluating the degree of extension of a two such models, namely

the context-free grammar as an extension of regular grammar, and the extended finite automaton over

groups as an extension of the finite automaton. A similar measure is also considered for finite automata

with translucent letters. Roughly speaking, this measure is defined as follows:

(i) by counting the maximal number of non-regular rules used in a derivation [6],

(ii) by evaluating the group memory used by the extended automata over groups [1].

(iii) by counting the number of jumping moves used by a finite automata with translucent letters.
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As far as the first measure is concerned, it is worth noting that similar investigations have been reported

from the time of introducing the classes of regular and context-free languages. Here are several results

giving sufficient conditions for a context-free grammar and a context-sensitive grammar to generate a

regular and context-free language, respectively:

• Each context-free grammar that is not self-embedding generates a regular language [8].

• An arbitrary grammar in which no terminal is used as context and every rule generates at least one

terminal, generates a context-free language [19].

• An arbitrary grammar generates a context-free language if the left side of every rule contains only

one nonterminal, with terminal words as the only context [5].

• If every rule of an arbitrary grammar has as left context a word of terminal symbols at least as long

as the right context, then the language generated is context-free [5].

• A grammar which has a partial ordering on its symbols, such that in every rule of the grammar

every symbol on the left side is “smaller” than some symbol on the right generates a context-free

language [21].

• In a grammar, the sets of terminal words generated by “one-way” and “two-ways” derivations are

context-free [26, 27, 28] and [13].

• An arbitrary grammar such that in each of its non-context-free rules, the right side contains a word

of terminals longer than any terminal word appearing between two nonterminals in the left side,

generates a context-free language [2].

As one can see, some of the above conditions can be immediately checked, namely by examining the

rules. In many cases, the complexity of a device generating a language is a function with nonnegative

integer values: rational index [4], initial index [16], index of a context-free grammar [7], height of

derivational trees [10], etc. Similar approaches have been reported in [6] for context-free and context-

sensitive grammars, and [1] for extended automata over groups. In the sequel, we survey the most

important results of these papers.

2 Preliminaries

We assume the reader is familiar with the basic definitions and concepts in formal language and au-

tomata theory and combinatorial algebra such as monoids and groups, presentations and generating sets,

etc. For further details, we refer to [33] (for formal languages and automata theory), and [24, 32] (for

combinatorial algebra).

We denote by N the set of nonnegative integers. An alphabet is a finite set of letters or symbols.

For a set A we denote by card(A) the cardinality of A. For a finite set V , called alphabet, we denote by

(V ∗, ·,ε) the free monoid generated by V under the operation of concatenation with the neutral element

ε . The elements of V ∗ are called words and ε is the empty word. For a word x ∈V ∗ we denote by al ph(x)
the smallest subset of V such that x ∈ al ph∗(x). Given a set A, we denote by P f (A) the family of all

finite subsets of A. The free semigroup generated by V with concatenation is denoted by V+. The length

of x ∈ V ∗ is denoted by |x|, |x|a is the number of occurrences of a in x, whereas |x|B is the number of

occurrences of symbols B ⊆V in x. For a word w = a1a2 . . .an, n ≥ 1, ai ∈V for all 1 ≤ i ≤ n, we write

w̃ = an . . .a2a1.

By regular grammar we mean a grammar that is right-linear, hence a regular rule should be under-

stood as a right-linear rule of one of the forms A → wB, and A → w, with A,B being nonterminals and w
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being a word of terminals, possibly the empty word. In what follows we also use the regular expressions

for defining regular languages. A context-free grammar G = (N,T,S,P) is a reduced grammar if for any

X ∈ N we have the derivations S =⇒∗ αXβ , for some α ,β ∈ (N ∪T )∗ (X is said to be accessible), and

X =⇒∗ u, with u ∈ T ∗ (X is said to be co-accessible). A context-free grammar is proper if it has no

λ -production (i.e. X → λ , X ∈ N) and no chain-production (i.e., X →Y , X ,Y ∈ N). It is known that for

every context-free grammar (which does not generate λ ) there exists an equivalent proper and reduced

context-free grammar.

