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The HOM-problem, which asks whether the image of a regular tree language under a tree homomor-

phism is again regular, is known to be decidable by [Godoy, Giménez, Ramos, Àlvarez: The HOM

problem is decidable. STOC (2010)]. Research on the weighted version of this problem, however, is

still in its infancy since it requires customized investigations. In this paper we address the weighted

HOM-problem and strive to keep the underlying semiring as general as possible. In return, we restrict

the input: We require the tree homomorphism h to be tetris-free, a condition weaker than injectivity,

and for the given weighted tree automaton, we propose an ambiguity notion with respect to h. These

assumptions suffice to ensure decidability of the thus restricted HOM-problem for all zero-sum free

semirings by allowing us to reduce it to the (decidable) unweighted case.

1 Introduction

Over the past decades, various extensions to the well-known model of finite-state automata have been

proposed. These acceptors were taken to the next level when their qualitative evaluation was generalized

to a quantitative one, which led to the concept of weighted automata [29]. Such devices assign a weight to

each input word, thus computing so-called formal power series. Weighted automata are commonly used

to model numerical factors related to the input, such as costs, probabilities and consumption of resources

or time, and enjoy consistent attention from the research community focused on automata theory [8, 28].

The favored algebraic structure for performing weight calculations are semirings [14, 16], as they are

quite general while still being computationally efficient due to their distributivity.

Another dimension for generalizing finite-state automata lifts their input to more complex data struc-

tures such as infinite words [20, 26], trees [2], graphs [1] and pictures [11, 27]. Particularly, finite-state

tree automata were introduced independently in [5, 31, 32]. The so-called regular tree languages they

recognize have been studied extensively [2], and find applications in a variety of areas like natural lan-

guage processing [17], picture generation [6] and compiler construction [33]. In many cases, applica-

tions require both types of generalizations, and so several models of weighted tree automata (WTA) and

the regular tree series they recognize continue to be studied [9].

The price to pay for the simplicity of tree automata lies in their significant limitations. For instance,

they cannot ensure that certain subtrees of input trees are equal [10], much like the classical (string)

automata cannot ensure that the number of a’s and b’s in a word is equal. This defect was tackled with

extensions proposed in [25] and [3, 12, 13] where tree automata with constraints can explicitly require

or forbid certain subtrees to be equal. Such devices have played a crucial part in deciding the HOM-

problem: This long-standing open question [2] asks, given a regular tree language and a tree homomor-

phism, whether the image is again regular. A tree homomorphism performs a transformation on trees
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and can duplicate subtrees, therefore the trees in the homomorphic image might have certain identical

subtrees, which calls for the constraints mentioned above. In [12], the authors first represent this homo-

morphic image of a regular tree language by a tree automaton with explicit constraints, and then decide

algorithmically if the language it recognizes is regular despite the constraints it imposes.

The nature of the weighted HOM-problem, where a regular tree series and a tree homomorphism

are given as input, requires an individual investigation for different semirings. Recently, the approach

from [12] was adjusted to the special case of nonnegative integers [23], but so far, the question remains

open for other semirings. In this paper, we reverse the strategy and impose conditions on the input in

order to decide the thus restricted HOM-problem for a larger class of semirings. More precisely, we

require our protagonist – the weighted tree automaton with constraints – to be unambiguous, and reduce

the question of its regularity to the unweighted case from [12] for any zero-sum free (commutative)

semiring. Afterwards, we phrase a condition on the input of the HOM-problem which ensures that our

reduction is applicable.

This article consists of five sections including its introduction. Our main contributions can be sum-

marized as follows:

• In Section 2 we establish notations and recall the main objects that will play a role throughout

the paper, primarily the weighted tree automata with hom-constraints (WTAh) which are used to

represent homomorphic images of regular tree series.

• In Section 3 we prove that regularity is decidable for the unambiguous devices of this type over

zero-sum free semirings. We achieve this by reducing the question to the unweighted case where

regularity is known to be decidable [12].

• In Section 4 we integrate this decidability result into the HOM-problem. To this end, we phrase a

condition on the input of the HOM-problem which guarantees that the WTAh constructed for this

instance is unambiguous. Thus, the HOM-problem with input restricted accordingly is decidable

for any zero-sum free semiring.

• Finally, in Section 5 we briefly summarize our results and discuss further research that will extend

the present work.

2 Preliminaries and Technical Background

We begin as usual with the necessary background for this paper.

General Notation

We denote the set {0,1,2, . . .} of nonnegative integers by N, and we let [k] = {1, . . . ,k} for every k ∈ N.

Let A and B be sets. We write |A| for the cardinality of A, and A∗ for the set of finite strings over A. The

empty string is ε and the length of a string w is |w|. For a mapping f : A→ B and S ⊆ B we denote the

inverse image of S under f by f−1(S), and we write f−1(b) instead of f−1({b}) for every b ∈ B.

Trees

A ranked alphabet is a pair (Σ, rk) that consists of a finite set Σ and a rank mapping rk : Σ→ N. For

every k ≥ 0, we define Σk = rk−1(k), and we sometimes write σ (k) to indicate that σ ∈ Σk. We often

abbreviate (Σ, rk) by Σ leaving rk implicit. Let Z be a set disjoint with Σ. The set of Σ-trees over Z,
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denoted TΣ(Z), is the smallest set T such that (i) Σ0 ∪Z ⊆ T and (ii) σ(t1, . . . , tk) ∈ T for every k ∈ N,

σ ∈ Σk and t1, . . . , tk ∈ T . We abbreviate TΣ( /0) simply to TΣ, and call any subset L⊆ TΣ a tree language.

