
Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 243–252, doi:10.4204/EPTCS.386.19

© N. Tran
This work is licensed under the
Creative Commons Attribution License.

Separating Words from Every Start State
with Horner Automata

Nicholas Tran
Santa Clara University

Santa Clara, CA 95053

ntran@scu.edu

We show that a well-known family of deterministic finite automata Hb,m can be used to distinguish
distinct binary strings of the same length from every start state. Further, we establish a lower bound of
Ω(

√
n/ logn) and an upper bound of O(

√
n logn log logn) on the number of states of Hb,m necessary

to achieve this type of separation. Our latter result improves the currently best known O(n) upper
bound for arbitrary DFA.

1 Introduction

Given two distinct strings (or words) over some alphabet, we are interested in the minimum size of
deterministic finite automata that end in different states after reading the strings for every (common) start
state. We call this the ∀-separation distance between strings, and when the alphabet is nonunary, we use
D∀(n) to denote the largest ∀-separation distance between two distinct strings of length n. This variant
of the separating words problem was recently introduced and studied in [9], where a lower bound of
Ω(logn) and an upper bound of n+ 1 on D∀(n) were established. The main result of this paper is an
improved O(

√
n logn log logn) upper bound on D∀(n).

The original separating words problem was studied in [4, 6, 3, 10, 2]. The standard notion of sepa-
ration words by deterministic finite automata requires one string to be accepted and the other rejected. It
is clearly equivalent to the definition of separation stated initially in [4] that does not involve accepting
states: a deterministic finite automaton separates two strings if it ends in different states after reading
the strings for some (common) start state. We use D∃(n) to denote the largest separation distance of this
type between two distinct strings of length n for nonunary alphabets. The best known upper bound on
D∃(n) is O(n1/3 log7 n) [2], and the best known lower bound on D∃(n) is Ω(logn) [3]. It is known that
the separation distances are tightly bound by logn for strings of different lengths m < n (in particular,
for distinct strings over unary alphabets), and that D∃(n) and D∀(n) do not depend on the (nonunary)
alphabet size. Table 1 lists values of D∃(n) and D∀(n) for small values of n, obtained via exhaustive
search1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
D∃(n) 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5
D∀(n) 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5

Table 1: Values of D∃(n) and D∀(n) for 1 ≤ n ≤ 18.

1These results were computed using a C++ program running on a Linux workstation with Intel® Core™ i7-4790S CPU @
3.20GHz and 16 GB RAM.

http://dx.doi.org/10.4204/EPTCS.386.19
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

244 Separating words from every start state with Horner automata

If the separating automaton is required to end in different states for every pair of start states, then
the largest so-called ∀2-separation distance between two distinct strings of length n is exactly n+1 and
unbounded between strings of different lengths (i.e., they may not be separable). At the other extreme,
if the separating automaton is required to end in different states for some pair of start states, then the
largest so-called ∃2-separation distance between two distinct strings (regardless of lengths) is 2. These
and other results can be found in [9].

The best lower bound of Ω(logn) on D∃(n) applies trivially to D∀(n); it is not known if a stronger
lower bound holds for the latter. On the other hand, the best upper bound of O(n1/3 log7 n) on D∃(n) does
not readily apply to D∀(n). In fact, it is not immediately clear how to establish even a looser upper bound
such as n+ 1. In this paper we show how to adapt the technique of counting the number of cyclotomic
factors of certain polynomials [10, 2] to obtain an O(

√
n logn log logn) upper bound on D∀(n). Our result

improves the currently best known O(n) upper bound obtained in [9].
Specifically, we interpret each nonempty binary string s as the representation of an integer Ns,b in

some base b and show how to compute Ns,b mod m for some modulus m using a familiar deterministic
finite automaton Hb,m with m states and dependent only on b and m. We then show that if s and t are dis-
tinct binary strings of length n≥ 1, then Nb,s ̸≡Nb,t (mod m) for some 0≤ b<m∈O(

√
n logn log logn).