For an arbitrary grammar G = (N,T,S,P) we denote by

• G(A) = (N,T,A,P), A ∈ N the grammar in which the axiom S was replaced by another nontermi-

nal, A.

• Greg = (N,T,S,Preg) the grammar obtained from G by considering the set Preg ⊆ P of regular

productions of P only.

• Gc f = (N,T,S,Pc f ) the grammar obtained from G by considering the set Pc f ⊆ P of context-free

productions of P only.

We denote by REG and CF the class of regular and context-free languages, respectively.

A finite multiset over a finite set A is a mapping σ : A −→ IN; σ(a) expresses the number of copies

of a ∈ A in the multiset σ . In what follows, a multiset containing the elements b1,b2, . . . ,br, any element

possibly being repeated one or more times in the sequence, will be denoted by 〈b1,b2, . . . ,br〉. Each

multiset σ over a set A of cardinality n may also be viewed as an array of size n with non-negative

entries.

For two functions f ,g : N−→ N we say that f (n) ∈ O(g(n)) iff there is a constant c > 0 and n0 ≥ 1

such that f (n) ≤ cg(n) for all n ≥ n0. Equivalently, f (n) ∈ O(g(n)) iff lim
n→∞

sup
f (n)

g(n)
< ∞. Following

[3], we say that f (n) ∈ Ω(g(n)) iff lim
n→∞

sup
f (n)

g(n)
> 0. Furthermore, we say that f (n) ∈ o(g(n)) iff

lim
n→∞

f (n)

g(n)
= 0.

3 The degree of non-regularity

Given a context-free grammar G = (N,T,S,P) a derivation step in G by using the rule r ∈ P is denoted

by ⇒r. For a derivation in G

D = (S ⇒r1
w1 ⇒r2

w2 · · · ⇒rm
wm = w),

where w ∈ T ∗ and ri ∈ P for 1 ≤ i ≤ m, we define the degree of non-regularity of w with respect to D by

dnregG(w,D) = card{i | ri /∈ Preg,1 ≤ i ≤ m}.

Less formally, dnregG(w,D) is the number of non-regular rules applied in the derivation D of w in the

grammar G. The degree of non-regularity of a terminal word w with respect to the grammar G is

dnregG(w) =

{
min{dnregG(w,D) | D is a derivation of w in G},
0, if w /∈ L(G).

In other words, the degree of non-regularity of a word with respect to a grammar is computed by taking

into consideration the “least non-regular derivation” if there is one.
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The degree of non-regularity of a context-free grammar G as above is a mapping from N to N defined

by

dnregG(n) = max{dnregG(w) | |w|= n,w ∈ T+}.
As one can see, the most “non-regular” word of each length is considered.

For a function f : N→ N we now define the complexity class

DNREG( f (n)) = {L | L = L(G) for some context-free grammar G and

dnregG(n) ∈ O( f (n))}.

Otherwise stated, a language has the degree of non-regularity f (n) if and only if it belongs to

DNREG( f (n)).
In the sequel we recall the main results about the degree on non-regularity. A simple remark turns

out to be useful. If G is an arbitrary context-free grammar and G1 is the reduced grammar obtained from

G, dnregG(n) = dnregG1
(n) holds for all n, because none of the removed productions contributes in any

derivation of a terminal word in G. By several considerations, a similar situation holds if G is not proper

and G1 is the proper grammar obtained from G. Therefore, the context-free grammars considered in the

sequel are reduced and proper.

A context-free grammar is said to be in quasi normal form if all its rules of are of the following

forms:

(i) A → a, where a is a terminal,

(ii) A → aB, where a is a terminal and B is a nonterminal,

(iii) A → α , where α is a word of nonterminals of length at least 2.

Proposition 1 For every context-free grammar G there exists an equivalent context-free grammar G′ in

quasi normal form such that dnregG(n) = dnregG′(n) for all n.

If the length of α is exactly 2 in every rule A → α of a grammar in quasi normal form, we say that

the grammar is in quasi Chomsky normal form. If we have a grammar in quasi normal form, each rule

A → α , with |α | ≥ 3 can be replaced by a sequence of rules with the right-hand side of length 2. Hence,

each grammar in quasi normal can be replaced by an equivalent grammar in quasi Chomsky normal form

at a price of a constant number of times higher degree of non-regularity.