Consider t ∈ TΣ(Z). The set pos(t) ⊆ N
∗ of positions of t is defined inductively by pos(t) = ε for

every t ∈ Σ0∪Z, and by

pos
(

σ(t1, . . . , tk)
)

= {ε}∪
⋃

i∈[k]

{ip | p ∈ pos(ti)}

for all k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). The set of positions of t inherits the lexicographic order ≤lex

from N
∗. The size |t| and height ht(t) of t are defined as

|t| = |pos(t)| and ht(t) = max
p∈pos(t)

|p| .

For p ∈ pos(t), the label t(p) of t at p, the subtree t|p of t at p and the substitution t[t ′]p of t ′ into t at p

are defined

• for t ∈ Σ0∪Z by t(ε) = t|ε = t and t[t ′]ε = t ′, and

• for t = σ(t1, . . . , tk) by t(ε) = σ , t(ip′) = ti(p′), t|ε = t, t|ip′ = ti|p′ , t[t ′]ε = t ′, and

t[t ′]ip′ = σ(t1, . . . , ti−1, ti[t
′]p′ , ti+1, . . . , tk)

for all k ∈ N, σ ∈ Σk, t1, . . . , tk ∈ TΣ(Z), i ∈ [k] and p′ ∈ pos(ti).

For every subset S⊆Σ∪Z, we let posS(t) = {p∈ pos(t) | t(p)∈ S} and we abbreviate pos{s}(t) by poss(t)
for every s∈ Σ∪Z. Let X = {x1,x2, . . .} be a fixed, countable set of formal variables. For k∈N we denote

by Xk the subset {x1, . . . ,xk}. For any t ∈ TΣ(X) we let

var(t) = {x ∈ X | posx(t) 6= /0} .

Finally, for t ∈ TΣ(Z), a subset V ⊆ Z and a mapping θ : V → TΣ(Z), we define the substitution tθ applied

to t by vθ = θ(v) for v ∈V , zθ = z for z ∈ Z \V , and

σ(t1, . . . , tk)θ = σ
(

t1θ , . . . , tkθ
)

for all k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). If V = {v1, . . . ,vn}, we write the substitution θ explicitly

as [v1← θ(v1), . . . ,vn← θ(vn)], and abbreviate it further to [θ(x1), . . . ,θ(xn)] if V = Xn.

Semirings and Tree Series

A (commutative) semiring [14, 15] is a tuple (S,+, · ,0,1) such that (S,+,0) and (S, · ,1) are commuta-

tive monoids, · distributes over +, and 0 · s = 0 for all s ∈ S. Examples include

• the Boolean semiring B=
(

{0,1},∨,∧,0,1
)

,

• the semiring N=
(

N,+, · ,0,1
)

,

• the semiring Z=
(

Z,+, · ,0,1
)

,

• the tropical semiring T=
(

N∪{∞},min,+,∞,0
)

, and

• the arctic semiring A=
(

N∪{−∞},max,+,−∞,0
)

.

When there is no risk of confusion, we refer to a semiring (S,+, · ,0,1) simply by its carrier set S. We

call S zero-sum free if a+b = 0 implies a = b = 0 for all a,b ∈ S. All semirings listed above except for Z

are zero-sum free. Let Σ be a ranked alphabet and Z a set. Any mapping ϕ : TΣ(Z)→ S is called a tree

series or weighted tree language over S, and its support is the set supp(ϕ) = {t ∈ TΣ(Z) | ϕ(t) 6= 0}.
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Tree Homomorphisms

Given ranked alphabets Σ and ∆, let h′ : Σ→ T∆(X) be a mapping that satisfies h′(σ)∈ T∆(Xk) for all k∈N
and σ ∈ Σk. We extend h′ to h : TΣ→ T∆ by h(α) = h′(α) ∈ T∆(X0) = T∆ for all α ∈ Σ0 and

h(σ(s1, . . . ,sk)) = h′(σ)[x1← h(s1), . . . ,xk← h(sk)]

for all k ∈N, σ ∈ Σk, and s1, . . . ,sk ∈ TΣ. The mapping h is called the tree homomorphism induced by h′,

and we identify h′ and its induced tree homomorphism h. We call h

• nonerasing if h(σ) /∈ X for all σ ∈ Σ,

• nondeleting if σ ∈ Σk implies var(h′(σ)) = Xk for all k ∈ N, and

• input-finitary if the preimage h−1(t) is finite for every t ∈ T∆.

If a tree homomorphism h : TΣ→ T∆ is nonerasing and nondeleting, then for every s∈ h−1(t), it is |s| ≤ |t|.
In particular, h is then input finitary.

Consider a tree series A : TΣ → S. Its homomorphic image under h is the tree series hA : T∆ → S

defined for every t ∈ T∆ by

hA(t) = ∑
s∈h−1(t)

A(s) .

This definition relies on the tree homomorphism to be input-finitary, otherwise the above sum is not

finite, so the value hA(t) might not be well-defined. For this reason, we will only consider nondeleting

and nonerasing tree homomorphisms.

Weighted Tree Automata with Constraints

Recently it was shown [21, 22] that such homomorphic images of regular tree languages can be repre-

sented efficiently using weighted tree automata with hom-constraints (WTAh). These devices were first

introduced for the unweighted case in [12] and defined for zero-sum free commutative semirings in [21].

Definition 1 (cf. [22, Definition 1]). Let S be a commutative semiring. A weighted tree automaton over S

with hom-constraints (WTAh) is a tuple A =
(

Q,Σ,F,R,wt
)

such that Q is a finite set of states, Σ is a

ranked alphabet, F ⊆ Q is the set of final states, R is a finite set of rules of the form (ℓ,q,E) such that

ℓ ∈ TΣ(Q) \Q, q ∈ Q and E is an equivalence relation on posQ(ℓ), and wt: R→ S assigns a weight to

each rule.

