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Tree-controlled grammars are context-free grammars where the derivation process is controlled in

such a way that every word on a level of the derivation tree must belong to a certain control lan-

guage. We investigate the generative capacity of such tree-controlled grammars where the control

languages are special regular sets, especially strictly locally testable languages or languages restricted

by resources of the generation (number of non-terminal symbols or production rules) or acceptance

(number of states). Furthermore, the set theoretic inclusion relations of these subregular language

families themselves are studied.

1 Introduction

In the monograph [5] by Jürgen Dassow and Gheorghe Păun, Seven Circumstances Where Context-Free

Grammars Are Not Enough are presented. A possibility to enlarge the generative power of context-free

grammars is to introduce some regulation mechanism which controls the derivation in a context-free

grammar. In some cases, regular languages are used for such a regulation. They are rather easy to handle

and, used as control, they often lead to context-sensitive or even recursively enumerable languages while

the core grammar is only context-free.

One such control mechanism was introduced by Karel Čulik II and Hermann A. Maurer in [16] where

the structure of derivation trees of context-free grammars is restricted by the requirement that the words

of all levels of the derivation tree must belong to a given regular (control) language. This model is called

tree-controlled grammar.

Gheorghe Păun proved that the generative capacity of such grammars coincides with that of context-

sensitive grammars (if no erasing rules are used) or arbitrary phrase structure grammars (if erasing rules

are used). Thus, the question arose to what extend the restrictions can be weakened in order to obtain

‘useful’ families of languages which are located somewhere between the classes of context-free and

context-sensitive languages.

In [6, 7, 8, 9, 27, 29, 30], many subregular families of languages have been investigated as classes

for the control languages. In this paper, we continue this research with further subregular language fam-

ilies, especially strictly locally testable languages or languages restricted by resources of the generation

(number of non-terminal symbols or production rules) or acceptance (number of states). Furthermore,

the set theoretic inclusion relations of these subregular language families themselves are studied.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the basic concepts of the theory of

automata and formal languages. For details, we refer to [23]. Here we only recall some notation and the

definition of contextual grammars with selection which form the central notion of the paper.
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2.1 Languages, grammars, automata

Given an alphabet V , we denote by V ∗ and V+ the set of all words and the set of all non-empty words

over V , respectively. The empty word is denoted by λ . By V k, and V≤k for some natural number k, we

denote the set of all words of the alphabet V with exactly k letters and the set of all words over V with at

most k letters, respectively. For a word w and a letter a, we denote the length of w by |w| and the number

of occurrences of the letter a in the word w by |w|a. For a set A, we denote its cardinality by |A|.
A right-linear grammar is a quadruple G = (N,T,P,S) where N is a finite set of non-terminal sym-

bols, T is a finite set of terminal symbols, P is a finite set of production rules of the form A → wB

or A → w with A,B ∈ N and w ∈ T ∗, and S ∈ N is the start symbol. Such a grammar is called regular, if

all the rules are of the form A → xB or A → x with A,B ∈ N and x ∈ T or S → λ . The language generated

by a right-linear or regular grammar is the set of all words over the terminal alphabet which are obtained

from the start symbol S by a successive replacement of the non-terminal symbols according to the rules

in the set P. A non-terminal symbol A is replaced by the right-hand side w of a rule A → w ∈ P in order

to derive the next sentential form. The language generated consists of all sentential forms without a

non-terminal symbol. Every language generated by a right-linear grammar can also be generated by a

regular grammar.

A deterministic finite automaton is a quintuple A = (V,Z,z0,F,δ ) where V is a finite set of input

symbols, Z is a finite set of states, z0 ∈ Z is the initial state, F ⊆ Z is a set of accepting states, and δ is

a transition function δ : Z ×V → Z. The language accepted by such an automaton is the set of all input

words over the alphabet V which lead letterwise by the transition function from the initial state to an

accepting state.

A regular expression over an alphabet V is defined inductively as follows:

1. /0 is a regular expression;

2. every element x ∈V is a regular expression;

3. if R and S are regular expressions, so are the concatenation R · S, the union R∪ S, and the Kleene

closure R∗;

4. for every regular expression, there is a natural number n such that the regular expression is obtained

from the atomic elements /0 and x ∈V by n operations concatenation, union, or star.

The language L(R) which is described by a regular expression R is also inductively defined: L( /0) = /0;

L(x) = {x} for each x ∈V ; and L(R ·S) = L(R) ·L(S), L(R∪S) = L(R)∪L(S), and L(R∗) = (L(R))∗ for

regular expressions R and S.

The set of all languages generated by some right-linear grammar coincides with the set of all lan-

guages accepted by a deterministic finite automaton and with the set of all languages described by a

regular expression. All these languages are called regular and form a family denoted by REG. Any

subfamily of this set is called a subregular language family.

A context-free grammar is a quadruple G = (N,T,P,S) where N, T , and S are as in a right-linear

grammar but the production rules in the set P are of the form A → w with A ∈ N and w ∈ (N ∪T )∗.

The language generated by a context-free grammar is the set of all words over the terminal alphabet

which are obtained from the start symbol S by replacing sequentially the non-terminal symbols according

to the rules in the set P. A language is called context-free if it is generated by some context-free grammar.