Let G be a context-free grammar and c be a positive integer; we define the language

L(G,≤ c) = {w ∈ L(G) | dnregG(w)≤ c}.

Clearly, if dnregG(n)≤ c for any n ≥ 1, then L(G,≤ c) = L(G) holds.

Theorem 1 DNREG(1) = REG. A language generated by a context-free grammar is finitely-non-

regular if and only if it is regular.

Theorem 2 For any given context-free grammar G and a positive integer c, one can algorithmically

decide whether dnregG(n)≤ c.

It is worth mentioning that dnregG(n) ≤ c, for a context-free grammar G and a positive integer c,

implies that L(G) is regular. However, if dnregG(n)> c, then nothing can be said about the regularity of

L(G). Even more, if L(G) is regular, it does not generally follow that dnregG(n) ∈ O(1).
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Theorem 3 Given an unambiguous context-free grammar G, one can algorithmically decide whether

dnregG(n) ∈ O(1).

The problem turns out to be undecidable even for arbitrary linear context-free grammars. It is worth

mentioning that this problem is not equivalent to the problem of whether or not a given context-free

grammar generates a regular language, which is known to be undecidable.

Theorem 4 Given a linear context-free grammar G, it is undecidable whether dnregG(n) ∈ O(1).

If L is a language generated by a context-free grammar such that every derivation of each word w ∈ L

of length n needs a number of non-regular productions at most linear in n, then the language is said to be

“at most linearly non-regular”.

Theorem 5 CF ⊆ DNREG(n). Every context-free language is at most linearly-non-regular.

The next result gives an evaluation of the degree of non-regularity of unambiguous context-free

grammar generating a non-regular language.

Theorem 6 Let G be an unambiguous context-free grammar generating a non-regular language. Then

dnregG(n) ∈ Ω(n).

In [6] one defines a complexity measure on pushdown automata which is related, to some extent, to

the pushdown space complexity of languages introduced in [17].

Let Γ = (Q,V,U,δ ,q0,Z0,F) be a pushdown automaton with the set of states Q, the input alphabet

V , the stack alphabet U , the transition mapping δ , the initial state q0, the initial stack symbol Z0 and the

set of accepting states F . We say that a transition (s,α) ∈ δ (q,a,A), with q,s ∈ Q, a ∈V ∪{λ}, A ∈U ,

α ∈ U∗, is a push move, if |α | ≥ 2, it is a pop move if α = λ , and it is a neutral move if α ∈ U . In

[6] one defines the push complexity of a language as the number of push moves needed by a pushdown

automaton to accept that language. Let w ∈V ∗ and

C : (qo,w,Z0) ⊢∗ (a,λ ,λ )

be a computation in Γ accepting the input word w with empty stack, see, e.g., Chapter 6 in [25]. Then,

the number of push moves in the computation C, is denoted by pushΓ(w,C). Furthermore, for every word

w ∈V ∗ we define

pushΓ(w) =





min{pushΓ(w,C) |C is a computation accepting w},
if w is accepted by Γ,

0, if w is not accepted by Γ.

We now define the function pushΓ : N−→ N by

pushΓ(n) = max{pushΓ(w) | |w|= n}.

This function is called the push complexity of Γ. Note that if a pushdown automaton has stack space

complexity f (n), its push complexity is a function g(n) such that f (n) ∈ O(g(n)). As for the degree of

non-regularity we set

PUSHλ( f (n)) = {L | L = L(Γ) for some pushdown automaton Γ

accepting with empty stack and pushΓ(n) ∈ O( f (n))}.
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Analogously, we define

PUSH f ( f (n)) = {L | L = L(Γ) for some pushdown automaton Γ

accepting with final states and pushΓ(n) ∈ O( f (n))}.

It is known how a pushdown automaton accepting with final states can be transformed into an equiv-

alent one accepting with empty stack (Theorem 5.1 in [22]), and conversely (Theorem 5.2 in [22]). By

these constructions the equality PUSHλ( f (n)) = PUSH f ( f (n)).
The push measure will turn out to be very useful for our further investigation. Indeed, we claim that

the two classes of languages PUSHλ ( f (n)) and DNREG( f (n)) are identical.

