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We investigate the equational theory of Kleene algebra terms with variable complements—(language)
complement where it applies only to variables—w.r.t. languages. While the equational theory w.r.t.
languages coincides with the language equivalence (under the standard language valuation) for Kleene
algebra terms, this coincidence is broken if we extend the terms with complements. In this paper, we
prove the decidability of some fragments of the equational theory: the universality problem is coNP-
complete, and the inequational theory t ≤ s is coNP-complete when t does not contain Kleene-star.
To this end, we introduce words-to-letters valuations; they are sufficient valuations for the equational
theory and ease us in investigating the equational theory w.r.t. languages. Additionally, we prove that
for words with variable complements, the equational theory coincides with the word equivalence.

1 Introduction

Kleene algebra (KA) [3, 6] is an algebraic system for regular expressions consisting of union (∪), com-
position (·), Kleene-star (_∗), emptiness (⊥), and identity (I). In this paper, we consider KAs w.r.t.
languages (a.k.a., language models of KAs, language KAs). Interestingly, the equational theory of KAs
w.r.t. languages coincides with the language equivalence under the standard language valuation (see also,
e.g., [1, 11]): for all KA terms (i.e., regular expressions) t,s, we have

LANG |= t = s ⇐⇒ [t] = [s]. (†)

Here, we write LANG |= t = s if the equation t = s holds for all language models (i.e., each variable x
maps to not only the singleton language {x} but also any languages); we write [u] for the language of a
regular expression u (i.e., each variable x maps to the singleton language {x}). Since the valuation [_]
is an instance of valuations in LANG, the direction =⇒ is trivial (this direction always holds even if we
extend KA terms with some extra operators). The direction ⇐= is a consequence of the completeness
of KAs (see Appendix A for an alternative proof not relying on the completeness of KAs). However,
the direction ⇐= fails in general when we extend KA terms with extra operators. Namely, the equa-
tional theory w.r.t. languages does not coincide with the language equivalence in general (see below for
complements). The equational theory of KAs with some operators w.r.t. languages was studied, e.g.,
with reverse [2], with tests [7] (where languages are of guarded strings, not words), with intersection [1],
and with universality (⊤) [11]. Nevertheless, to the best of authors’ knowledge, variable complements
(and even complements) w.r.t. languages has not yet been investigated, while those w.r.t. binary relations
were studied, e.g., in [10] (for complements; cf. Tarski’s calculus of relations [13]) and [9] (for variable
complements).

In this paper, we investigate the equational theory of KA terms with variable complements (x−)—
(language) complement, where it applies only to variables (we use x to denote variables)—w.r.t. lan-
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guages. For KA terms with variable complements, (†) fails. The following is an example:

LANG ̸|= x− = x− · x− [x−] = [x− · x−].

(For LANG ̸|=, consider a valuation such that x− maps to the language {a}.) As the example above (see
also Remark 1, for more examples) shows, the equational theory of KAs with variable complements
w.r.t. languages significantly differs from the language equivalence under the standard language valua-
tion. While the language equivalence problem of KA terms with variable complements is decidable in
PSPACE by a standard automata construction [14] (and hence, PSPACE-complete [5, 8, 12]), it remains
whether the equational theory w.r.t. languages is decidable.

We prove the decidability and complexity of some fragments of the equational theory of KA terms
with variable complements w.r.t. languages: the universality problem is coNP-complete (Cor. 18), and the
inequational theory t ≤ s is coNP-complete when t does not contain Kleene-star (Cor. 29). To this end, we
introduce words-to-letters valuations. Words-to-letters valuations are sufficient for the equational theory
of KA terms with variable complements w.r.t. languages (words-to-letters-valuation property; Cor. 30):
for all terms t,s, if there is some language valuation such that it refutes t = s, there is some words-to-
letters valuation such that it refutes t = s. This property eases us in investigating the equational theory
w.r.t. languages.

Additionally, by using words-to-letters valuations, we prove a completeness theorem for words with
variable complements: the equational theory coincides with the word equivalence (Thm. 32). A limi-
tation of words-to-letters valuations is that the number of letters is not bounded; so, they cannot apply
to the equational theory over LANGn (language models over sets of cardinality at most a natural num-
ber n). Nevertheless, by giving another valuation, we can show the coincidence for one-variable words
(Thm. 36). We leave open for the many-variable words.