The family of all context-free languages is denoted by CF.

With a derivation of a terminal word by a context-free grammar, we associate a derivation tree which

has the start symbol in its root and where every node with a non-terminal A ∈ N has as children nodes

with symbols which form, read from left to right, a word w such that A → w is a rule of the grammar
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(if A → λ , then the node with A has only one child node and this is labelled with λ ). Nodes with terminal

symbols or λ have no children. With any derivation tree t of height k and any number 0 ≤ j ≤ k, we

associate the word of level j and the sentential form of level j which are given by all nodes of depth j

read from left to right and all nodes of depth j and all leaves of depth less than j read from left to right,

respectively. Obviously, if two words w and v are sentential forms of two successive levels, then w =⇒∗ v

holds and this derivation is obtained by a parallel replacement of all non-terminal symbols occurring in

the word w.

A context-sensitive grammar is a quadruple G = (N,T,P,S) where N is a finite set of non-terminal

symbols, S ∈ N is the start symbol, T is a finite set of terminal symbols, and P is a finite set of production

rules of the form α → β with α ∈ (N ∪T)+ \T ∗, β ∈ (N ∪T)∗, and |β | ≥ |α | with the only exception

that S → λ is allowed if the sysmbol S does not occur on any right-hand side of a rule. The language

generated by a context-sensitive grammar is the set of all words over the terminal alphabet which are

obtained from the start symbol S by replacing sequentially subwords according to the rules in the set P.

A language is called context-sensitive if it is generated by some context-sensitive grammar. The family

of all context-sensitive languages is denoted by CS. For every context-sensitive language L, there is a

context-sensitive grammar G = (N,T,P,S) with L(G) = L, where all rules in P are of the form

AB →CD, A → BC, A → B, or A → a

with A,B,C,D ∈ N and a ∈ T , or S → λ if S does not occur on the right-hand side of a rule. Such a

grammar is said to be in Kuroda normal form ([17]).

We also mention here four classes of languages without a definition since they are mentioned only

in the summary of existing results: By MAT, we denote the family of all languages generated by matrix

grammars with appearance checking and without erasing rules; by MATfin, we denote the family of all

such languages where the matrix grammar is of finite index ([5], [23]). By E0L (ET0L), we denote the

family of all languages generated by extended (tabled) interactionless Lindenmayer systems ([22]).

2.2 Complexity measures and resources restricted languages

Let G = (N,T,P,S) be a right-linear grammar, A = (V,Z,z0,F,δ ) be a deterministic finite automaton,

and L be a regular language. Then, we recall the following complexity measures from [4]:

State(A) = |Z|,Var(G) = |N|,Prod(G) = |P|,

State(L) = min{State(A) | A is a det. finite automaton accepting L} ,

VarRL(L) = min{Var(G) | G is a right-linear grammar generating L} ,

ProdRL(L) = min{Prod(G) | G is a right-linear grammar generating L} .

We now define subregular families by restricting the resources needed for generating or accepting their

elements:

RLV
n = {L | L ∈ REG with VarRL(L)≤ n} ,

RLP
n = {L | L ∈ REG with ProdRL(L)≤ n} ,

REGZ
n = {L | L ∈ REG with State(L)≤ n} .

2.3 Subregular language families based on the structure

We consider the following restrictions for regular languages. Let L be a language over an alphabet V .
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With respect to the alphabet V , the language L is said to be

• monoidal if and only if L =V ∗,

• nilpotent if and only if it is finite or its complement V ∗ \L is finite,

• combinational if and only if it has the form L =V ∗X for some subset X ⊆V ,

• definite if and only if it can be represented in the form L = A∪V ∗B where A and B are finite subsets

of V ∗,

• suffix-closed (or fully initial or multiple-entry language) if and only if, for any two words x ∈ V ∗

and y ∈V ∗, the relation xy ∈ L implies the relation y ∈ L,

• ordered if and only if the language is accepted by some deterministic finite automaton

A = (V,Z,z0,F,δ )

with an input alphabet V , a finite set Z of states, a start state z0 ∈ Z, a set F ⊆ Z of accepting states

and a transition mapping δ where (Z,�) is a totally ordered set and, for any input symbol a ∈V ,

the relation z � z′ implies δ (z,a) � δ (z′,a),

• commutative if and only if it contains with each word also all permutations of this word,

• circular if and only if it contains with each word also all circular shifts of this word,

• non-counting (or star-free) if and only if there is a natural number k ≥ 1 such that, for every three

words x ∈V ∗, y ∈V ∗, and z ∈V ∗, it holds xykz ∈ L if and only if xyk+1z ∈ L,

• power-separating if and only if, there is a natural number m ≥ 1 such that for every word x ∈V ∗,

either Jm
x ∩L = /0 or Jm

x ⊆ L where Jm
x = { xn | n ≥ m },

• union-free if and only if L can be described by a regular expression which is only built by product

and star,

• strictly locally k-testable if and only if there are three subsets B, I, and E of V k such that any

word a1a2 . . .an with n ≥ k and ai ∈V for 1 ≤ i ≤ n belongs to the language L if and only if

a1a2 . . .ak ∈ B,

a j+1a j+2 . . .a j+k ∈ I for every j with 1 ≤ j ≤ n− k−1 and

an−k+1an−k+2 . . .an ∈ E,

• strictly locally testable if and only if it is strictly locally k-testable for some natural number k.