Rules of a WTAh are typically depicted as r = ℓ
E
−→wt(r) q. The components of such a rule are

the left-hand side ℓ, the target state q, the set E of hom-constraints and the weight wt(r). A hom-

constraint (p, p′) ∈ E is listed as “ p = p′ ”, and if p and p′ are distinct, then p, p′ are called con-

strained positions. The equivalence class of p in E is denoted [p]≡E
. We typically omit the trivial

constraints (p, p) ∈ E .

Example 2. Let Σ be the ranked alphabet {a(0),g(1),k(2)}. Consider the WTAh A =
(

Q,Σ,F,R,wt
)

over Z with Q = {q,q f }, F = {q f } and the set of rules and weights

R =
{

a→1 q , g(q)→2 q , k
(

q,g(q)
) 1=21
−→1 q f } .

The only constrained positions are 1 and 21 in the rule with left-hand side k
(

q,g(q)
)

.
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The WTAh is a weighted tree grammar (WTG) if E is the identity relation for every rule ℓ
E
−→ q, and

a WTA in the classical sense [2] if additionally posΣ(ℓ) = {ε}. WTG and WTA are equally expressive,

as WTG can be translated straightforwardly into WTA using additional states.

In this work, we are particularly interested in a specific subclass of WTAh, namely the eq-restricted

WTAh [22]. In such a device, there is a designated sink-state whose sole purpose is to neutrally process

copies of identical subtrees. More precisely, whenever different subtrees are mutually constrained, there

is one leading copy among them that can be processed with arbitrary states and weights, while every

other copy is handled exclusively by the weight-neutral sink-state.

Definition 3. A WTAh
(

Q,Σ,F,R,wt
)

is eq-restricted if it has a sink state ⊥ ∈ Q\F such that

• for all σ ∈ Σ, the rule σ(⊥, . . . ,⊥)→1 ⊥ belongs to R, and no other rule targets ⊥, and

• for every rule ℓ
E
−→ q with q 6=⊥, the following conditions hold:

Let posQ(ℓ) = {p1, . . . , pn} and qi = ℓ(pi) for i ∈ [n].

1. For each i ∈ [n], there exists q′ ∈Q\{⊥} with {q j | p j ∈ [pi]≡E
}\{⊥}= {q′}.

2. There exists exactly one p j ∈ [pi]≡E
such that q j = q′.

In other words, among each E-equivalence class of positions of a left-hand side ℓ, there is only

one occurrence of a state different from ⊥, every other related position is labelled by ⊥. Moreover, ⊥
processes every possible tree with weight 1. Whenever we consider an eq-restricted WTAh, we denote

its state set by Q∪̇{⊥} instead of Q ∋⊥ to point out the sink-state.

Example 4. Recall the WTAc A from Example 2. It is not eq-restricted since the constrained posi-

tions 1 and 21 are both labeled by the same state, which is not a sink state. Instead, let us add a

non-final state ⊥ to Q, replace the rule k
(

q,g(q)
) 1=21
−→1 q f with k

(

q,g(⊥)
) 1=21
−→1 q f and add the re-

quired rules targeting ⊥ to obtain an eq-restricted WTAh A ′. More precisely, we have the eq-restricted

WTAh A ′ =
(

{q,q f ,⊥},∆,{q f },R
′,wt′

)

with the set of rules and weights

R′ =
{

a→1 q, g(q)→2 q, k
(

q,g(⊥)
) 1=21
−→1 q f

}

∪ {a→1 ⊥, g(⊥)→1 ⊥, k(⊥,⊥)→1 ⊥} .

Next, let us recall the semantics of WTAh from [22, Definitions 2 and 3].

Definition 5. Let A =
(

Q,Σ,F,R,wt
)

be a WTAh. A run of A is a tree over the ranked alphabet Σ∪R

where the rank of a rule is rk(ℓ
E
−→ q) = |posQ(ℓ)|, and it is defined inductively. Consider t1, . . . , tn ∈ TΣ,

q1, . . . ,qn ∈ Q and suppose that ρi is a run of A for ti to qi with weight wt(ρi) = ai for each i ∈ [n].

Assume that there is a rule of the form ℓ
E
−→a q in R such that ℓ= σ(ℓ1, . . . , ℓm), posQ(ℓ) = {p1, . . . , pn}

with ℓ(pi) = qi and that for all pi = p j ∈ E, it is ti = t j. Then the following is a run of A for the tree

t = ℓ[t1]p1
· · · [tn]pn

to q:

ρ =
(

ℓ
E
−→a q

)

(ℓ1, . . . , ℓm)[ρ1]p1
· · · [ρn]pn

.

Its weight wt(ρ) is computed as a ·∏i∈[n] ai. If wt(ρ) 6= 0, then ρ is valid, and if in addition, q ∈ F for

its target state q, then ρ is accepting. We call A unambiguous if for every t ∈ TΣ there is at most one

accepting run. The value wtq(t) is the sum of all weights wt(ρ) of runs of A for t to q. Finally, the tree

series recognized by A is defined simply by

JA K : TΣ→ S, t 7→ ∑
q∈F

wtq(t) .
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Since the weights of rules are multiplied, we can assume wlog. that wt(r) 6= 0 for all r ∈ R, which we

will do from now on. Finally, two WTAh are said to be equivalent if they recognize the same tree series.

Example 6. Recall the WTAh A and A ′ from Examples 2 and 4 and consider the tree k
(

g2(a),g3(a)
)

.

The accepting runs ρ and ρ ′ of A and A ′, respectively, for it are the following:

ρ : k
(

q,g(q)
) 1=21
−→1 q f

g(q)→2 q

g(q)→2 q

a→1 q

g

g(q)→2 q

g(q)→2 q

a→1 q

ρ ′ : k
(

q,g(⊥)
) 1=21
−→1 q f

g(q)→2 q

g(q)→2 q

a→1 q

g

g(⊥)→1 ⊥

g(⊥)→1 ⊥

a→1 ⊥ .