Outline

In Sect. 2, we briefly give basic definitions, including the syntax and semantics of KA terms with variable
complements. Additionally, we give languages for KA terms with variable complements (Sect. 2.3). In
Sects. 3–5, we consider fragments of the equational theory of KA terms with variable complements
w.r.t. languages, step-by-step. In Sect. 3, we consider the identity inclusion problem (LANG |= I ≤ t?).
This problem is relatively easy but contains the coNP-hardness result (Cor. 6). In Sect. 4, we consider
the variable inclusion problem (LANG |= x ≤ t?) and the universality problem (LANG |= ⊤ ≤ t?). In
Sect. 5, we consider the word inclusion problem (LANG |= w ≤ t?). This section proceeds in the same
way as Sect. 4, thanks to words-to-letters valuations (Def. 21). Consequently, the inequational theory
t ≤ s is coNP-complete when t does not contain Kleene-star (Cor. 29). Additionally, we prove the
words-to-letters valuation property (Cor. 30) for the equational theory of (full) KA terms with variable
complements w.r.t. languages. In Sect. 6, we consider the equational theory of words with variable
complements and show a completeness theorem (Thm. 32). Sect. 7 concludes this paper.

2 Preliminaries

We write N for the set of non-negative integers. For a set X , we write #(X) for the cardinality of X and
℘(X) for the power set of X .

For a set X (of letters), we write X∗ for the set of words over X : finite sequences of elements of X .
We write I for the empty word. We write wv for the concatenation of words w and v. A language over
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X is a subset of X∗. We use w,v to denote words and use L,K to denote languages, respectively. For
languages L,K ⊆ X∗, the composition L ·K and the Kleene star L∗ is defined by:

L ·K =∆ {wv | w ∈ L ∧ w ∈ K};

L∗ =∆ {w0 . . .wn−1 | ∃n ∈ N,∀i < n, wi ∈ L}.

2.1 Syntax: KA terms with variable complements

Let V be a set of variables. The set of Kleene algebra (KA) terms with variable complements (x−) is
defined by the following grammar:

T ∋ t,s,u ::= x | I | ⊥ | t · s | t ∪ s | t∗ | x− (x ∈ V)

We use parentheses in ambiguous situations. We often abbreviate t · s to ts. We write ⊤ for the term
x∪ x−, where x is any variable.

An equation t = s is a pair of terms. An inequation t ≤ s is an abbreviation of the equation t ∪ s = s.

2.2 Semantics: language models

Consider the signature S =∆ {I(0),⊥(0), ·(2),∪(2),_∗(1),_−(1)}. An S-algebra A is a tuple ⟨|A|,{ f A} f(k)∈S⟩,
where |A| is a non-empty set and f A : |A|k → |A| is a k-ary map for each f(k) ∈ S. A valuation v on an
S-algebra A is a map v : V → |A|. For a valuation v, we write v̂ : T → |A| for the unique homomorphism
extending v.

The language model A over a set X is an S-algebra such that |A|=℘(X∗) and for all L,K ⊆ X∗,

IA = {I} L ·A K = L ·K L∗A
= L∗

⊥A = /0 L∪A K = L∪K L−A
= X∗ \L.

We write LANG for the class of all language models. A language valuation over a set X is a valuation
on some language model over X . For an equation t = s, we let

LANG |= t = s ⇐⇒∆ v̂(t) = v̂(s) holds for all language valuations v.

The equational theory w.r.t. languages is the set of all equations t = s such that LANG |= t = s.
Additionally, the language [t]⊆ V∗ of a term t is defined by:

[x] =∆ {x} [I] =∆ {I} [t · s] =∆ [t] · [s] [t∗] =∆ [t]∗

[⊥] =∆ /0 [t ∪ s] =∆ [t]∪ [s] [t−] =∆ V∗ \ [t].

By definition, we have [t] = v̂(t) if v is the valuation on the language model over the set V defined by
v(x) = {x} for all x ∈ V. Hence, for all t,s, we have

LANG |= t = s =⇒ [t] = [s]. (‡)

Remark 1. The converse direction fails1; for example, when x ̸= y,

LANG ̸|= y ≤ x− [y]⊆ [x−].

1The failure can be also shown by that the universality ⊤ can be expressed by x∪ x−; see also [11, Remark. 3.6].
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Here t ≤ s denotes the equation t ∪ s = s (so, indeed, an equation). For LANG ̸|= y ≤ x−, consider a
language valuation v such that a ∈ v(x) and a ∈ v(y); then we have a ∈ v̂(y)\ v̂(x−). [y]⊆ [x−] is shown
by [y] = {y} ⊆ V∗ \{x}= [x−]. More generally, for any word w over V such that w ̸= x,

LANG ̸|= w ≤ x− [w]⊆ [x−].

Moreover, for example, there are the following examples (for LANG ̸|=, consider a valuation such that
both x and y map to the language X∗ \{a}, where X is a set and a ∈ X):

LANG ̸|= x− = x− · x− [x−] = [x− · x−]
LANG ̸|=⊤= x− · y− [⊤] = [x− · y−]
LANG ̸|=⊤= x−∪ y− [⊤] = [x−∪ y−].