We remark that monoidal, nilpotent, combinational, definite, ordered, union-free, and strictly lo-

cally (k-)testable languages are regular, whereas non-regular languages of the other types mentioned

above exist. Here, we consider among the commutative, circular, suffix-closed, non-counting, and power-

separating languages only those which are also regular.

Some properties of the languages of the classes mentioned above can be found in [24] (monoids), [11]

(nilpotent languages), [13] (combinational and commutative languages), [19] (definite languages), [12]

and [2] (suffix-closed languages), [25] (ordered languages), [3] (circular languages), [18] (non-counting

and strictly locally testable languages), [26] (power-separating languages), [1] (union-free languages).

By FIN, MON, NIL, COMB, DEF, SUF, ORD, COMM, CIRC, NC, PS, UF, SLTk (for any natural

number k ≥ 1), and SLT , we denote the families of all finite, monoidal, nilpotent, combinational, defi-

nite, regular suffix-closed, ordered, regular commutative, regular circular, regular non-counting, regular
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power-separating, union-free, strictly locally k-testable, and strictly locally testable languages, respec-

tively.

For any natural number n ≥ 1, let MONn be the set of all languages that can be represented in the

form A∗
1 ∪A∗

2 ∪ ·· ·∪A∗
k with 1 ≤ k ≤ n where all Ai (1 ≤ i ≤ k) are alphabets. Obviously,

MON = MON1 ⊂ MON2 ⊂ ·· · ⊂ MON j ⊂ ·· · .

A strictly locally testable language characterized by three finite sets B, I, and E as above which

includes additionally a finite set F of words which are shorter than those of the sets B, I, and E is

denoted by [B, I,E,F].

As the set of all families under consideration, we set

F= {FIN,NIL,COMB,DEF,SUF,ORD,COMM,CIRC,NC,PS,UF}

∪{ MONk | k ≥ 1 }∪{SLT}∪{ SLTk | k ≥ 1 }

∪{ RLV
n | n ≥ 1 }∪{ RLP

n | n ≥ 1 }∪{ REGZ
n | n ≥ 1 }.

2.4 Hierarchy of subregular families of languages

In this section, we present a hierarchy of the families of the aforementioned set F with respect to the set

theoretic inclusion relation. A summary is depicted in Figure 1.

Before this, we prove some relations of the classes of strictly locally k-testable languages to the

subregular language families restricted by resources, which have not been considered in the literature

yet.

For this purpose, we first introduce some languages which serve later as witness languages for proper

inclusions and incomparabilities.

Lemma 2.1 The language L1 = {a}∗{b}{a,b}∗ belongs to REGZ
2 \SLT.

Proof. The language L1 is accepted by the automaton with two states whose transition function is given

in the following diagram (double-circled states are accepting):

z0start z1
b

a a,b

Suppose, the language L1 is strictly locally k-testable for some natural number k ≥ 1. Then, there

exist sets B ⊆ V k, I ⊆ V k, E ⊆ V k, and F ⊆ V≤k−1 such that L1 = [B, I,E,F]. Since the word a2kba2k

belongs to the language L1, we know that ak ∈ B∩ I ∩E . But then, also the word a2k belongs to the

language which is a contradiction. �

Lemma 2.2 The language L2 = [{a,b},{b,c},{a,c}, /0] belongs to SLT1 \REGZ
4 .

Proof. By definition, L2 ∈ SLT1.

We now prove that L2 is not accepted by an deterministic finite automaton with less than five states.

Let L = L2 and let RL be the Myhill-Nerode equivalence relation (see [15]): two words x and y are in this

relation if and only if, for all words z, either both words xz and yz belong to the language L or none of

them. The words λ , a, b, c, and aa are pairwise not in this relation, as one can check.

Therefore, the index of the language L is at least five. Hence, at least five states are necessary for

accepting the language L. �
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Lemma 2.3 For each natural number n ≥ 2, let Vn = {a1,a2, . . . ,an−1} be an alphabet with n−1 pair-

wise different letters and let L3,n = {a1a2 . . .an−1}. Then, every language L3,n for n ≥ 2 belongs to the

set SLT2 \REGZ
n .

Proof. The statement L3,n ∈ SLT2 for n ≥ 2 can be seen as follows. If n = 2, then L3,n = [ /0, /0, /0,{a1}],

otherwise L3,n = [{a1a2},{ apap+1 | 2 ≤ p ≤ n−3 },{an−2an−1}, /0].

For accepting any language L3,n for n ≥ 2, at least n+ 1 states are necessary (follows from the fact

that the n partial words a1 . . .ai for 0≤ i≤ n−1 and a1a1 are pairwise not in the Myhill-Nerode relation).