It is wt(ρ) = 24 while wt′(ρ ′) = 22 because in the eq-restricted WTAh A ′, every constrained subtree

except for one (pending from position 1) is processed exclusively in the state ⊥ with weight 1.

Both WTAh are unambiguous, so it is impossible for different accepting runs with complementary

weights to cancel out. Thus for a tree t ∈ TΣ it is t ∈ suppJA K iff. A has an accepting run for t, and the

same is true for A ′. In fact, it is

suppJA K = suppJA ′K =
{

k
(

gna,gn+1(a)
)

| n ∈N
}

.

If a tree series is recognized by a WTA, it is called regular, if it is recognized by some WTAh, then it is

called constraint-regular, and if it is recognized by an eq-restricted WTAh, then it is called hom-regular.

This choice of name hints at the fact that eq-restricted WTAh are tailored to represent homomorphic

images of regular tree series. For an illustration of this feature, consider the following example.

Example 7. Let Σ = {a(0),g(1), f (1)} and A : TΣ→ N defined for every s ∈ TΣ by

A(s) =

{

2n if s = f
(

gn(a)
)

0 else.

A simple WTA recognizing the tree series A is A =
(

{q,q f },Σ,{q f },R,wt
)

with the rules and

weights R =
{

a→1 q, g(q)→2 q, f (q)→1 q f

}

. Consider ∆ = {a(0),g(1),k(2)} and the input-finitary

tree homomorphism h : TΣ→ T∆ induced by the mapping h(a) = a, h(g) = g(x1) and h( f ) = k
(

x1,g(x1)
)

.

The homomorphic image hA is the tree series given for all t ∈ T∆ by

hA(t) =

{

2n if t = k
(

gn(a),gn+1(a)
)

0 else.

The natural eq-restricted WTAh that recognizes hA is A ′ =
(

{q,q f ,⊥},∆,{q f },R
′,wt′

)

from Example 4

with

R′ =
{

a→1 q, g(q)→2 q, k
(

q,g(⊥)
) 1=21
−→1 q f

}

∪ {a→1 ⊥, g(⊥)→1 ⊥, k(⊥,⊥)→1 ⊥} .
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The new rules in R′ are obtained from the rules in R by applying the tree homomorphism to their left-hand

sides. The duplicated subtree below k targets the sink state ⊥ instead of q to avoid distorting the weight

with an additional factor 2n.

More formally, the following statement was shown in [22]. We include a condensed version of the

proof as we will refer to a technical detail below.

Lemma 8 (cf. [22, Theorem 5]). Let S be a commutative semiring, A =
(

Q,Σ,F,R,wt
)

a WTA over S

and h : TΣ→ T∆ a nondeleting and nonerasing tree homomorphism. There is an eq-restricted WTAh A ′

that recognizes hJA K.

Proof. An eq-restricted WTAh A ′ for hJA K is constructed in two stages.

First, we define A ′′ =
(

Q∪̇{⊥},∆∪∆×R,F′′,R′′,wt′′
)

such that for every r = σ(q1, . . . ,qk)→wt(r) q

in R and h(σ) = u = δ (u1, . . . ,un), we include

r′′ =
(

〈δ ,r〉(u1, . . . ,un)Jq1, . . . ,qkK
E
−→wt′′(r′′) q

)

∈ R′′ with E =
⋃

i∈[k]

posxi
(u)2

where the substitution 〈δ ,r〉(u1, . . . ,un)Jq1, . . . ,qkK replaces for every i ∈ [k] only the ≤lex-minimal oc-

currence of xi in 〈δ ,r〉(u1, . . . ,un) by qi and all other occurrences by ⊥. We set wt′′(r′′) = wt(r). Ad-

ditionally, we let r′′δ = δ (⊥, . . . ,⊥)→⊥ ∈ R′′ with wt′′(r′′δ ) = 1 for every k ∈ N and δ ∈ ∆k. No other

productions are in R′′. Finally, we let F ′′ = F .

We can now delete the annotation: We use a deterministic relabeling to remove the second compo-

nents of labels of ∆×R, adding up the weights of now identical rules. Since hom-regular languages are

closed under relabelings [22, Theorem 4], we obtain an eq-restricted WTAh A ′=
(

Q∪̇{⊥},∆,F ′,R′,wt′
)

recognizing hJA K.

The WTAh constructed for the homomorphic image of a WTA preserves the original state behaviour

in its leading copies of duplicated subtrees. Using the notation from the proof of Lemma 8, we want to

define a mapping that traces the runs of the input WTA to its homomorphic image.

Definition 9. Let A ,h and A ′ be as in Lemma 8, let r =σ(q1, . . . ,qk)→ q∈R and h(σ)= δ (u1, . . . ,un).

We let hR(r) be the rule δ (u1, . . . ,un)Jq1, . . . ,qkK
E
−→ q of the WTAh A ′.

The assignment hR extends naturally to the runs of A : For a run of the form ρ = r = (α → q) with

α ∈ Σ0, we set hR(ρ) = hR(r). For a run of A of the form ρ = r(ρ1, . . . ,ρk) with r = σ(q1, . . . ,qk)→ q

and h(σ) = δ (u1, . . . ,un) we set

hR(ρ) =
(

hR(r)
)

(u1, . . . ,un)JhR(ρ1), . . . ,h
R(ρk)K ;

here, the substitution JhR(ρ1), . . . ,h
R(ρk)K replaces for every i ∈ [k] only the ≤lex-minimal occurrence

of xi in
(

hR(r)
)

(u1, . . . ,un) by hR(ρi) and all other occurrences by the respective unique run to ⊥ for the

unique tree that satisfies the constraint E.

Using the notation above, the assignment hR : R→ R′ is well-defined, but not necessarily injective,

and its image is hR(R) = {r′ ∈ R′ | r′ targets some q 6=⊥}. Let us see how it acts on our running example.