Hence Hb,m ∃-separates s and t, and in fact we show that Hb,m ∀-separates s and t. On the other hand, we
show that for every n ≥ 1, there are distinct binary strings s and t of length n such that the smallest Hb,m
that ∀-separates s and t have Ω(

√
n/ logn) states.

The rest of this paper is organized as follows. Section 2 reviews basic definitions about separat-
ing words with automata and states some useful number-theoretic facts. The next section contains the
main results: Subsection 3.1 presents so-called Horner automata Hb,m and shows how to use them to
∀-separate strings, Subsection 3.2 proves an Ω(

√
n/ logn) lower bound on the size of Hb,m required to

∀-separate two distinct binary strings of length n, and Subsection 3.3 establishes an O(
√

n logn log logn)
corresponding upper bound. Section 4 discusses ideas for future work.

2 Preliminaries

The symbols of a string s of length n ≥ 1 from left to right are denoted by s0,s1, . . . ,sn−1. The natural
and binary logarithms are denoted by ln and log respectively. We use the following simplified definition
of deterministic finite automata that does not specify an initial state or accepting states:

Definition 1. A deterministic finite automaton (DFA) is a triple

M = (Q,Σ,δ),

where Q is a finite set of states, Σ is an alphabet, and δ : Q×Σ → Q is a transition function. We use |M|
to denote the number of states of M and refer to it as the size of M.

The extended transition function δ ′ : Q×Σ∗ → Q is defined recursively:

1. δ ′(q,ε) = q, where ε is the empty string, for q ∈ Q;

2. δ ′(q,xa) = δ (δ ′(q,x),a) for a ∈ Σ, x ∈ Σ∗ and q ∈ Q.

The first and last states in the sequence of states that M enters when reading a string from left to right are
called the start and end state respectively.

Definition 2. Let x and y be strings over an alphabet Σ. We say a DFA M

• ∃-separates x and y if δ ′(s,x) ̸= δ ′(s,y) for some s ∈ Q;

N. Tran 245

• ∀-separates x and y if δ ′(s,x) ̸= δ ′(s,y) for every s ∈ Q.

Example 1. Let s = 0000 0000 and t = 1111 1100.
The two-state DFA in Fig. 1 (left) ∃-separates s and t because a = δ ′(a,s) ̸= δ ′(a, t) = b, and it is

clearly a smallest such automaton. On the other hand, this DFA does not ∀-separate s and t because
δ ′(b,s) = δ ′(b, t) = b.

The four-state DFA in Fig. 1 (right) ∀-separates s and t because

a = δ
′(a,s) ̸= δ

′(a, t) = b,

b = δ
′(b,s) ̸= δ

′(b, t) = a,

c = δ
′(c,s) ̸= δ

′(c, t) = a,

d = δ
′(d,s) ̸= δ

′(d, t) = a.

It is shown to be a smallest such automaton in [9].

Figure 1: The DFA on the left ∃-separates 0000 0000 and 1111 1100 but does not ∀-separate them. The
DFA on the right ∀-separates the strings.

The following facts can be found in standard texts on number theory, e.g., [5]. The Prime Number
Theorem states that π(x), the number of primes less than or equal to x, is approximately x/ lnx, i.e.,

lim
x→∞

π(x)
x

lnx
= 1.

Bertrand’s postulate states that for every n > 1, there is a prime p such that n < p < 2n. For every
integer n ≥ 1, the nth cyclotomic polynomial Φn(x) is defined as the polynomial whose zeros are the
primitive nth roots of unity:

Φn(x) = ∏
1≤k≤n

gcd(k,n)=1

(x− e2πik/n).

We list relevant properties of cyclotomic polynomials here. The coefficients of Φn(x) are integers, and
its degree is φ(n), the Euler’s totient function; it is known that φ(n) ∈ Ω(n/ log logn) [7] and that the
function x/ log logx is increasing when x ≥ 6 (e.g., Wolfram|Alpha). The cyclotomic polynomials are
irreducible and co-prime over Q, i.e., gcd(Φn(x),Φm(x)) = 1 for n ̸= m. Finally, Φn(x) divides xn−1 for
all n ≥ 1.