�

Lemma 2.4 For each natural number n ≥ 1, let L4,n = {an}. Then L4,n belongs to the set RLP
1 \SLTn.

Proof. The single word an can be generated with one rule, hence, L4,n ∈ RLP
1 .

Assume that such a language is strictly locally n-testable. Then, it is L4,n = [B, I,E,F] for suitable

sets B, I, E , and F . From L4,n = {an}, it follows that B = E = {an}. But then, also the word an+1 belongs

to the language L4,n which is a contradiction. �

Lemma 2.5 For each natural number n ≥ 1, let Vn = {a1,a2, . . . ,an} be an alphabet with n pairwise

different letters and let L5,n =V ∗
n . Then, for n ≥ 1, the language Ln belongs to the set SLT1 \RLP

n .

Proof. The language L5,n can be represented as L5,n = [V,V,V,{λ}]. Hence, L5,n ∈ SLT1 for n ≥ 1.

For generating a language L5,n for some number n ≥ 1, at least a non-terminating rule is necessary

for every letter ai (1 ≤ i ≤ n) and additionally a terminating rule. Hence, L5,n /∈ RLP
n . �

Lemma 2.6 The language L6 = {a} belongs to RLV
1 \SLT1.

Proof. The language L6 can be generated with a single rule and, hence, with one non-terminal only.

Assume that L6 is strictly locally 1-testable and can be represented as [B, I,E,F]. Then B = E = {a}.

But then, also the word aa belongs to the language which is a contradiction. �

Lemma 2.7 The language L7 = {a}{b}∗{a}∪{a} belongs to SLT1 \RLV
1 .

Proof. The language L7 is strictly locally 1-testable and can be represented as [{a},{b},{a}, /0].

Assume that the language L7 is generated by a right-linear grammar with one non-terminal symbol

only. Let m be the maximal length of the right-hand side of a rule: m = max({ w | S → w ∈ P }). Then,

the word abma cannot be derived in one step. Hence, there is a derivation S =⇒ abpS =⇒∗ abma for some

number p with 0 ≤ p ≤ m− 2. But then, also the derivation S =⇒ abpS =⇒ abpabpS =⇒∗ abpabma is

possible which yields a word which does not belong to the language L7. Due to this contradiction, we

obtain that L7 /∈ RLV
1 . �

Lemma 2.8 The language L8 = { a3m | m ≥ 1 } belongs to RLV
1 \SLT.

Proof. The language L8 is generated by the right-linear grammar G = ({S},{a},{S → a3S, S → a3},S).
Hence, L8 ∈ RLV

1 .

Assume that the language L8 is generated by a strictly locally k-testable grammar for some num-

ber k ≥ 1. Then, L8 has a representation as [B, I,E,F] with B∪ I ∪ E ⊆ {a}k and F ⊆ {a}≤k−1. Since

the word a3k belongs to the language L8, we obtain that B, I, and E contain the word ak. But then, also

the word a3k+1 belongs to the language L8 which is a contradiction. �
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Lemma 2.9 For each natural number n ≥ 1, let Vn = {a1,a2, . . . ,an+1} be an alphabet with n+1 pair-

wise different letters and let L9,n = {a1}
+{a2}

+ · · · {an+1}
+. Then, for n ≥ 1, the language L9,n belongs

to the set SLT2 \RLV
n .

Proof. The language L9,n can be represented as

L9,n = [{a1a1,a1a2},{ apap | 1 ≤ p ≤ n+1 }∪{ apap+1 | 1 ≤ p ≤ n },{anan+1,an+1an+1}, /0].

Hence, L9,n ∈ SLT2 for n ≥ 1.

For generating a language L9,n for some number n ≥ 1, at least a non-terminal symbol is necessary

for every letter ai (1 ≤ i ≤ n+1). Hence, L9,n /∈ RLV
n . �

We now prove inclusion relations and incomparabilities.

Lemma 2.10 The class SLT1 is properly included in the class REGZ
5 .

Proof. We first prove the inclusion SLT1 ⊆ REGZ
5 .

Let L be a strictly locally 1-testable language. Then L = [B, I,E,F] with B ⊆ V , I ⊆ V , E ⊆ V ,

and F ⊆ {λ}. We construct the following deterministic finite automaton:

A = (V,{z0,z1, . . . ,z4},z0,Zf,δ )

where

Zf = {z1,z2}∪

{

{z0}, if λ ∈ F,

/0, otherwise,

and the transition function δ is given by the following diagram (z0 is an accepting state if and only

if λ ∈ F):

z0start

z1 z2

z3 z4

B∩
E

B\EV
\

B

I
\

E

E \ I

V
\ (E

∪
I)

E ∩ I

V

E
∩

I

E
\ I

V \ (E ∪ I)

I \E V

Due to space reasons, we leave the proof that L(A) = L to the reader. From the construction follows

the inclusion SLT1 ⊆ REGZ
5 .

A witness language for the properness of this inclusion is the language L1 = {a}∗{b}{a,b}∗ from

Lemma 2.1. �

Lemma 2.11 The class SLT1 is incomparable to the classes REGZ
i for i ∈ {2,3,4}.