Example 10. Recall the WTA A and WTAh A ′ from Example 7. The mapping hR assigns

hR : f (q)→ q f 7→ k
(

q,g(⊥)
) 1=21
−→ q f ,

and for the unique run of A for the tree f
(

g(a)
)

, it is
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hR :

f (q)→ q f

g(q)→ q

a→ q

7→

k
(

q,g(⊥)
) 1=21
−→ q f

g(q)→ q

a→ q

g

g(⊥)→⊥

a→⊥ .

When discussing the behaviour of a WTAh A , we often argue with the help of runs ρ , so it is a

nuisance that we might have wt(ρ) = 0. This anomaly can occur even if wt(r) 6= 0 for all rules r of A

due to the presence of zero-divizors, that is, elements s,s′ ∈ S \{0} such that s · s′ = 0. Fortunately, we

can avoid this altogether using a construction of [18], which is based on DICKSON’s Lemma [4]. It was

first lifted to tree automata in [7] and later to WTAh in [21, 22]. Here, we slightly adjust the proof of

Lemma 3 in [22] such that it preserves the eq-restriction of the input WTAh.

Lemma 11. (cf. [22, Lemma 3]) Let S be a commutative semiring. For every eq-restricted WTAh A

over S there exists an eq-restricted WTAh A ′ equivalent to A such that wtA ′(ρ ′) 6= 0 for all runs ρ ′

of A ′. For each t ∈ suppJA K, the accepting (i.e. of non-zero weight and targeting a final state) runs

of A for t translate bijectively into the accepting runs ρ ′ of A ′ for t, and the weights are preserved.

Proof. Let A be the eq-restricted WTAh
(

Q∪̇{⊥},Σ,F,R,wt
)

. Obviously, (S, ·,1,0) is a commutative

monoid with zero. Let (s1, . . . ,sn) be an enumeration of the finite set wt(R)\{1} ⊆ S. We consider the

monoid homomorphism h : Nn→ S, which is given for every m1, . . . ,mn ∈ N by

h(m1, . . . ,mn) =
n

∏
i=1

s
mi

i .

According to DICKSON’s lemma [4], the set min
(

h−1(0)
)

is finite, where the partial order is the stan-

dard pointwise order on N
n. Hence there is u ∈ N such that min

(

h−1(0)
)

⊆ {0, . . . ,u}n = U . We de-

fine the operation ⊕ : U2 →U by (v⊕ v′)i = min(vi + v′i,u) for every v,v′ ∈U and i ∈ [n]. Moreover,

for every i ∈ [n] we let 1si
∈ U be the vector such that (1si

)i = 1 and (1si
)a = 0 for all a ∈ [n] \ {i}.

Let V = U \ h−1(0). We construct the equivalent eq-restricted WTAh A ′ =
(

Q′∪̇{⊥},Σ,F ′,R′,wt′
)

such that Q′ = Q×V , F ′ = F×V , and R′ and wt′ are given as follows. Consider a rule r = ℓ
E
−→ q ∈ R,

let posQ(ℓ) = {p1, . . . , pk} ordered lexicographically and let qi = ℓ(pi) for all i ∈ [k]. Note that we do

not consider the leaves of ℓ that are labeled by ⊥. For all choices of v1, . . . ,vk ∈ V such that the value

v = 1wt(r)⊕
⊕k

i=1 vi is again in V , the production

ℓ[〈q1,v1〉]p1
. . . [〈qk,vk〉]pk

E
−→ 〈q,v〉

belongs to R′ and its weight is wt′(p′) = wt(r). No further rules are in R′.

By annotating the power vectors vi to the states q 6=⊥, we suitably (for the purpose of zero-divisors)

track the weight of runs as v. If attaching another rule adopted from R to so far valid runs of A ′ would

evaluate the overall weight to zero, then we exclude this rule from R′. Consequently, every run of A ′ is

valid. To preserve the eq-restriction, we only annotate power vectors vi to the non-sink states. It is safe

to omit ⊥ in this construction since ⊥ only ever processes the neutral weight 1.
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From here on, we silently assume that each WTAh avoids zero-divizors.

A main result proved in this article is deciding regularity for unambiguous WTAh over zero-sum

free commutative semirings. We achieve this by reducing the problem to the unweigted (i.e. boolean)

case solved in [12]. For this, we must relate our WTAh model to the tree automata with HOM equality

constraints used by [12] which differ slightly from our WTAh over the boolean semiring. Fortunately,

the two are closely related and the translation is rather simple: We merely eliminate the sink state and

drop the weight assignment.

Lemma 12. Let S be a commutative semiring and A =
(

Q∪̇{⊥},Σ,F,R,wt
)

an eq-restricted WTAh

over S. If A is unambiguous or S is zero-sum free, then there is a tree automaton with HOM equality

constraints (TAhom) [12] A B that recognizes the tree language suppJA K. If A is a WTA (i.e. without

constraints), then A B is also a TA without constraints.

Proof. Let q ∈ Q and consider a rule ℓ
E
−→a q of A . Suppose that {p1

1, . . . , p1
n1
}, . . . ,{pm

1 , . . . , pm
nm
}

are the equivalence classes of E , and wlog. let pi
1 be the unique representative such that ℓ(pi

1) 6= ⊥ for

each i ∈ [m]. Then we include the unweighted rule

ℓ [ℓ(p1
1)]p1

2
· · · [ℓ(p1

1)]p1
n1
· · · [ℓ(pm

1 )]pm
2
· · · [ℓ(pm

1 )]pm
nm

E
−→ q

in RB, that is, we replace every occurrence of ⊥ by the unique state from Q that labels a related position.