As the examples above show, for KA terms with variable complements, the equational theory w.r.t.
languages (LANG |= t = s?) significantly differs from the language equivalence problem ([t] = [s]?).

In the sequel, we focus on the equational theory w.r.t. languages and investigate its fragments. We
prepare a useful tool (Lem. 2), which enables us to decompose terms into languages of words.

2.3 Languages for KA terms with variable complements

Let V′ = {x,x− | x ∈ V}. For a term t, we write [t]V′ for the language of t where t is viewed as the regular
expression over V′. Each word over V′ is a term such that both the union (∪) and the Kleene-star (_∗)
do not occur. Note that [x−]V′ = {x−}, cf. [x−] = V∗ \{x}. For a language valuation v and a language L
over V′, we define

v̂(L) =∆
⋃

w∈L

v̂(w).

By using the distributive law of · w.r.t. ∪, for all languages L,K and language valuations v, we have:

v̂(L∪K) = v̂(L)∪ v̂(K) v̂(L ·K) = v̂(L) · v̂(K) v̂(L∗) = v̂(L)∗.

We can decompose each term t to the set [t]V′ of words over V′ as follows:

Lemma 2. Let v be a language valuation. For all terms t, we have

v̂(t) = v̂([t]V′).

Proof. By easy induction on t using the equations above. Case t = x,x−, I: Clear, by [t]V′ = {t}. Case
t = ⊥: By v̂(⊥) = /0 = v̂([⊥]V′). Case t = s∪ u, Case t = s · u, Case t = s∗: By IH with the equations
above. For example, when t = s ·u, we have

v̂(s ·u) = v̂(s) · v̂(u) = v̂([s]V′) · v̂([u]V′) (IH)

= v̂([s]V′ · [u]V′) = v̂([s ·u]V′).

3 The identity inclusion problem

We first consider the identity inclusion problem w.r.t. languages:

Given a term t, does LANG |= I≤ t?
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This problem is relatively easily solvable. Since LANG |= I ≤ t iff I ∈ v̂(t) for all language valuation v,
it suffices to consider the membership of the empty word I. We use the following facts.

Proposition 3. For all languages L,K, we have:

I ∈ L∪K ⇐⇒ I ∈ L∨ I ∈ K

I ∈ L ·K ⇐⇒ I ∈ L∧ I ∈ K

I ∈ L∗ ⇐⇒ True.

Proof. Clear, by definition.

Lemma 4. Let v,v′ be language valuations. Assume that for all variables x, I ∈ v(x) iff I ∈ v′(x). For all
terms t,

I ∈ v̂(t) ⇐⇒ I ∈ v̂′(t).

Proof. By easy induction on t using Prop. 3. Case t = x,x−: Clear by the assumption. Case t is a
constant: Trivial. For inductive cases, e.g., Case t = s∪u: By using Prop. 3, we have

I ∈ v̂(s∪u) ⇐⇒ I ∈ v̂(s)∨ I ∈ v̂(u) ⇐⇒ I ∈ v̂′(s)∨ I ∈ v̂′(u) (IH)

⇐⇒ I ∈ v̂′(s∪u).

(Similarly for the other inductive cases.)

By using Lem. 4, it suffices to consider a finite number of valuations, as follows.

Theorem 5. For all terms t, the following are equivalent:

1. LANG |= I≤ t (i.e., v̂(I)⊆ v̂(t), for all language valuations v);

2. v̂(I)⊆ v̂(t), for all language valuations v over the empty set s.t. for all x, v(x)⊆ {I}.

Proof. 1⇒2: Trivial. 2⇒1: We prove the contraposition. By LANG ̸|= I≤ t, there is a language valuation
v s.t. v̂(I) ̸⊆ v̂(t) (i.e., I ̸∈ v̂(t)). Let v⟨⟩ be the language valuation over the empty set defined by:

v⟨⟩(x) =∆ {I | I ∈ v(x)}.

Then by Lem. 4, I ̸∈ v̂⟨⟩(t) holds; thus, we have v̂⟨⟩(I) ̸⊆ v̂⟨⟩(t).

Corollary 6. The identity inclusion problem (given a term t, does LANG |= I ≤ t?) is decidable and
coNP-complete for KA terms with variable complements.

Proof. (in coNP): Thm. 5 induces the following non-deterministic polynomial algorithm:

1. Pick up a language valuation v over the empty set s.t. for all x, v(x)⊆ {I}, non-deterministically.

2. If v̂(I) ̸⊆ v̂(t), then return True; otherwise return False.

Then LANG ̸|= I ≤ t if some execution returns True; and LANG |= I ≤ t otherwise. Hence, the identity
inclusion problem is decidable in coNP (as its complemented problem is in NP).