Proof. Due to the inclusion relations, it suffices to show that there is a language in the set REGZ
2 \SLT1

and a language in the set SLT1 \REGZ
4 . A language for the first case is L1 = {a}∗{b}{a,b}∗ as shown in

Lemma 2.1. A language for the second case is L2 = [{a,b},{b,c},{a,c}, /0] as shown in Lemma 2.2. �

Lemma 2.12 The classes SLTk for k ≥ 2 and SLT are incomparable to the classes REGZ
n for n ≥ 2.
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Proof. Due to the inclusion relations, it suffices to show that there is a language in the set REGZ
2 \SLT

and a language in each set SLT2 \REGZ
n for n ≥ 2. A language for the first case is L1 = {a}∗{b}{a,b}∗ as

shown in Lemma 2.1. Languages for the second case are L3,n = {a1a2 . . .an−1} as shown in Lemma 2.3.

�

Lemma 2.13 The classes SLTk for k ≥ 1 are incomparable to the classes RLP
n for n ≥ 1.

Proof. Due to the inclusion relations, it suffices to show that there is a language in the set RLP
1 \SLTk for

every k ≥ 1 and a language in each set SLT1 \RLP
n for n ≥ 1. Languages for the first case are L4,k = {ak}

for k ≥ 1 as shown in Lemma 2.4. Languages for the second case are L5,n = {a1,a2, . . . ,an}
∗ as shown

in Lemma 2.5. �

Lemma 2.14 The class SLT1 is properly included in the class RLV
2 .

Proof. Let L = [B, I,E,F] be a strictly locally 1-testable language over an alphabet T . We construct a

right-linear grammar G = ({S,S′},T,P,S) with the rules

• S → w for every word w ∈ F ∪ (B∩E),

• S → wS′ for every word w ∈ B,

• S′ → wS′ for every word w ∈ I, and

• S′ → w for every word w ∈ E .

The language L(G) generated is F ∪ (B∩E)∪ (BI∗E) which is L. Hence, L ∈ RLV
2 and SLT1 ⊆ RLV

2 . A

witness language for the properness of the inclusion is L6 = {a} for which was proved in Lemma 2.6

that it belongs to the set RLV
1 and therefore also to RLV

2 but not to SLT1. �

Lemma 2.15 The class SLT1 is incomparable to the class RLV
1 .

Proof. There is a language in the set RLV
1 \ SLT1, namely L6 = {a} as shown in Lemma 2.6, and a

language in the set SLT1 \RLV
1 , namely L7 = {a}{b}∗{a}∪{a} as shown in Lemma 2.7. �

Lemma 2.16 The classes SLTk for k ≥ 2 and SLT are incomparable to the classes RLV
n for n ≥ 1.

Proof. Due to the inclusion relations, it suffices to show that there is a language in the set RLV
1 \SLT and a

language in the set SLT2\RLV
n for every number n≥ 1. A language for the first case is L8 = { a3m |m≥ 1 }

as shown in Lemma 2.8. A language for the second case is L9,n = {a1}
+{a2}

+ · · · {an+1}
+ as shown in

Lemma 2.9. �

A summary of the inclusion relations is given in Figure 1. An edge label in this figure refers to the

paper or lemma above where the respective inclusion is proved.

Theorem 2.17 The inclusion relations presented in Figure 1 hold. An arrow from an entry X to an

entry Y depicts the proper inclusion X ⊂ Y ; if two families are not connected by a directed path, then

they are incomparable.
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Figure 1: Hierarchy of subregular language families

2.5 Tree-controlled grammars

A tree-controlled grammar is a quintuple G = (N,T,P,S,R) where

• (N,T,P,S) is a context-free grammar with a set N of non-terminal symbols, a set T of terminal

symbols, a set P of context-free non-erasing rules (with the only exception that the rule S → λ is

allowed if S does not occur on a right-hand side of a rule), and an axiom S,

• R is a regular set over N ∪T .

The language L(G) generated by a tree-controlled grammar G = (N,T,P,S,R) consists of all such

words z ∈ T ∗ which have a derivation tree t where z is the word obtained by reading the leaves from left

to right and the words of all levels of t – besides the last one – belong to the regular control language R.

Let F be a subfamily of REG. Then, we denote the family of languages generated by tree-controlled

grammars G = (N,T,P,S,R) with R ∈ F by T C (F ).

Example 2.18 As an example, we consider the tree-controlled grammar

G1 = ({S},{a},{S → SS,S → a},S,{S}∗).
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Since the terminal symbol a is not allowed to appear before the last level, on all levels before, any

occurrence of S is replaced by SS. Finally, any letter S is replaced by a. Therefore, the levels of an allowed

derivation tree consist of the words S, SS, SSSS, . . . , S2n

, a2n

for some n≥ 0. Thus, L(G1)= { a2n

| n≥ 0 }.

Due to the structure of the control language which is monoidal and can be generated by a grammar with

one non-terminal symbol and two rules, we further obtain

L(G1) ∈ T C (MON)∩T C (RLV
1 )∩T C (RLP

2 ).