This is necessary because the definition of TAhom requires E-related positions to be labelled with the

same state. We proceed this way for every rule of A , discarding the rules that target ⊥, and obtain the

(unweighted) TAhom A B =
(

Q,Σ,F,RB
)

. Since A avoids zero-divizors, the conditions in the statement

are each sufficient to ensure that t ∈ suppJA K iff. there exists an run of A for t to a final state, so A B

recognizes suppJA K.

Example 13. Reconsider the WTAh A ′ from Example 7. To obtain the TAhom (A ′)B, we remove the sink

state ⊥, all rules that target ⊥ and the weight assignment, and replace the rule k
(

q,g(⊥)
) 1=21
−→1 q f with

the unweighted rule k
(

q,g(q)
) 1=21
−→ q f .

3 Deciding Regularity for Unambiguous WTAh

In this section, we prove that regularity is decidable for unambiguous eq-restricted WTAh over zero-sum

free semirings. To this end, we reduce this problem to regularity in the unweighted case, which was

proved decidable in [12].

We begin by defining the linearization of eq-restricted WTAh, which was introduced for the boolean

case in [12] and adapted to the weighted model in [23]. The linearization of a WTAh A by the num-

ber h is a WTG lin(A ,h) that approximates A : It simulates all runs of A which only enforce the

equality of subtrees of height at most h. This is achieved by instantiating the constrained Q-positions of

every rule ℓ
E
−→ q in A with compatible trees of height at most h, while the Q-positions of ℓ that are

unconstrained by E remain unchanged.

Formally, the linearization is defined following [12, Definition 7.1].

Definition 14 (cf. [23, Definition 12]). Let S be a commutative semiring. Consider an eq-restricted

WTAh A = (Q∪̇{⊥},Σ,F,R,wt) over S, and let h ∈ N be a nonnegative integer. The linearization of A

by h is the WTG lin(A ′,h) =
(

Q,Σ,F,Rh,wth
)

, where Rh and wth are defined as follows.
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For ℓ′ ∈ TΣ(Q∪̇{⊥}) and q∈Q, we include the rule (ℓ′→ q) in Rh iff. there exist a rule (ℓ
E
−→ q)∈R,

positions p1, . . . , pk ∈ posQ∪̇{⊥}(ℓ), and trees t1, . . . , tk ∈ TΣ such that

• {p1, . . . , pk}=
⋃

p∈pos⊥(ℓ)
[p]E , that is, E constrains exactly the positions p1, . . . , pk,

• (pi, p j) ∈ E implies ti = t j for all i, j ∈ [k],

• ℓ′ = ℓ[t1]p1
· · · [tk]pk

, and

• wtℓ(pi)(ti) 6= 0 and ht(ti)≤ h for all i ∈ [k].

For every such production ℓ′→ q we set wth(ℓ
′→ q) as the sum over all weights

wt(ℓ
E
−→ q) ·∏

i∈[k]

wtℓ(pi)(ti)

for all (ℓ
E
−→ q) ∈ R, p1, . . . , pk ∈ posQ∪̇{⊥}(ℓ) and t1, . . . , tk ∈ TΣ as above.

Note that the linearization is a WTG without constraints, so it recognizes a regular tree series. Let us

apply this construction to our running example.

Example 15. We recall the WTAh A ′ from Example 7 and set h= 2. The linearization of A ′ by 2 instan-

tiates every constrained position by compatible trees of maximal height 2, keeping track of the weights,

and removes ⊥ and the rules that target it. More precisely, lin(A ′,2) =
(

{q,q f },∆,{q f },R2,wt2
)

with

the set of rules and weights

R2 =
{

a→1 q, g(q)→2 q, k
(

a,g(a)
)

→1 q f ,

k
(

g(a),g(g(a))
)

→2 q f , k
(

g(g(a)),g(g(g(a)))
)

→4 q f

}

.

This example illustrates that the larger we choose h, the better lin(A ′,h) approximates JA ′K. In

this particular case however, there will always be a tree t such that JA ′K(t) 6= Jlin(A ′,h)K(t), say, the

tree k
(

gh+1(a),gh+2(a)
)

. For eq-restricted WTAh A over B or N it is known [12, 22] that JA K is regular

iff. Jlin(A ,h)K = JA K for a certain parameter h. For other semirings, a customized investigation is

necessary, but unambiguous WTAh allow us to decide regularity by applying the boolean case directly.

To this end, the following lemma is fundamental.

Lemma 16. Let S be a commutative semiring, A an eq-restricted WTAh over S and h ∈ N. For each

t ∈ suppJA K, there are at most as many accepting runs of lin(A ,h) for t as there are accepting runs

of A for t. In particular, if A is unambiguous, then so is its linearization, and for every t ∈ suppJA K it

is either Jlin(A ,h)K(t) = JA K(t), or there are no accepting runs of lin(A ,h) for t.

Proof. The linearization lin(A ,h) is defined in such a way that it simulates every run ρ of A with the

following property: Say ρ processes t ∈ TΣ, then for every rule ℓ
E
−→ q used in ρ at position p (that is, at

the root of t|p), and for every position p̄ constrained by E , it is ht(t|pp̄) ≤ h. Different runs of A might

be merged into the same run of lin(A ,h), but for a particular run of A it is uniquely determined which

run of lin(A ,h) will incorporate it.

We need yet another technical ingredient for the reduction to the unweighted case: to interchange

the linearization of a WTAh and its projection onto the boolean TAhom. The linearization for TAhom was

defined in [12, Definition 7] and indeed, the following holds.

Lemma 17. Consider an unambiguous, eq-restricted WTAh A over a commutative semiring. Let A B

the TAhom for suppJA K defined in Lemma 12 and linearize(A B,h) in turn the linearization of A B by h

as introduced in [12, Definition 7.1]. Then it is lin(A ,h)B = linearize(A B,h).
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We are now ready for the main result of this section: the reduction of regularity for eq-restricted

WTAh over zero-sum free semirings to the unweighted case.