246 Separating words from every start state with Horner automata

Example 2. The properties listed above can be seen to hold for the first few cyclotomic polynomials:

Φ1(x) = x−1,

Φ2(x) = x+1,

Φ3(x) = x2 + x+1,

Φ4(x) = x2 +1,

Φ5(x) = x4 + x3 + x2 + x+1,

Φ6(x) = x2 − x+1.

The set of integers modulo m is denoted Zm, and the set of polynomials in x with integer coefficients
is denoted Z[X]. A polynomial P(x) ∈ Z[X] is said to vanish modulo m if P(x) ≡ 0 (mod m) for all
x ∈ Z. Lagrange’s theorem states that if P(x) ∈ Z[X] has degree n ≥ 1 and p is a prime, then either P(x)
has at most n zeros modulo p, or all coefficients of P(x) are divisible by p. By Fermat’s little theorem,
xp − x vanishes modulo p when p is prime.

We associate with each binary string s of length n ≥ 1 the polynomial

s(x) =
n−1

∑
j=0

s jxn−1− j

with coefficients in Z2. If s and t are distinct binary strings of length n ≥ 1, s(x)− t(x) is a nonzero
polynomial of degree at most n−1 with coefficients in {−1,0,1}.

Example 3. Again, let s = 0000 0000 and t = 1111 1100. The associated polynomials are s(x) = 0 and
t(x) = x7 + x6 + x5 + x4 + x3 + x2. Their difference s(x)− t(x) is −(x7 + x6 + x5 + x4 + x3 + x2).

This difference polynomial vanishes modulo 2 because

−(07 +06 +05 +04 +03 +02) = 0 ≡ 0 (mod 2),

−(17 +16 +15 +14 +13 +12) =−6 ≡ 0 (mod 2).

Similarly, it also vanishes modulo 3 because

−(07 +06 +05 +04 +03 +02) = 0 ≡ 0 (mod 3),

−(17 +16 +15 +14 +13 +12) =−6 ≡ 0 (mod 3),

−(27 +26 +25 +24 +23 +22) =−252 ≡ 0 (mod 3).

However, s(x)− t(x) does not vanish modulo 5 because

−(17 +16 +15 +14 +13 +12) =−6 ̸≡ 0 (mod 5).

We will see in the next section that the above observation can be deduced by noting that

x5 − x = x(x−1)(x+1)(x2 +1)

does not divide s(x)− t(x) over the rationals:

−(x7 + x6 + x5 + x4 + x3 + x2) = −x2(x+1)(x2 − x−1)(x2 + x+1).

N. Tran 247

3 Main Results

In this section we introduce Horner automata and show how to use them to ∀-separate strings. We then
establish almost matching lower bound and upper bound on the size of the smallest Horner automata that
∀-separate two distinct binary strings of length n.

3.1 Horner automata and ∀-separation

For 0 ≤ b < m, let Hb,m be the deterministic finite automaton with m states 0, 1, . . ., m−1 and transition
function δ (i,a) = (ib+a) mod m for a ∈ {0,1}; note that the input alphabet is binary. The special cases
H2,m are usually introduced in an introductory course on automata theory to recognize binary strings
representing integers divisible by m. They are named Horner automata in [8], because on binary input
s and start state 0, they compute the value of the associated polynomial s(b) using Horner’s rule and end
in state s(b) mod m:

δ
′(0,s) = ((· · ·((0b+ s0)b+ s1)b+ · · ·+ sn−2)b+ sn−1) mod m = s(b) mod m.

In other words, these automata “compute” Ns,b mod m, where Ns,b is the integer represented by binary
string s in base b (but they are not the smallest ones to do so [1]). We prove a slightly stronger statement
of this fact in the following lemma.