Theorem 7 Let L be a deterministic context-free language that is not regular. If L ∈ DNREG( f (n)),
then f (n) ∈ Ω(n).

Theorem 8 Both families DNREG(
√

n) and DNREG(logn) contain non-regular languages.

A very natural problem arises: Are there other sublinear functions f such that DNREG( f ) does

contain non-regular languages? The problem of finding other sublinear functions f such that DNREG( f )
contains non-regular languages is of interest from a computational point of view as well. By the next

theorem, functions like logp(n), for some p ≥ 2, are of a special interest.

Theorem 9 Let G be a context-free grammar in quasi Chomsky normal form generating a non-regular

language such that dnregG(n) ≤ f (n). Then L(G) is recognizable in O(n · p f (n)) time, where p is the

number of nonterminals of G.

4 The degree of extension of finite automata over groups

Let (M, ·,1) be a group under an operation denoted by · with the neutral element denoted by 1. An

extended finite automaton (EFA shortly) A over the group (M, ·,1) is defined formally as follows. A =
(Q,V,M, f ,q0,F), where Q,V,q0,F have the same meaning as in a usual finite automaton, namely the

set of states, the input alphabet, the initial state and the set of final states, respectively, and f : Q×V −→
P f (Q×M). This is actually the extension of finite automata with additive or multiplicative valences to

an arbitrary group, see [15] and the references therein.

This type of automaton can be viewed as a finite automaton having a register in which any element

of M can be stored, let us call it “group memory”. The relation (q,m) ∈ f (s,a), q,s ∈ Q, a ∈V, m ∈ M

means that the automaton A changes its current state s into q, by reading the symbol a on the input tape,

and stores x ·m in the register, where x is the former content of the register. The initial value stored in the

register is 1.

We shall use the notation

(q,aw,m) |=A (s,w,mr) iff (s,r) ∈ f (q,a)

for all s,q ∈ Q a ∈V, m,r ∈ M. The reflexive and transitive closure of the relation |=A is denoted by |=∗
A.

Sometimes, the subscript identifying the automaton will be omitted when it is self-understood.

The word x ∈ V ∗ is accepted by the automaton A if, and only if, there is a final state q such that

(q0,x,1) |=∗ (q,ε ,1). In other words, a string is accepted if the automaton completely reads the string

and reaches a final state with the content of the register being the neutral element of M. The language

accepted by an EFA A over a group as above is denoted by L(A).
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The following simple observation will be useful in what follows. If L is a language accepted by an

EFA over some group M, there exists a finitely generated subgroup N of M such that L is accepted by

an EFA over N. Indeed, since the EFA over some group has finitely many transitions, only finitely many

elements of the group can be associated with these transitions. Consequently, the register can only ever

hold values in the subgroup of the initial group generated by these elements, so it suffices to view the

automaton as an EFA over this subgroup.

It is clear that some words in the language accepted by an EFA over a group can be accepted by

computations containing “non-regular transitions”, that is transitions that change the contents of the

group memory. The use of these transitions can make EFA more powerful than

nite automata. A very simple example is a finite automaton that accepts the language {anbm | n,m ≥
1}. If we extend this automaton such that each transition reading an a add the value 1 to its register

and each transition reading a b subtracts 1 from the register, the new automaton is an EFA over the

additive group of integers that accepts the non-regular language {anbn | n ≥ 1}. Consequently, EFA

over groups are able to accept non-regular languages or even not context-free languages, see, e.g.,[12].

In the remainder of the present work we study “how much” group memory, defined as the number of

non-regular transitions, needs an EFA for accepting a non-regular language.

Given an EFA A = (Q,V,M, f ,q0,F) over a group (M, ·,1), w ∈ L(A), and a computation

CA(w) : (q0,w0,m0) |=A (q1,w1,m1) |=A (q2,w2,m2) |=A . . . |=A (qs,ε ,ms),

for some s≥ 1, where w0 =w, m0 =ms = 1, we define the multiset E(CA(w))= 〈m−1
i mi+1 | 0≤ i≤ s−1〉.

In words, E(CA(w)) contains all the elements of M used in the computation CA(w), each element appear-

ing in exactly the same number of copies as that of times that element was used during the computation.