Theorem 18. Let S be a zero-sum free commutative semiring and A an unambiguous eq-restricted

WTAh over S. The tree series JA K is regular iff. suppJA K is a regular tree language.

Proof. Suppose first that JA K is regular, thus there is a WTA B equivalent to A . Since S is zero-sum

free, we can apply Lemma 12 to B and obtain that suppJBK = suppJA K is regular.

Next, suppose that JA K is not regular. In particular, the regular WTG lin(A ,h) is not equivalent

to A for any h ∈N. Thus by Lemma 16, it is suppJA K 6= suppJlin(A ,h)K. By Lemma 12, lin(A ,h)B

recognizes the regular language supp Jlin(A ,h)K, and together with Lemma 17, it is

JA BK = suppJA K 6= Jlin(A ,h)BK = Jlinearize(A B,h)K,

that is, the boolean linearization of the TAhom A B is not equivalent to it for any h ∈ N. This, however,

implies that JA BK = suppJA K is not regular as proved in [22, Lemma 7.3].

Note that we only used zero-sum freeness of the semiring for the first part of the statement, as

Lemma 12 holds for unambiguous WTAh over arbitrary commutative semirings. With this result, regu-

larity of eq-restricted WTAh is decidable.

Corollary 19. Let S be a zero-sum free commutative semiring. Given an unambiguous eq-restricted

WTAh A over S as input, it is decidable whether JA K is regular.

Proof. By Theorem 18, JA K is regular iff. suppJA K is regular. A TAhom recognizing the latter can be

constructed with Lemma 12, for which, in turn, regularity is decidable [12, Section 7].

4 A Sufficient Condition and the HOM-Problem

So far, the assumption we make for deciding regularity is imposed on the WTAh. Meanwhile the HOM-

problem has a WTA A and a tree homomorphism h as input. In this section, we propose conditions

on A and h which ensure that the strategy of the previous section is applicable to the corresponding

instance of the HOM-problem. We begin with a condition for h which generalizes injectivity.

Definition 20. Let Σ and ∆ be ranked alphabets and h : TΣ → T∆ a nondeleting and nonerasing tree

homomorphism. We call h tetris-free if for all s,s′ ∈ TΣ with h(s) = h(s′), it is pos(s) = pos(s′) and for

all p ∈ pos(s), we have h
(

s(p)
)

= h
(

s′(p)
)

.

In other words, h : TΣ→ T∆ is tetris-free if we cannot combine the building blocks h(σ), σ ∈ Σ in dif-

ferent ways to build the same tree. In contrast, Figure 1 below shows the well-known Tetriminos®© [19]

violating (and thus naming) the tetris-free condition.

Let us discuss a short example and counter-example.

Example 21. Let Σ = {a(0),b(0),g(1)} and ∆ = {c(0),k(2)}. Consider the tree homomorphism h : TΣ→ T∆

induced by h(a) = h(b) = c and h(g) = k(x1,x1). While h is not injective, it is tetris-free. However, the

tree homomorphism ĥ : TΣ → T∆ induced by ĥ(a) = c, ĥ(b) = k(c,c) and ĥ(g) = k(x1,c) is not: The

trees g(a) and b violate the tetris-free condition.

Intuitively, if a tree homomorphism h is tetris-free, then any non-injective behaviour of h is located

entirely at the symbol level. This allows the construction of the WTAh to cancel the non-injectivity of h.

For this, however, we also need to make an assumption on the input WTA A , which leads us to this

augmented version of unambiguity for A .
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Figure 1: The game of Tetris®© [19] being non-tetris-free by nature.

Definition 22. Let A be a WTA over a commutative semiring S and Σ, and h : TΣ→ T∆ a nondeleting

and nonerasing, tetris-free tree homomorphism. We say that A is h-unambiguous if for all trees s,s′ ∈ TΣ

such that h(s) = h(s′), all accepting runs ρ ,ρ ′ of A for s and s′, respectively, and all p ∈ pos(s), the

target states of the rules applied in ρ and ρ ′ at p, respectively, coincide.

Remark 23. The condition of h-unambiguity is stronger than unambiguity: For s = s′ ∈ suppJA K we

obtain that A has at most one accepting run for s (since runs of WTA are uniquely determined by the

processed symbol and the target state at every position). A similar reasoning applies if we choose s 6= s′

with h(s) = h(s′): While the unique runs of A for s and s′ may read different symbols, the states they

pass through coincide at every position.

Imposing these conditions on the input of the HOM-problem allows us to build on it with the argu-

ments from the previous section.

Proposition 24. Let A be a WTA over a commutative semiring S and Σ, and h : TΣ→ T∆ a nondeleting

and nonerasing tree homomorphism. If h is tetris-free and A is h-unambiguous, then the eq-restricted

WTAh A ′ for hJA K constructed in Lemma 8 is unambiguous.

Proof. Let ϑ and ϑ ′ be accepting runs of A ′ for the same t ∈ T∆. We prove the statement by contra-

diction, so assume that ϑ 6= ϑ ′. Then there are two distinct runs ρ and ρ ′ of A such that ϑ = hR(ρ)
and ϑ ′ = hR(ρ ′) as introduced in Definition 9. The mapping hR does not modify the target states of runs,

so both ρ and ρ ′ are accepting as well, and since A is unambiguous, they must process distinct trees s

and s′, respectively, with h(s) = h(s′). By the premises of the statement, at every p ∈ pos(s) = pos(s′) it

is h
(

s(p)
)

= h
(

s′(p)
)

, and the target states of ρ and ρ ′ at p coincide, so although ρ 6= ρ ′, after applying h

it is ϑ = hR(ρ) = hR(ρ ′) = ϑ ′, which contradicts our assumption.