(coNP-hard): Because this problem subsumes the validity problem of propositional formulas in dis-
junctive normal form, which is a well-known coNP-complete problem [4]. More precisely, given a
propositional formula ϕ in disjunctive normal form, let t be the term obtained from ϕ by replacing each
conjunction ∧ with · and each disjunction ∨ with ∪ (where we map each positive literal x to the variable
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x and each negative literal x− to the complemented variable x−); for example, if ϕ = (x∧ y−)∨ (y∨ x−),
then t =(x ·y−)∪(y∪x−). Then, for all language valuations v (over the empty set s.t. for all x,v(x)⊆{I}),
we have: v̂(I)⊆ v̂(t) holds iff ϕ is True on the valuation v′, where v′ is the map mapping each x to True if
I ∈ v(x) and False otherwise. Thus by Thm. 5, LANG |= I≤ t iff ϕ is valid. Hence, the identity inclusion
problem is coNP-hard.

Remark 7. Under the standard language valuation, the identity inclusion problem—given a term t, does
[I]⊆ [t]? (i.e., does I ∈ [t]?)—is decidable in P (because we can compute “I ∈ [t]?” by induction on t, as
I ̸∈ [x] and I ∈ [x−] for every variable x). Hence, for KA terms with variable complements, the identity
inclusion problem w.r.t. languages is strictly harder than that under the standard language valuation unless
P = NP.

4 The variable inclusion problem and the universality problem

Next, we consider the variable inclusion problem:

Given a variable x and a term t, does LANG |= x ≤ t?

In the identity inclusion problem, if w ∈ v̂(I)\ v̂(t), then w = I should hold; so it suffices to consider the
membership of the empty word I. However, in the variable inclusion problem, this situation changes: if
w ∈ v̂(x)\ v̂(t), then w is possibly any word.

Nevertheless, we can overcome the problem above for KA terms with variable complements; more
precisely, from a language valuation v s.t. w ∈ v̂(x)\ v̂(t) for some word w, we can construct a language
valuation v′ s.t. ℓ ∈ v̂′(x)\ v̂′(t) for some letter ℓ. If such v′ can be constructed from v, then considering
the membership of letters suffices because we have

LANG ̸|= x ≤ t ⇐⇒ w ∈ v̂(x)\ v̂(t) for some language valuation v and word w (By definition)

⇐⇒ ℓ ∈ v̂′(x)\ v̂′(t) for some language valuation v′ and letter ℓ
(=⇒: By the condition of v′. ⇐=: Trivial by letting v= v′.)

Such a language valuation v′ can be defined as follows:

Definition 8. For a language valuation v over a set X and a word w over X , the language valuation vw

over the set {ℓ} (where ℓ is a letter) is defined as follows:

vw(x) =∆ {I | I ∈ v(x)}∪{ℓ | w ∈ v(x)}.

In the following, we prove that vw satisfies the condition of v′ above, that is, the following conditions:

• w ∈ v̂(x) =⇒ ℓ ∈ v̂w(x);

• w ̸∈ v̂(t) =⇒ ℓ ̸∈ v̂w(t).

The first condition is clear by the definition of vw. We prove the second condition in Lem. 10. We prepare
the following fact:

Proposition 9 (cf. Prop. 3). For all languages L,K and letters a, we have:

a ∈ L∪K ⇐⇒ a ∈ L∨a ∈ K

a ∈ L ·K ⇐⇒ (a ∈ L∧ I ∈ K)∨ (I ∈ L∧a ∈ K)

a ∈ L∗ ⇐⇒ a ∈ L.



Y. Nakamura & R. Sin’ya 191

Proof. Clear, by definition.

Lemma 10 (cf. Lem. 4). Let v be a language valuation and w be a word. For all terms t, we have:

ℓ ∈ v̂w(t) =⇒ w ∈ v̂(t).

Proof. By induction on t.
Case t = x,x−: By the construction of vw, ℓ ∈ v̂w(x) iff w ∈ v̂(x). (Hence, we also have ℓ ∈ v̂w(x−)

iff w ∈ v̂(x−).)
Case t =⊥, I: By ℓ ̸∈ v̂w(t).
Case t = s∪u: We have:

ℓ ∈ v̂w(s)∪ v̂w(u)⇐⇒ ℓ ∈ v̂w(s)∨ ℓ ∈ v̂w(u) (Prop. 9)

=⇒ w ∈ v̂(s)∨w ∈ v̂(u) (IH)

=⇒ w ∈ v̂(s)∪ v̂(u).