Further on, let N(CA(w)) be the integer defined by

N(CA(w)) = ∑
x∈M,x6=1

E(CA(w))(x).

We now define the group memory complexity of the computation of A on the word w by

gmcA(w) =

{
min{N(CA(w)) |CA(w) is a computation of A on w}
0, if w /∈ L(A).

In other words, the group memory complexity of a word with respect to an EFA over M is computed

by taking into consideration the “least non-regular computation” if there is one. The group memory

complexity of an EFA as above is a mapping from IN to IN defined by

gmcA(n) = max{gmcA(w)||w|= n,w ∈V ∗}.

As one can see, the most “non-regular” word of each length is considered.

Let A be an arbitrary EFA over some group and c be a positive integer; we define the language

L(A,≤ c) = {w ∈ L(A) | gmcA(w) ≤ c}. Clearly, if gmcA(n) ≤ c for any n ≥ 1, then L(A,≤ c) = L(A)
holds. A natural question arises: Are there EFA accepting non-regular languages with a constant group

memory complexity? We give a negative answer to the question through the following result:

Theorem 10 Given an EFA A and a positive integer c, the language L(A,≤ c) is regular.

Theorem 11 Let M be a group such that all its finitely generated subgroups are finite. Then the language

accepted by any EFA over M is regular.
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It is worth mentioning that the proof of Theorem 10 is effective, that is a finite automaton recognizing

L(A,≤ c) can effectively be constructed. On the other hand, it is known that a pushdown automaton may

be seen as an EFA over a free group [12, 9] or an EFA over a polycyclic monoid [8, 18]. Starting from

these results we prove the next result.

Theorem 12 For every EFA A over a free group or a polycyclic monoid and a positive integer c, the

problem of whether or not gmcA(n)≤ c is decidable.

Are there other classes of groups for which the question in the previous statement is decidable? Yes,

actually this happens for every finitely generated abelian group. The reason is a fundamental result in

the group theory.

Theorem 13 Every finitely generated abelian group is the direct product of a finite number of cyclic

groups.

Consequently, the language accepted by an EFA over a finitely generated abelian group is either regular

or is a language accepted by an EFA over a group ZZ
k ×H , where k is a positive integer and H is a finite

abelian group. Moreover, ZZk is the additive group of vectors of size k with integer entries. We now make

use of the next result (Theorem 7 in [30]):

Theorem 14 The language accepted by an EFA over an abelian group can be: (1) regular, (2) accepted

by an EFA over by ZZ
k, (3) accepted by an EFA over the multiplicative group of rationals.

It follows that if a language L accepted by an EFA over a finitely abelian group is not regular, then

there exists a positive integer k such that L is accepted by an EFA over ZZk. We can now state

Theorem 15 For every EFA A over a finitely generated abelian group and a positive integer c, the

problem of whether or not gmcA(n)≤ c is algorithmically decidable.

We now provide an EFA over an abelian group that accept non-regular languages and has a sublinear

group memory complexity, namely a function in O(
√

n).

Lemma 1 There exists an EFA A over ZZ×ZZ2 such that L(A) is not regular and gmcA(n) ∈ O(
√

n).

Inspired by the Goldstine language:

G = {an1 ban2 b . . .anpb | p ≥ 1,ni ≥ 0, and n j 6= j for some j,1 ≤ j ≤ p},
we define the non-regular language

L = {bai1 bai2 b . . .aik bcm | k ≥ 1, i1, i2, . . . , ik > 0, and

there exists 1 ≤ j ≤ k such that i j 6= j and m =

{
j− i j, if j > i j,
1, if j < i j

}.

It can be routinely proved that L is not regular.

As it suffices to use Theorem 7 from [30] to simply replace the group ZZ×ZZ2 by ZZ in the statement

of previous lemma, we can state:

Theorem 16 Let M be a group having at least one infinite cyclic subgroup. There exists an EFA A over

M such that L(A) is not regular and gmcA(n) ∈ O(
√

n).

By using a similar idea to that used in the proof of Lemma 1 we prove the next result, where IF2 is

the free group of rank 2.
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Lemma 2 There exists an EFA A over the group IF2 ×ZZ2 such that L(A) is not regular and gmcA(n) ∈
O(log n).