We want to illustrate the role played by our two conditions, the h-unambiguity and the tetris-freeness.

Let us discuss this with the help of two counter-examples.

Example 25. Consider the ranked alphabets Σ = {a(0),b(0),g(1)} and ∆ = {c(0),k(2)}. Let h : TΣ→ T∆

be the tetris-free tree homomorphism from Example 21 induced by h(a) = h(b) = c and h(g) = k(x1,x1).
Moreover, let A =

(

Q,Σ,Q,R,wt
)

be the WTA over the arctic semiring A with Q = {qa,qb} and the

following rules and weights:

R =
{

a→0 qa , b→0 qb , g(qa)→1 qa , g(qb)→2 qb

}

.
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The WTA A is unambiguous, but not h-unambiguous, since the runs for a and b target different states

despite h(a) = h(b). Evaluating the weights in A, we obtain the tree series JA K defined by

JA K : s 7→

{

n if s = gn(a)

2n if s = gn(b)

The WTAh A ′ =
(

Q∪̇{⊥},∆,Q,R′,wt′
)

recognizing hJA K which is obtained from Lemma 8 has the

following rules and weights:

R =
{

c→0 qa , c→0 qb , k(qa,⊥)
1=2
−→1 qa , k(qb,⊥)

1=2
−→2 qb

}

∪
{

c→0 ⊥ , k(⊥,⊥)→0 ⊥
}

.

Because of the different target states, the rules c→ qa and c→ qb are not merged in A ′, therefore A ′ is

not unambiguous.

On the other hand, let ĥ be the homomorphism from Example 21 induced by ĥ(a) = c, ĥ(b) = k(c,c)
and ĥ(g) = k(x1,c). Recall that h is not tetris-free because h

(

g(a)
)

= h(b) although pos
(

g(a)
)

6= pos(b).

Moreover, consider the WTA ˆA =
(

{q},Σ,{q}, R̂,ŵt
)

over N with the following rules and weights:

R̂ =
{

a→2 q , b→3 q , g(q)→1 q
}

.

The WTA ˆA only has one state, so it is deterministic and thus unambiguous. It recognizes the tree

series J ˆA K defined by

J ˆA K : s 7→ 2|posa(s)|+3|posb(s)| .

However, the WTAh ˆA ′ =
(

{q,⊥},∆,{q}, R̂′,ŵt
′)

for hJA K has the following rules and weights:

R̂′ =
{

c→2 q , k(c,c)→3 q , k(q,c)→1 q
}

∪
{

c→1 ⊥ , k(⊥,⊥)→1 ⊥
}

.

Since ĥ performs no duplications, the rules targeting ⊥ are not used in any accepting run, so we can

safely ignore them. Although this time, no two rules of ˆA ′ (that are used in an accepting run) share a

left-hand side, the tree k(c,c) = ĥ
(

g(a)
)

= ĥ(b) still has two different runs, which stem directly from the

non-tetris-freeness of ĥ.

As a concequence of Proposition 24, our restricted version of the HOM-problem is decidable.

Corollary 26. Let S be a zero-sum free, commutative semiring. For a nondeleting and nonerasing, tetris-

free tree homomorphism h and an h-unambiguous WTA A over S as input, it is decidable whether the

tree series hJA K is regular.

5 Conclusion and Future Work

Homomorphic images of regular tree series can be represented using an extension of WTA, the so-called

eq-restricted WTAh [22]. In this paper, we have shown that regularity is decidable for unambiguous

devices of this type over zero-sum free commutative semirings. For this, we reduced this question to

the unweighted setting, where regularity is known to be decidable [12]. Moreover, we have phrased
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a condition on the input WTA A and tree homomorphism h that ensures unambiguity of the WTAh

representing the image hJA K. Thus the HOM-problem over zero-sum free semirings which, given A

and h as input, asks whether hJA K is regular, is decidable if the input satisfies our condition.

Notably, the zero-sum freeness of the semiring is only used in Theorem 18 to show that if the tree

series recognized by an unambiguous eq-restricted WTAh A is regular, then its support is also regular.

It is plausible that the zero-sum freeness is not needed: Its purpose is to ensure that different accepting

runs of A for the same tree t cannot cancel out, leaving t /∈ supp JA K despite A having accepting runs

for t. This, however, should not be a concern if A is unambiguous. To discard the zero-sum freeness

assumption, it suffices to prove this simple statement: If A is an unambiguous eq-restricted WTAh

and JA K is regular, then there is an unambiguous WTA equivalent to A . In fact, the linearization of A ,

which is unambiguous by Lemma 16, is a promising candidate. Thus we conjecture that Theorem 18

holds for arbitrary commutative semirings, as do then Corollaries 19 – stating that regularity is decidable

for unambiguous eq-restricted WTAh – and 26 – stating that the HOM-problem is decidable under our

assumptions on A and h.

Recently, the disambiguation of weighted (string) automata from [24] was lifted to trees [30]. Here,

the authors assume a variation of the twins property which restricts the behaviour of related states of a

WTA. This allows them to construct an equivalent unambiguous WTA. A natural question is whether

this proof can be adjusted to provide even an h-unambiguous WTA, say, by refining the twins property

with respect to h. That way, we could lift our result to a larger class of input WTA.
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[9] Zoltán Fülöp & Heiko Vogler (2009): Weighted tree automata and tree transducers. In: Handbook of

Weighted Automata, chapter 9, Springer, pp. 313–403, doi:10.1007/978-3-642-01492-5_9.

[10] Ferenc Gécseg & Magnus Steinby (2015): Tree Automata. Technical Report 1509.06233, arXiv.

[11] Dora Giammarresi & Antonio Restivo (1992): Recognizable picture languages. International Journal of

Pattern Recognition and Artificial Intelligence 6(02n03), pp. 241–256, doi:10.1142/S021800149200014X.
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