Lemma 1. Let 0 ≤ b, i < m be integers and s be a binary string of length n ≥ 1. Starting in state i, the
Horner automaton Hb,m ends in state (ibn + s(b)) mod m after reading s.

Proof. By induction on n. When n = 1, the string s is just symbol s0, and the associated polynomial s(x)
is the constant polynomial s0. Starting in state i, Mb,m ends in state

δ
′(i,s0) = (ib+ s0) mod m = (ib1 + s(b)) mod m,

after reading s, so the lemma holds.
Assume that the lemma holds for n and let s = s0s1 . . .sn be a binary string of length n+1. Starting

in state i on input s, the automaton Hb,m ends in state

δ
′(i,s) = δ

′(i,s0 . . .sn−1sn)

= δ (δ ′(i,s0 . . .sn−1),sn)

= δ ((ibn +
n−1

∑
j=0

s jbn−1− j) mod m,sn)

= (ibn+1 +
n−1

∑
j=0

(s jbn− j)+ sn) mod m

= (ibn+1 +
n

∑
j=0

s jbn− j) mod m

= (ibn+1 + s(b)) mod m.

248 Separating words from every start state with Horner automata

Example 4. Fig. 2 shows the automaton H2,5 on the left. On input s = 10 1111 and start state 0, it ends
in state s(2) mod 5 = 25 +23 +22 +21 +20 = 47 mod 5 = 2. In contrast, on input t = 11 1011 and start
state 0, it ends in state t(2) mod 5 = 25+24+23+21+20 = 59 mod 5 = 4. Thus, H2,5 ∃-separates s and
t, and in fact, it ∀-separates s and t due to Lemma 1. We demonstrate in general this important property
of Horner automata below.

Figure 2: Horner automata H2,5 (left) and H1,2 (right)

It is natural to study the separation distance between two binary strings of the same length by Horner
automata. We define this notion formally and study its properties here.

Definition 3.

1. The Horner distance between two distinct binary strings s and t, denoted by dH(s, t), is the smallest
m such that Hb,m ∃-separates s and t for some 0 ≤ b < m.

2. The Horner separation distance, denoted by DH(n), is the maximum Horner distance over all pairs
of distinct binary strings s and t of length n, for n ≥ 1.

We now show that the Horner distance between two distinct binary strings s and t of the same length
is always defined, and furthermore, it is an upper bound of the ∀-distance between s and t.

Lemma 2. Let s and t be binary strings of length n. The following are equivalent:

1. s and t are distinct;

2. s and t are ∃-separated by Hb,m for some 0 ≤ b < m ≤ 2n;

3. s and t are ∀-separated by Hb,m for some 0 ≤ b < m ≤ 2n.

Proof. (1) ⇒ (2): Let s and t be two distinct binary strings of length n. When n = 1, there is only one
pair of distinct strings 0 and 1, and they are ∃-separated by H1,2 (shown in Fig. 2 on the right) when
started in state 0. For n > 1, by Bertrand’s postulate, there is a prime p such that n < p < 2n. The
polynomial d(x) = s(x)− t(x) has degree at most n−1, coefficients in {−1,0,1}, and not all coefficients
are zero, because s and t are distinct. Thus, by Lagrange’s theorem d(x) has at most n− 1 zeros in Zp,
so there exists 0 ≤ b < p such that d(b) ̸≡ 0 (mod p). Since d(b) = s(b)− t(b), we have s(b)− t(b) ̸≡ 0
(mod p), or s(b) ̸≡ t(b) (mod p). Thus, Hb,p ∃-separates s and t on start state 0.

(2) ⇒ (3): Suppose Hb,m separates binary strings s and t of length n on start state i0 for some
0 ≤ b, i0 < m ≤ 2n. By Lemma 1, i0bn+s(b) ̸≡ i0bn+ t(b) (mod m), so ibn+s(b) ̸≡ ibn+ t(b) (mod m)
for all 0 ≤ i < m. Thus, s and t are ∀-separated by Hb,m.