Example 2.19 We now consider the tree-controlled grammar

G2 = ({S,A,B,C},{a,b,c},P,S,{S,aAbBcC})

with

P = {S → aAbBcC,A → aA,B → bB,C → cC,A → a,B → b,C → c}.

By the definition of the control language, any derivation in G2 has the form

S =⇒ aAbBcC =⇒ aaAbbBccC =⇒ . . .=⇒ an−1Abn−1Bcn−1C =⇒ anbncn

with n ≥ 2. Thus, the tree-controlled grammar G2 generates the non-context-free language

L(G2) = {anbncn}n ≥ 2.

Due to the structure of the control language which is finite and can be generated by a grammar with one

non-terminal symbol and two rules, we further obtain

L(G2) ∈ T C (FIN)∩T C (RLV
1 )∩T C (RLP

2 ).

In [20] (see also [5]), it has been shown that a language L is generated by a tree-controlled grammar

if and only if it is generated by a context-sensitive grammar.

Theorem 2.20 ([20], [5]) It holds T C (REG) = CS.

In subsequent papers, tree-controlled grammars have been investigated where the control language

belongs to some subfamily of the class REG ([6, 7, 8, 9, 27, 29, 30]). In this paper, we continue this

research with further subregular language families.

From the definition follows that the subset relation is preserved under the use of tree-controlled

grammars: if we allow more, we do not obtain less.

Lemma 2.21 For any two language classes X and Y with X ⊆ Y , we have the inclusion

T C (X)⊆ T C (Y ).

A summary of the inclusion relations known so far is given in Figure 2. An arrow from an entry X to

an entry Y depicts the inclusion X ⊆ Y ; a solid arrow means proper inclusion; a dashed arrow indicates

that it is not known whether the inclusion is proper. If two families are not connected by a directed path,

then they are not necessarily incomparable. An edge label in this figure refers to the paper where the

respective inclusion is proved.
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Figure 2: Hierarchy of subregularly tree-controlled language families

3 Results

We insert the classes T C (SLTk) for k ≥ 1, T C (SLT), T C (RLV
n ) for n ≥ 1, and T C (RLP

n ) for n ≥ 1

into the existing hierachy (see Figure 2).

The inclusions follow from the inclusion relations of the respective families of the control languages

(see Figure 1 and Lemma 2.21).

In most cases, we obtain that any context-sensitive language can be generated by a tree-controlled

grammar where the control language is taken from that family.

Theorem 3.1 We have T C (SLTk) = CS for k ≥ 2 and T C (SLT) = CS.

Proof. Let L be a context-sensitive language. Then, there is a context-sensitive grammar G = (N,T,P,S)
with L(G) = L which is in Kuroda normal form, where the rule set P can be divided into two sets P1

and P2 such that all rules of P1 are of the form A → BC or A → B or A → a with A,B,C,D ∈ N and a ∈ T

and all rules of P2 are of the form AB →CD with A,B,C,D ∈ N.

We will construct a tree-controlled grammar Gtc which simulates the grammar G. Since Gtc has only

context-free rules, the non-context-free rules of G have to be substituted by context-free rules and some

control such that the parts of a non-context-free rule which are independent from the view of the core

grammar of Gtc remain connected.

We label the non-context-free rules and associate the non-terminal symbols of their left-hand sides

with new non-terminal symbols which are marked with the rule label and the position (first or second

letter). The context-free rules can be freely applied also in the tree-controlled grammar. A non-context-

free rule p : AB →CD will be simulated by context-free rules

A → Ap,1, B → Bp,2, Ap,1 →C, and Bp,2 → D.
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The control language ensures that the rules which belong together (here A → Ap,1 and B → Bp,2) are

applied together (at the same time and next to each other). If a terminal symbol is produced in a sen-

tential form of the grammar G, then it remains there until the whole terminal word is produced. In the

tree-controlled grammar Gtc, one has to keep track of terminal symbols because they ‘disappear’ (once

produced, they are not present in the next level anymore) and then two non-terminal symbols appear next

to each other, although they are not neighbours in the sentential form. So, the tree-controlled grammar

should produce placeholders for terminal symbols and replace them by the actual terminal symbols only

in the very end. In a tree-controlled grammar, from one level to the next, all non-terminal symbols are

replaced. This can be seen as some kind of shortcut where production rules which are independent from

each other are applied in parallel.

We construct such a tree-controlled grammar Gtc = (Ntc,T,Ptc,S,Rtc). The terminal alphabet and

start symbol are the same as in the grammar G. We now give the rules; the non-terminal symbols will be

collected later from the rules. At the end, we will give the control language Rtc.

In order to simulate the context-free rules directly, we take all non-terminating rules of them from G

as they are:

Pcf = P∩ ({ A → BC | A,B,C ∈ N }∪{ A → B | A,B ∈ N }).

Instead of the terminating rules, we take rules with a placeholder (for each terminal symbol a, we

introduce a unique non-terminal symbol â), but finally, those placeholders have to be terminated:

Pt = { A → â | A ∈ N,a ∈ T,A → a ∈ P }∪{ â → a | a ∈ T }.

We give also rules which can delay the derivation such that not everything needs to be replaced in

parallel:

Pd = { A → A | A ∈ N }∪{ â → â | a ∈ T }.