Case t = s ·u: We have:

ℓ ∈ v̂w(s) · v̂w(u)⇐⇒ (ℓ ∈ v̂w(s)∧ I ∈ v̂w(u))∨ (I ∈ v̂w(s)∧ ℓ ∈ v̂w(u)) (Prop. 9)

=⇒ (w ∈ v̂(s)∧ I ∈ v̂(u))∨ (I ∈ v̂(s)∧w ∈ v̂(u)) (IH with Lem. 4)

=⇒ w ∈ v̂(s) · v̂(u)

Case t = s∗: We have:

ℓ ∈ v̂w(s)∗ ⇐⇒ ℓ ∈ v̂w(s) (Prop. 9)

=⇒ w ∈ v̂(s) (IH)

=⇒ w ∈ v̂(s)∗

Thus we have obtained the expected condition for vw as follows:

Corollary 11. Let v be a language valuation and w be a word. For all variables x and terms t,

w ∈ v̂(x)\ v̂(t) =⇒ ℓ ∈ v̂w(x)\ v̂w(t).

Proof. For ℓ ∈ v̂w(x): By the construction of vw, ℓ ∈ v̂w(x) iff w ∈ v̂(x). For ℓ ̸∈ v̂w(t): By Lem. 10.

Theorem 12. For all variables x and terms t, the following are equivalent:

1. LANG |= x ≤ t;

2. v̂(x)⊆ v̂(t) for all language valuations v over the set {ℓ} s.t. v(y)⊆ {I, ℓ} for all y;

3. v̂w(x)⊆ v̂w(t) for all language valuations v and words w.

Proof. 1⇒2, 2⇒3: Trivial, as v̂w(y)⊆{I, ℓ} for all y. 3⇒1: The contraposition is shown by Cor. 11.

Corollary 13. The variable inclusion problem (given a variable x and a term t, does LANG |= x ≤ t?) is
decidable and coNP-complete for KA terms with variable complements.
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Proof. (in coNP): By the condition 2 of Thm. 12, we can give an algorithm as with Cor. 6. (coNP-hard):
We give a reduction from the validity problem of propositional formulas in disjunctive normal form, as
with Cor. 6. Given a propositional formula ϕ in disjunctive normal form, let t be the term obtained by the
translation in Cor. 6; so, we have that ϕ is valid iff LANG |= I≤ t. Then we also have that LANG |= I≤ t
iff LANG |= z ≤ z · t (where z is a fresh variable); the direction =⇒ is shown by the congruence law, and
the direction ⇐= is shown by the substitution law. Therefore, we have that ϕ is valid iff LANG |= z≤ z ·t;
thus, the variable inclusion problem is coNP-hard.

4.1 Generalization from variables to composition-free terms

The proof above applies to not only variables but also terms t having the following property: For all
language valuations v,

for all non-empty words w, w ∈ v̂(t) =⇒ ℓ ∈ v̂w(t). (L1)

(This condition is intended for composition-free terms (Lem. 15). This is generalized to (Ln) in Sect. 5.1.)
If t satisfies the condition (L1), then combining with Lem. 10 (and with Lem. 4 for the empty word I)
yields that for all language valuations v and words w,

w ∈ v̂(t)\ v̂(s) =⇒

{
ℓ ∈ v̂w(t)\ v̂w(s) (if w ̸= I)

I ∈ v̂w(t)\ v̂w(s) (if w = I)
.

Hence, we have the following:

Theorem 14 (cf. Thm. 12). For all terms t,s, if t satisfies (L1), then the following are equivalent:

1. LANG |= t ≤ s;

2. v̂(t)⊆ v̂(s) for all language valuations v over the set {ℓ} s.t. v(x)⊆ {I, ℓ} for all x;

3. v̂w(t)⊆ v̂w(s) for all language valuations v and words w.

Proof. As with Thm. 12 (use the above, instead of Cor. 11).

Thm. 14 can apply to composition-free terms. We say that a term t is composition-free if composition
(·) nor Kleene-star (_∗) does not occur in t.

Lemma 15. Every composition-free terms t satisfies the condition (L1).

Proof. By easy induction on t. Case t = x,x−: By the definition of vw. Case t = I: By that w ̸∈ v̂(I)
holds for all non-empty words w. Case t =⊥: By w ̸∈ v̂(⊥) always. Case t = s∪u: By IH, we have that
w ∈ v̂(s)∪ v̂(u) ⇐⇒ w ∈ v̂(s)∨w ∈ v̂(u) =⇒ ℓ ∈ v̂w(s)∨ ℓ ∈ v̂w(u) ⇐⇒ ℓ ∈ v̂w(s)∪ v̂w(u).

Corollary 16. The following problem is coNP-complete for KA terms with variable complements:

Given a composition-free term t and a term s, does LANG |= t ≤ s hold?

Proof. (coNP-hard): By Cor. 6, as t is possibly I. (in coNP): By Thm. 14 with Lem. 15, we can give an
algorithm (from the condition 2 of Thm. 14) as with Cor. 13.