(3) ⇒ (1): Suppose s and t are binary strings of length n that are ∀-separated by Hb,m for some
0 ≤ b < m ≤ 2n. Then s(b) ̸≡ t(b) (mod m), so s(x) ̸= t(x), and hence s ̸= t.

N. Tran 249

3.2 Lower bound on the Horner separation distance DH(n)

We use a simple information-theoretic argument to show that the Horner separation distance DH(n) is at
least Ω(

√
n/ logn).

Theorem 1. DH(n) ∈ Ω(
√

n/ logn) for n ≥ 1.

Proof. Let s and t be distinct binary strings of length n. If they cannot be ∃-separated by a Horner
automaton of size M or less, the values of their polynomials s(x) and t(x) must be congruent modulo m
for all 0 ≤ b < m and 2 ≤ m ≤ M. The congruence classes of these values can be encoded in a binary
string (called a signature) of length at most

M

∑
m=2

m−1

∑
b=0

(logm)≤
M

∑
m=2

m−1

∑
b=0

(logM) ∈ O(M2 logM) ∈ O(M2 logn)

due to the upper bound on M in terms of n given by Lemma 2. There are 2O(M2 logn) such signatures and
2n binary strings of length n, so to ensure that different s and t have different signatures and ∃-separable
by a Horner automaton of size DH(n), we must have 2n ≤ 2O(D2

H(n) logn), or n∈O(D2
H(n) logn), and hence

DH(n) ∈ Ω(
√

n/ logn).

3.3 Upper bound on the Horner separation distance DH(n)

We begin with an observation that for large enough prime p, a polynomial P(x) whose coefficients are in
{−1,0,1} vanishes modulo p if and only it is divisible by xp − x.

Lemma 3. Let P(x) = ∑
n
j=0 p jx j be a polynomial of degree n ≥ 0 with coefficients p j ∈ {−1,0,1}, and

let p ≥ 1+
√

n be a prime. The polynomial P(x) vanishes modulo p if and only if P(x) = (xp − x)Q(x)
for some Q(x) ∈ Z[x].

Proof. Suppose P(x) = (xp−x)Q(x) for some polynomial Q(x)∈Z[x]. By Fermat’s little theorem, xp−x
vanishes modulo p, so P(x) also vanishes modulo p.

Conversely, suppose P(x) vanishes modulo p. Since P(0) = p0 ≡ 0 (mod p), and p0 ∈ {−1,0,−1},
we have p0 = 0. The division algorithm for integral polynomials says that

P(x) = (xp − x)Q(x)+R(x)

for some Q(x) = ∑
n−p
j=0 q jx j, R(x) = ∑

p−1
j=0 r jx j ∈ Z[x], where the degree of R(x) is less than p. Since both

P(x) and xp −x vanish modulo p, so does R(x). Because R(x) has p zeros modulo p but its degree is less
than p, by Lagrange’s theorem, all coefficients of R(x) must be divisible by p. We now show that the
coefficients of R(x) have absolute values at most p−1, and hence must all be zeros, i.e., R(x) = 0.

Expanding term by term both sides of P(x) = (xp − x)Q(x)+R(x), we have

n

∑
j=0

p jx j =
n−p

∑
j=0

q jx j+p −
n−p

∑
j=0

q jx j+1 +
p−1

∑
j=0

r jx j

=
n

∑
j=n−p+2

q j−px j +
n−p+1

∑
j=p

(q j−p −q j−1)x j +
p−1

∑
j=1

(r j −q j−1)x j + r0.