For simulating the non-context-free rules, first rules are applied which mark the position of the in-

tended application such that the control language has the chance to check whether the plan is alright (if it

is not, then the derivation will block). In the next step, the markers will be replaced by their actual target

non-terminal symbols:

Pcs =
⋃

p:AB→CD∈P

{A → Ap,1, B → Bp,2, Ap,1 →C, Bp,2 → D}.

Other rules are not needed, hence,

Ptc = Pcf ∪Pt ∪Pd∪Pcs.

The set Ntc of non-terminal symbols results as follows:

Ncf = N ∪{ â | a ∈ T }, N1 = { Ap,1 | p : AB →CD ∈ P }, N2 = { Bp,2 | p : AB →CD ∈ P },

N12 = { Ap,1Bp,2 | p : AB →CD ∈ P }, Ntc = Ncf ∪N1∪N2.

A derivation can go wrong only if the simulation of a non-context-free rule is not properly planned.

Hence, as control language, we take

Rtc = (Ncf ∪N12)
∗.

Since the context-free rules of the grammar G can be applied independently from each other and do

not have to be applied at a certain time (thanks to the rules from the subset Pd) and the correct simulation
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of the non-context-free rules is ensured by the control language Rtc, it is not hard to see that the generated

languages L(G) and L(Gtc) coincide.

The control language Rtc is strictly locally 2-testable as can be seen from the following representation:

Let

B = N2
cf ∪NcfN1 ∪N12, I = N2

cf ∪NcfN1 ∪N12∪N2Ncf ∪N2N1,

E = N2
cf ∪N12 ∪N2Ncf, F = Ncf ∪{λ}.

Then Rtc = [B, I,E,F].

Altogether, we obtain CS ⊆ T C (SLT2) ⊆ T C (SLTk) ⊆ T C (SLT) ⊆ CS for k ≥ 3. Thus, it

holds T C (SLTk) = CS for k ≥ 2 and T C (SLT) = CS. �

Theorem 3.2 We have T C (RLV
n ) = CS for n ≥ 1.

Proof. The control language Rtc = (Ncf ∪N12)
∗ from the tree-controlled grammar Gtc in the proof of

Theorem 3.1 can be generated by a right-linear grammar G′ = ({S′},Ntc,P
′,S′) where

P′ = { S′ → xS′ | x ∈ Ncf ∪N12 }∪{ S′ → x | x ∈ Ncf ∪N12 }.

Hence, CS ⊆ T C (RLV
1 ) ⊆ T C (RLV

n ) ⊆ CS for n ≥ 2. Thus, we conclude T C (RLV
n ) = CS for n ≥ 1.

�

From the proof of Theorem 3.1, we conclude also the following statement.

Theorem 3.3 We have T C (UF) = CS.

Proof. Let L = {w1,w2, . . . ,wn} be a finite language. Then L∗ = ({w1}
∗{w2}

∗ · · ·{wn}
∗)∗ and is there-

fore union-free.

The control language Rtc = (Ncf ∪N12)
∗ from the tree-controlled grammar Gtc in the proof of Theo-

rem 3.1 is the Kleene closure of a finite language and, hence, it is union-free. �

Regarding the classes T C (RLP
n ) for n≥ 1, the situation is different since the number of rules depends

on the size of the alphabet (which is not necessarily the case for the number of non-terminal symbols or

the number of states).

If the control language is generated with one rule only, then either the control language is the empty

set (if the right-hand side of the rule contains a non-terminal symbol) or it contains exactly one terminal

word. Since the start symbol of the tree-controlled grammar always forms the first level of the derivation

tree, it must be contained in the control language (otherwise, the derivation would be blocked right from

the beginning). Therefore, we obtain the following result.

Lemma 3.4 Let G = (N,T,P,S,R) a tree-controlled grammar with R ∈ RLP
1 . Then, the generated lan-

guage is

L(G) =

{

{ w | w ∈ T ∗ and S → w ∈ P }, if R = {S},

/0, otherwise.

Proof. If R = {S}, then every level but the last one of the derivation tree is S and the last level is a

terminal word which is produced by S. On the other hand, all terminal words derived from S belong to

the generated language.

If R 6= {S}, then S /∈ R since R contains at most one word because R ∈ RLP
1 . Since S is the word of

the first level of the derivation tree, there is no derivation possible. Hence, L(G) is empty. �

From this result, the next one immediately follows.



266 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

Theorem 3.5 We have T C (RLP
1 ) = FIN.

Proof. The inclusion T C (RLP
1 )⊆ FIN follows from Lemma 3.4. The inclusion FIN ⊆ T C (RLP

1 ) can

also be seen from Lemma 3.4: Let L be a finite language over an alphabet T . Then, construct a tree-

controlled grammar G = ({S},T,{ S → w | w ∈ L },S,{S}). It holds L(G) = L and L(G) ∈ T C (RLP
1 ).
�

If the control language is taken from the family T C (RLP
2 ), then already context-sensitive languages

can be generated as the Examples 2.18 and 2.19 show.