Remark 17. Lem. 15 fails for non-composition-free terms. For example, when v(x) = {a}, we have

aa ∈ v̂(xx) ℓ ̸∈ v̂aa(xx).

(Note that v̂aa(xx) = /0, as v̂aa(x) = /0 by v(x) = {a}.)
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4.2 The universality problem

The universality problem is the following problem:
Given a term t, does LANG |=⊤≤ t?

As a consequence of Cor. 16, the universality problem is also decidable and coNP-complete.
Corollary 18. The universality problem is decidable and coNP-complete for KA terms with variable
complements.

Proof. (in coNP): We can apply Cor. 16 because the term x∪ x− is composition-free and LANG |=⊤=
x∪ x− holds. (coNP-hard): Similar to Cor. 13. Given a propositional formula ϕ in disjunctive normal
form, let t be the term obtained by the translation in Cor. 6; so, we have that ϕ is valid iff LANG |= I≤ t.
Then we also have that LANG |= I ≤ t iff LANG |= ⊤ ≤ ⊤ · t, which is proved as follows. =⇒: By
the congruence law. ⇐=: We prove the contraposition. Assume LANG ̸|= I ≤ t; then I ̸∈ v̂(t) for some
language valuation v. Then I ̸∈ v̂(⊤· t) holds; thus, LANG ̸|=⊤≤⊤· t. Hence, the universality problem
is coNP-complete.

Remark 19. In the standard language equivalence, because [V∗] = [⊤] (and the constant ⊤ is usually not
a primitive symbol of regular expressions), the universality problem is always of the form: [V∗] = [t].
However, LANG |= V∗ ≤ t is different from LANG |=⊤≤ t, as LANG ̸|= V∗ =⊤.
Remark 20. Under the standard language equivalence, the universality problem—given a term t, does
[⊤] ⊆ [t]? (i.e., does [t] = V∗?)—is PSPACE-hard [5, 8, 12]. Hence, for KA terms with variable com-
plements, the universality problem w.r.t. languages is strictly easier (cf. Remark 7) than that under the
standard language equivalence unless NP = PSPACE.

5 The word inclusion problem

Let V′ = {x,x− | x ∈ V}. The word inclusion problem is the following problem:
Given a word w over V′ and a term t, does LANG |= w ≤ t?

As Remark 17 shows, we cannot apply the method given in Sect. 4 straightforwardly. Nevertheless, we
can solve this problem by generalizing the language valuation of Def. 8, as follows. The valuations in
Defs. 8, 21 are given by the first author.
Definition 21 (words-to-letters valuations). For a language valuation v over a set X and words w0, . . . ,wn−1
over X (where n ≥ 0), the language valuation v⟨w0,...,wn−1⟩ over the set {ℓ0, . . . , ℓn−1} (where ℓ0, . . . , ℓn−1
are pairwise distinct letters) is defined as follows:

v⟨w0,...,wn−1⟩(x) =∆ {ℓi . . . ℓ j−1 | 0 ≤ i ≤ j ≤ n ∧ wi . . .w j−1 ∈ v(x)}.

(Note that the language valuation vw (Def. 8) is the case n = 1 of Def. 21 and the language valuation v⟨⟩

in the proof of Thm. 5 is the case n = 0 of Def. 21.)
By using words-to-letters valuations, we can naturally strengthen the results in Sect. 4 from variables

to words. We prepare the following fact:
Proposition 22 (cf. Prop. 9). For all languages L,K and words w,

w ∈ L∪K ⇐⇒ w ∈ L∨w ∈ K

w ∈ L ·K ⇐⇒ ∃v,v′ s.t. w = vv′, v ∈ L∧ v′ ∈ K

w ∈ L∗ ⇐⇒ ∃n ∈ N,∃v0, . . . ,vn−1 s.t. w = v0 . . .vn−1,∀i < n, vi ∈ L.



194 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

Proof. By definition.

Lemma 23 (cf. Lem. 10). Let v be a language valuation and w0, . . . ,wn−1 be words (where n ≥ 0). For
all terms t and 0 ≤ i ≤ j ≤ n, we have:

ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(t) =⇒ wi . . .w j−1 ∈ v̂(t).

Proof. By induction on t.
Case t = x,x−: By the construction of v⟨w0,...,wn−1⟩, ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(x) iff wi . . .w j−1 ∈ v̂(x).

(Hence, we also have ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(x−) iff wi . . .w j−1 ∈ v̂(x−).)
Case t =⊥, Case t = I where i < j: By ℓi . . . ℓ j−1 ̸∈ v̂⟨w0,...,wn−1⟩(t).
Case t = I where i = j: By I ∈ v̂(I).
Case t = s∪u: We have

ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(s∪u)⇐⇒ ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(s)∨ ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(u) (Prop. 22)

=⇒ wi . . .w j−1 ∈ v̂(s)∨wi . . .w j−1 ∈ v̂(u) (IH)

=⇒ wi . . .w j−1 ∈ v̂(s∪u).