250 Separating words from every start state with Horner automata

Comparing coefficients on the left and right sides, we see that the constant coefficient of R(x) is 0, and
the absolute values of the leftmost p−1 coefficients of Q(x) are bounded by 1, because

r0 = p0 = 0

|q j−p| = |p j| ≤ 1, n− p+2 ≤ j ≤ n

Similarly, we see that the next leftmost p− 1 coefficients of Q(x) have absolute values bounded by 2,
because their differences with the first leftmost p−1 coefficients are bounded in absolute value by 1, as
can be seen below after changing the range of j:

|q j−p −q j−1| ≤ 1, n−2p+3 ≤ j ≤ n− p+1

|q j−2p+1 −q j−p| ≤ 1, n− p+2 ≤ j ≤ n

Repeating this argument, we conclude that the next leftmost p−1 coefficients of Q(x) have absolute
values bounded by 3, and so on. Since there are ⌈ n

p−1⌉ such groups (the constant coefficient is zero),
we conclude that the absolute values of coefficients of R(x) are bounded by ⌈ n

p−1⌉ and hence by p− 1
because ⌈

n
p−1

⌉
≤

⌈
n

1+
√

n−1

⌉
=

⌈√
n
⌉

< 1+
√

n

≤ p.

Example 5. Let s = 0000 1010 0000 0000 and t = 0000 0000 0010 1000. The associated polynomials
are s(x) = x11 + x9 and t(x) = x5 + x3. The polynomial P(x) = s(x)− t(x) = x11 + x9 − x5 − x3 has the
following irreducible factors over the rationals:

P(x) = x11 + x9 − x5 − x3 = x3(x−1)(x+1)(x2 +1)(x2 − x+1)(x2 + x+1).

Primes 5, 7, 11 are all greater than 1+
√

11. Since

x5 − x = x(x−1)(x+1)(x2 +1) | P(x),

x7 − x = x(x−1)(x+1)(x2 − x+1)(x2 + x+1) | P(x),

x11 − x = x(x−1)(x+1)(x4 − x3 + x2 − x+1)(x4 + x3 + x2 + x+1) ̸ | P(x),

it follows from Lemma 3 that P(x) vanishes modulo 5 and 7, but not modulo 11. Exhaustive search
shows that dH(s, t) = 9 while d∀(s, t) = 4.

We are now ready to prove an O(
√

n logn log logn) upper bound on DH(n) using Lemma 3. Let s and
t be distinct binary strings of length n, and let P(x) = s(x)− t(x), whose degree is at most n−1. If P(x)
vanishes modulo p for some p ≥ 1+

√
n−1, then P(x) is divisible by xp − x, which is in turn divisible

by Φp−1(x). Since these cyclotomic polynomials are co-prime, the sum δ of their degrees is bounded
above by n−1, which implies the stated upper bound on dH(s, t).

N. Tran 251

Theorem 2. DH(n) ∈ O(
√

n logn log logn).

Proof. Let s and t be distinct binary strings of length n, and suppose the Horner distance dH(s, t) is M
√

n,
so that P(x) = s(x)− t(x), whose degree is at most n−1, is congruent to the zero polynomial mod p for
all primes p < M

√
n.

By Lemma 2, M
√

n ≤ 2n, so M ≤ 2
√

n. By Lemma 3, for each such prime p >
√

n, P(x) is divisible
by xp − x = x(xp−1 − 1) and hence divisible by the cyclotomic polynomial Φp−1(x), whose degree is
φ(p−1) ∈ Ω((p−1)/ log log(p−1)). Since these cyclotomic polynomials are co-prime, the sum δ of
their degrees is at most n−1. There are approximately

M
√

n
ln(M

√
n)

−
√

n
ln
√

n
>

M
√

n
ln(2

√
n
√

n)
−

√
n

ln
√

n
≥ α

M
√

n
logn

primes p in the range [
√

n,M
√

n] by the Prime Number Theorem, for some constant α . Because the
function x/ log logx is eventually increasing, each Φp−1(x) contributes at least β

√
n/ log log(

√
n), for

some constant β , to the degree sum δ , which is at most n−1, so(
αM

√
n

logn

)(
β
√

n
log logn

)
=

(
αβMn

logn log logn

)
≤ δ < n.