Theorem 3.6 We have T C (RLP
1 )⊂ T C (RLP

2 ).

Proof. The inclusion follows from Theorem 2.17 and Lemma 2.21. According to Theorem 3.5, the

family T C (RLP
1 ) contains finite languages only. As shown in the Examples 2.18 and 2.19, the fam-

ily T C (RLP
2 ) contains non-context-free languages. �

A summary of all the inclusion relations is given in Figure 3. An arrow from an entry X to an entry Y

depicts the inclusion X ⊆ Y ; a solid arrow means proper inclusion; a dashed arrow indicates that it is not

known whether the inclusion is proper. If two families are not connected by a directed path, then they

are not necessarily incomparable. An edge label in this figure refers to the paper or theorem above where

the respective inclusion is proved.
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Figure 3: New Hierarchy of subregularly tree-controlled language families



B. Truthe 267

4 Conclusion

There are several families of languages generated by tree-controlled grammars where we do not have a

characterization by some other language class. The strictness of some inclusions and the incomparability

of some families remain as open problems.

In the present paper, we have only considered tree-controlled grammars without erasing rules. For

tree-controlled grammars where erasing rules are allowed, several results have been published already

(see, e. g., [7, 29, 30]). Also in this situation, there are some open problems.

Another direction for future research is to consider other subregular language families or to relate

the families of languages generated by tree-controlled grammars to language families obtained by other

grammars/systems with regulated rewriting.

References

[1] Janusz A. Brzozowski (1962): Regular Expression Techniques for Sequential Circuits. Ph.D. thesis, Princeton

University, Princeton, NJ, USA.

[2] Janusz A. Brzozowski, Galina Jirásková & C. Zou (2014): Quotient complexity of closed languages. Theory

of Computing Systems 54, pp. 277–292, doi:10.1007/s00224-013-9515-7.

[3] Jürgen Dassow (1979): On the circular closure of languages. Elektronische Informationsverarbeitung und

Kybernetik/Journal of Information Processing and Cybernetics 15(1–2), pp. 87–94.

[4] Jürgen Dassow, Florin Manea & Bianca Truthe (2011): On contextual grammars with subregular selection

languages. In Markus Holzer, Martin Kutrib & Giovanni Pighizzini, editors: Descriptional Complexity of

Formal Systems – 13th International Workshop, DCFS 2011, Gießen/Limburg, Germany, July 25 – 27, 2011.

Proceedings, LNCS 6808, Springer-Verlag, pp. 135–146, doi:10.1007/978-3-642-22600-7_11.
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Cezar Câmpeanu & Giovanni Pighizzini, editors: Descriptional Complexity of Formal Systems, 10th Interna-

tional Workshop, Charlottetown, Prince Edward Island, Canada, July 16–18, 2008, Proceedings, University

of Prince Edward Island, pp. 145–156.

[9] Jürgen Dassow & Bianca Truthe (2008): Subregularly tree controlled grammars and languages. In Erzsébet
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2008, Balatonfüred, Hungary, May 27–30, 2008, Proceedings, Computer and Automation Research Institute,

Hungarian Academy of Sciences, pp. 158–169.

[10] Jürgen Dassow & Bianca Truthe (2022): On the generative capacity of contextual grammars with strictly

locally testable selection languages. In Henning Bordihn, Géza Horváth & György Vaszil, editors: 12th
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Magdeburg, Germany, pp. 29–36.

[28] Bianca Truthe (2018): Hierarchy of Subregular Language Families. Technical Report, Justus-Liebig-

Universität Giessen, Institut für Informatik, IFIG Research Report 1801.

[29] Sherzod Turaev, Jürgen Dassow, Florin Manea & Mohd Hasan Selamat (2012): Language classes generated

by tree controlled grammars with bounded nonterminal complexity. Theoretical Computer Science 449, pp.

134–144, doi:10.1016/j.tcs.2012.04.013.

[30] György Vaszil (2012): On the nonterminal complexity of tree controlled grammars. In Henning Bordihn,

Martin Kutrib & Bianca Truthe, editors: Languages Alive – Essays Dedicated to Jürgen Dassow on the Oc-

casion of His 65th Birthday, LNCS 7300, Springer, pp. 265–272, doi:10.1007/978-3-642-31644-9_18.

[31] Barbara Wiedemann (1978): Vergleich der Leistungsfähigkeit endlicher determinierter Automaten. Diplom-

arbeit, Universität Rostock.

https://doi.org/10.1016/S0022-0000(74)80034-6
https://doi.org/10.1007/BF02252350
https://doi.org/10.1016/S0019-9958(64)90120-2
https://doi.org/10.1109/PGEC.1963.263534
https://doi.org/10.1007/BF02253054
https://doi.org/10.4204/EPTCS.63.14
https://doi.org/10.1007/BF01761710
https://doi.org/10.1016/j.tcs.2012.04.013
https://doi.org/10.1007/978-3-642-31644-9_18

	Introduction
	Preliminaries
	Languages, grammars, automata
	Complexity measures and resources restricted languages
	Subregular language families based on the structure
	Hierarchy of subregular families of languages
	Tree-controlled grammars

	Results
	Conclusion