As ZZ2 is a finite group, we state:

Theorem 17 There exists an EFA A over the group IF2 such that L(A) is not regular and gmcA(n) ∈
O(log n).

We now give an example of a non-regular language such that any EFA over some group that accepts

this language has a group memory complexity in Ω(n).

Theorem 18 If L(A) = {anbn | n ≥ 1}, where A is an EFA over some group, then gmcA(n) ∈ Ω(n).

Along these lines, two problems remain open here:

1. Are there other abelian or non-abelian groups for which the aforementioned problem is decidable?

2. Give a class of groups M such that for any group M ∈ M and an EFA A over M the problem of

whether or not the group memory complexity of A is finite is decidable/undecidable.

We have provided examples of EFA over some groups that accept non-regular languages and have

a sublinear group memory complexity, namely a function in O(
√

n) or O(log n). Is it true that for any

sublinear integer-valued function f , there is an EFA A over some group M such that L(A) is not regular

and gmcA(n) ∈ O( f (n))?
Theorem 18 provides a non-regular language such that any EFA over some group that accepts it has

a linear group memory complexity.

It is worth mentioning that we have not considered here the deterministic variants of EFA over groups

which will be investigated in another work.

5 Jumping complexity of finite automata with translucent letters

A noneterministic finite automaton with translucent letters (FATL) is a NFA M as above, such that the

transition relation is defined in the following way. First, we define the partial relation � on the set of

all configurations of M: (s,xay) � (p,xy) iff p ∈ δ (s,a), and δ (s,b) is not defined for any b ∈ al ph(x),
s, p ∈ Q, a,b ∈V , x ∈V+, y ∈V ∗. We now write

(p,x) |=M (q,y), if either (p,x)→ (q,y) or (p,x) � (q,y).

The subscript M is omitted when it is understood from the context.

The language accepted by M is defined by

L(M) = {x ∈V ∗ | (q0,x) |=∗ ( f ,ε), f ∈ F}.

We want to stress that the automaton has been introduced in [31], with a slightly different definition.

Actually, our definition is an FATL in the normal form in [31] without a marker for the end of the input

word. This automaton is also related to the one way jumping automaton introduced in [29] with the

difference that after each jump it returns to its previous position and does not make shift of the jumped

part to the end of the word.

Let M be an FATL; we consider w ∈ L(M), and the accepting computation in M on the input w:

CM(w) : (q0,w) |= (q1,w1) |= (q2,w2) |= . . . |= (qm,ε),
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with qi ∈ Q, 1 ≤ i ≤ m, and qm ∈ F . We define

jc(CM(w)) = {i ≥ 1 | (qi−1,wi−1)� (qi,wi)}.

In words, jc(CM(w)) contains all the jumping steps in the computation CM(w).

We now define the jumping complexity of the computation of M on the word w by

jcM(w) =

{
min{card( jc(CM(w))) |CM(w) is a computation of M on w}
0, if w /∈ L(M).

In other words, the jumping complexity of a word with respect to M is computed by taking into

consideration the “least non-regular computation” if there is one. Equivalently, the jumping complexity

of a word with respect to M is the number of jumping steps of a computation with the minimal number

of jumping steps.

The jumping complexity of an automaton M as above is a mapping from IN to IN defined by

jcM(n) = max{ jcM(w)||w|= n,w ∈V ∗}.

As one can see, the most “non-regular” word of each length is considered. It is clear that jcM(n)≤ n for

every jumping automaton M as one letter is consumed in every step of a computation.

Let f be a function from IN to IN; we define the family of languages

LJC(( f (n)) = {L | ∃ FATL M such that L = L(M) and jcM(n) ∈ O( f (n))}.

Let M be an arbitrary jumping automaton and c be a positive integer; we define the language L(M,≤
c) = {w ∈ L(M) | jcM(w) ≤ c}. Clearly, if jcM(n) ≤ c for any n ≥ 1, then L(M,≤ c) = L(M) holds.

A natural question arises: Are there FATL accepting non-regular languages with a constant jumping

complexity? We give a negative answer to the question through the following result:

Lemma 3 Given an FATL M and a positive integer c, the language L(M,≤ c) is regular.