It follows that M ∈ O(logn log logn), and hence dH(s, t) ∈ O(
√

n logn log logn). Since this holds for
arbitrary pairs of distinct binary strings of length n, we conclude that DH(n) ∈ O(

√
n logn log logn).

Because the more restrictive separation distance DH(n) is an upper bound on D∀(n), we obtain our
main result.

Theorem 3. D∀(n) ∈ O(
√

n logn log logn).

4 Conclusion

We show how to use Horner automata Hb,m to ∀-separate two distinct binary strings of length n and
establish almost matching lower and upper bounds on the minimum value of such m. Closing the gap
between these two bounds is an interesting open problem, as is the question of whether other families of
automata can be designed to achieve better lower and upper bounds on the ∀-separation distance.

Acknowledgments

Detailed comments and suggestions by the anonymous referees help improve the presentation of this
paper.

References

[1] B. Alexeev (2004): Minimal DFA for Testing Divisibility. Journal of Computer and System Sciences 69(2),
p. 235–243, doi:10.1016/j.jcss.2004.02.001.

[2] Z. Chase (2021): Separating Words and Trace Reconstruction. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pp. 21–31, doi:10.1145/3406325.3451118.

https://doi.org/10.1016/j.jcss.2004.02.001
https://doi.org/10.1145/3406325.3451118

252 Separating words from every start state with Horner automata

[3] E. D. Demaine, S. Eisenstat, J. Shallit & D. A. Wilson (2011): Remarks on Separating Words. In M. Holzer,
M. Kutrib & G. Pighizzini, editors: Proceedings of the 13th International Workshop on Descriptional Com-
plexity of Formal Systems (DCFS), Lecture Notes in Computer Science 6808, Springer, Berlin, Heidelberg,
pp. 147–157, doi:10.1007/978-3-642-22600-7.

[4] P. Goralčík & V. Koubek (1986): On Discerning Words by Automata. In L. Kott, editor: Proceedings of
the 13th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in
Computer Science 226, Springer, Berlin, Heidelberg, pp. 116–122, doi:10.1007/3-540-16761-7_61.

[5] I. Niven, H. S. Zuckerman & H. L. Montgomery (1991): An Introduction to the Theory of Numbers. Wiley.
[6] J. M. Robson (1989): Separating strings with small automata. Information Processing Letters 30(4), pp.

209–214, doi:10.1016/0020-0190(89)90215-9.
[7] J. B. Rosser & L. Schoenfeld (1962): Approximate formulas for some functions of prime numbers. Illinois

Journal of Mathematics 6(1), pp. 64–94, doi:10.1215/ijm/1255631807.
[8] K. Sutner (2009): Divisibility and State Complexity. The Mathematica Journal 11(3), pp. 430–445,

doi:10.3888/tmj.11.3-8.
[9] N. Tran (2022): Variations of the Separating Words Problem. In P. Caron & L. Mignot, editors: Proceedings

of the 26th International Conference on Implementation and Application of Automata (CIAA), Lecture Notes
in Computer Science 13266, Springer, Berlin, Heidelberg, pp. 165–176, doi:10.1007/978-3-031-07469-1_13.

[10] M. N. Vyalyi & R. A. Gimadeev (2014): Separating words by occurrences of subwords. Journal of Applied
and Industrial Mathematics 8(2), pp. 293–299, doi:10.1134/S1990478914020161.

https://doi.org/10.1007/978-3-642-22600-7
https://doi.org/10.1007/3-540-16761-7_61
https://doi.org/10.1016/0020-0190(89)90215-9
https://doi.org/10.1215/ijm/1255631807
https://doi.org/10.3888/tmj.11.3-8
https://doi.org/10.1007/978-3-031-07469-1_13
https://doi.org/10.1134/S1990478914020161

	Introduction
	Preliminaries
	Main Results
	Horner automata and -separation
	Lower bound on the Horner separation distance D_H(n)
	Upper bound on the Horner separation distance D_H(n)

	Conclusion