Case t = s ·u: We have

ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(s ·u)⇐⇒
∨

i≤k≤ j

(ℓi . . . ℓk−1 ∈ v̂⟨w0,...,wn−1⟩(s)∧ ℓk . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(u))

(Prop. 22)

=⇒
∨

i≤k≤ j

(wi . . .wk−1 ∈ v̂(s)∧wk . . .w j−1 ∈ v̂(u)) (IH)

=⇒ wi . . .w j−1 ∈ v̂(s ·u).

Case t = s∗: We have

ℓi . . . ℓ j−1 ∈ v̂⟨w0,...,wn−1⟩(s∗)⇐⇒∃m ∈ N,
∨

i=k0≤k1≤···≤km= j

m∧
l=1

(ℓkl−1 . . . ℓkl−1 ∈ v̂⟨w0,...,wn−1⟩(s)) (Prop. 22)

=⇒∃m ∈ N,
∨

i=k0≤k1≤···≤km= j

m∧
l=1

(wkl−1 . . .wkl−1 ∈ v̂(s)) (IH)

=⇒ wi . . .w j−1 ∈ v̂(s∗).

Corollary 24 (cf. Cor. 11). Let v be a language valuation, w be a word, w0, . . . ,wn−1 be words s.t.
w = w0 . . .wn−1. For all words v over V′ of length n and all terms t,

w ∈ v̂(v)\ v̂(t) =⇒ ℓ0 . . . ℓn−1 ∈ v̂⟨w0,...,wn−1⟩(v)\ v̂⟨w0,...,wn−1⟩(t).

Proof. For ℓ0 . . . ℓn−1 ∈ v̂⟨w0,...,wn−1⟩(v): Let v = x0 . . .xn−1. For each i < n, by the construction of
v⟨w0,...,wn−1⟩, ℓi ∈ v̂⟨w0,...,wn−1⟩(xi) iff wi ∈ v̂(xi). Thus, we have that ℓ0 . . . ℓn−1 ∈ v̂⟨w0,...,wn−1⟩(v). For
ℓ0 . . . ℓn−1 ̸∈ v̂⟨w0,...,wn−1⟩(t): By Lem. 23.

Theorem 25 (cf. Thm. 12). For all words v over V′ of length n and all terms t, the following are
equivalent:



Y. Nakamura & R. Sin’ya 195

1. LANG |= v ≤ t;

2. v̂(v)⊆ v̂(t) for all language valuations v s.t. v(x)⊆ {ℓi . . . ℓ j | 0 ≤ i ≤ j ≤ n} for all x;

3. v̂⟨w0,...,wn−1⟩(v)⊆ v̂⟨w0,...,wn−1⟩(t) for all language valuations v and words w0, . . . ,wn−1.

Proof. 1⇒2, 2⇒3: Trivial. 3⇒1: The contraposition is shown by Cor. 24.

Corollary 26 (cf. Cor. 13). The word inclusion problem (given a word w and a term t, does LANG |=
w ≤ t?) is decidable and coNP-complete for KA terms with variable complements.

Proof. (coNP-hard): By Cor. 6, as w is possibly I. (in coNP): By the condition 2 of Thm. 25, we can
give an algorithm as with Cor. 13.

5.1 Generalization from words to star-free terms

We can apply Thm. 25 to not only words over V′ but also terms t having the following property:

For all language valuations v and non-empty words w, for some w0, . . . ,wn−1 s.t. w = w0 . . .wn−1,

w ∈ v̂(t) =⇒ ℓ0 . . . ℓn−1 ∈ v̂⟨w0,...,wn−1⟩(t). (Ln)

If t satisfies the condition (Ln), then combining with Lem. 23 (and with Lem. 4 for the empty word I)
yields that for all language valuations v and words w, for some words w0, . . . ,wn−1 s.t. w = w0 . . .wn−1,
we have:

w ∈ v̂(t)\ v̂(s) =⇒

{
ℓ0 . . . ℓn−1 ∈ v̂⟨w0,...,wn−1⟩(t)\ v̂⟨w0,...,wn−1⟩(s) (if w ̸= I)

I ∈ v̂⟨w0,...,wn−1⟩(t)\ v̂⟨w0,...,wn−1⟩(s) (if w = I)
.

Hence, we have the following:

Theorem 27 (cf. Thm. 14). For all terms t,s, if t satisfies (Ln), the following are equivalent:

1. LANG |= t ≤ s;

2. v̂(t) ⊆ v̂(s) for all language valuations v over the set {ℓ0, . . . , ℓn−1} s.t. v(x) ⊆ {ℓi . . . ℓ j | 0 ≤ i ≤
j ≤ n} for all x;

3. v̂⟨w0,...,wn−1⟩(t)⊆ v̂⟨w0,...,wn−1⟩(s) for all language valuations v and words w0, . . . ,wn−1.