Consequently, we have

Theorem 19 JCL(1) equals the class of regular languages.

By Lemma 3, a sufficient condition for an FATL to accept a regular language is to be of constant jumping

complexity. Is this condition necessary as well? Were this the case, the problem of deciding whether or

not the jumping complexity of a given FATL is constant would be undecidable. Indeed, this decidability

problem would be equivalent to decide whether or not the language accepted by an FATL is a regular

language, which is not decidable, see Proposition 8 in [31]. As it was expected, the condition is not

necessary. It suffices to consider the FATL M defined by the transition mapping:

δ (q0,b) = q1,δ (q1,b) = q1,δ (q1,c) = q2,δ (q2,a) = q3,

with the final state q3. The language accepted by this automaton is L = {bnabmc | n+m ≥ 1}∪{bnca |
n ≥ 1}, which is regular. On the other hand, jcM(abnc) = n, for any n ≥ 1.

However, the decidability status of the following related problem can be partially settled: Given an

FATL M and a positive integer c, is it decidable whether or not jcM(n) ≤ c for all n ≥ 1? By modifying

the construction in the proof of Lemma 3 we may infer:
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Lemma 4 Given a deterministic FATL M, there exists a deterministic FATL M′ such that L(M′) = {w ∈
L(M) | jcM(w)≥ 1}.

This lemma is crucial for the next result.

Theorem 20 Given a deterministic FATL M and a positive integer c, it is algorithmically decidable

whether or not the jumping complexity of M is bounded by c.

It is worth mentioning that even with this result, the decidability status of the problem ”Is the jumping

complexity of a deterministic FATL finite?” is still open.

Obviously, each FATL has a jumping complexity which is situated between the constant function

and the identity function. In other words, JCL(n) equals the class of all languages accepted by FATL. It

remains to investigate what happens between these two extremes. First, we show that there are languages

which require a jumping complexity in Ω(n).

Theorem 21 If L(M) = {w | |w|a = |w|b = n ≥ 1}, where M is an FATL, then jcM(n) ∈ Ω(n).

Corollary 1 JCL(n)\ JCL(1) 6= /0.

6 Final remarks

There are still some attractive problems, in our opinion, that remained unsolved here. One of the most

intriguing is the existence of a lower bound for the degree of non-regularity for context-free languages

which are not regular. As we have seen, there are context-free languages which are not regular having

a sublinear degree of non-regularity. We strongly suspect a more general result: REG ⊂ DNREG( f ),
strict inclusion, for any function f that is not a constant. We mention a few other problems excepting the

problem discussed before Theorem 9. Given a context-free grammar G, is it decidable whether or not G

has the least degree of non-regularity among all grammars generating L(G)?
As far as the degree of extension of finite automata over groups is concerned, we have proved that

given an EFA A over a free group, a polycyclic monoid, or a finitely generated abelian group and a

constant c, one can algorithmically decide whether or not the group memory complexity of A is bounded

by c. Along these lines, two problems remain open here:

1. Are there other abelian or non-abelian groups for which the aforementioned problem is decidable?

2. Give a class of groups M such that for any group M ∈ M and an EFA A over M the problem of

whether or not the group memory complexity of A is finite is decidable/undecidable.

We have provided examples of EFA over some groups that accept non-regular languages and have

a sublinear group memory complexity, namely a function in O(
√

n) or O(log n). Is it true that for any

sublinear integer-valued function f , there is an EFA A over some group M such that L(A) is not regular

and gmcA(n) ∈ O( f (n))?
Theorem 18 provides a non-regular language such that any EFA over some group that accepts it has

a linear group memory complexity. It is worth mentioning that [1] has not considered the deterministic

variants of EFA over groups which is to be further investigated.

Some of the above problems remained open as well as regards the jumping complexity of finite

automata with translucent letters.

Generally, this could be a measure for investigating the degree of extension of many mechanisms that

extend a less expressive one like context-free grammars with regulated rewriting, extended various types

of finite automata and tree automata over groups, jumping automata, automata with translucent letters,

etc. A first step in this direction has already been done in [14].
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