Proof. As with Thm. 25 (use the above, instead of Cor. 24).

By using Thm. 27, we can generalize Cor. 26 from words to star-free terms. We say that a term t is
star-free if the Kleene-star (_∗) does not occur in t.

Lemma 28 (cf. Lem. 15). Every star-free term t satisfies (Ln) for some n.

Proof. Because the set [t]V′ is finite as t is star-free, let n be the maximal length among words in [t]V′ .
Let v be a language valuation and let w be a non-empty word such that w ∈ v̂(t). Since v̂(t) = v̂([t]V′)
(Lem. 2), there is a word v ∈ [t]V′ such that w ∈ v̂(v). Let v = x0 . . .xm−1 (note that m ≥ 1, as w is
non-empty and w ∈ v̂(v)). Since w ∈ v̂(x0 . . .xm−1), there are w0, . . . ,wm−1 of w = w0 . . .wm−1 such that
wi ∈ v̂(xi) for every i. Let v′ =∆ v⟨w0,...,wm−1,I,...,I⟩, where the length of the sequence is n. Then, we have
ℓi ∈ v̂′(xi) for every 0 ≤ i ≤ m− 2 and ℓm−1ℓm . . . ℓn−1 ∈ v̂′(xm−1); thus, ℓ0 . . . ℓn−1 ∈ v̂′(x0 . . .xm−1) =
v̂′(v)⊆ v̂′(t). Hence, this completes the proof.
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Corollary 29. The following problem is coNP-complete for KA terms with variable complements:

Given a star-free term t and a term s, does LANG |= t ≤ s?

Proof. (coNP-hard): By Cor. 6, as t is possibly I. (in coNP): By Lem. 28, we can give an algorithm as
with Cor. 26.

5.2 words-to-letters valuation property

Finally, we show the following property; thus, we have that words-to-letters valuations are sufficient for
the equational theory of (full) KA terms with variable complements.

Corollary 30 (words-to-letters valuation property). For all terms t,s, the following are equivalent:

1. LANG ̸|= t ≤ s;

2. there is a words-to-letters valuation v such that v̂(t) ̸⊆ v̂(s).

Proof. 2⇒1: Trivial. 1⇒2: Since LANG ̸|= t ≤ s, there is a language valuation v such that v̂(t) ̸⊆ v̂(s).
Since v̂(t) = v̂([t]V′) (Lem. 2), there is a word v ∈ [t]V′ such that v̂(v) ̸⊆ v̂(s) (i.e., LANG ̸|= v ≤ s). Let n
be the length of v. By Thm. 25, there are a words-to-letters valuation v and words w0, . . . ,wn−1 such that
v̂⟨w0,...,wn−1⟩(v) ̸⊆ v̂⟨w0,...,wn−1⟩(s). Thus v̂⟨w0,...,wn−1⟩(t) ̸⊆ v̂⟨w0,...,wn−1⟩(s), as v ∈ [t]V′ (Lem. 2). Hence this
completes the proof.

6 On the equational theory of words with variable complements

We prove that the equational theory of words over V′ coincides with the word equivalence (Thm. 32).
We give language valuations for separating two distinct words based on words-to-letters valuations.

Lemma 31. Let w = x0 . . .xn−1 and v = y0 . . .ym−1 be words over V′, where n ≤ m. Let v be a language
valuation over {ℓ0, . . . , ℓn−1} such that

• for all i < n, ℓi ∈ v̂(xi);

• for all i < m and i ≤ j ≤ n, ℓi . . . ℓ j−1 ∈ v̂(yi) iff (yi = xi ∧ j = i+1).

If w ̸= v, then ℓ0 . . . ℓn−1 ∈ v̂(w)\ v̂(v). Such a language valuation v always exists.

Proof. Since ℓi ∈ v(xi) for all i, we have ℓ0 . . . ℓn−1 ∈ v̂(w). Assume that ℓ0 . . . ℓn−1 ∈ v̂(y0 . . .ym−1).
For i = 0, by the condition of v̂(yi) (i.e., ℓi . . . ℓ j−1 ̸∈ v̂(yi) unless j = i+ 1), we should have ℓi ∈ v̂(yi),
ℓi+1 . . . ℓn−1 ∈ v̂(yi+1 . . .ym−1), and yi = xi. By using the same argument iteratively, the condition above
should hold for all i < n; thus, we have I ∈ v̂(yn . . .ym−1) and y0 . . .yn−1 = x0 . . .xm−1. Since I ̸∈ v̂(yn), we
have yn . . .ym−1 = I; thus, m = n. However this yields w = x0 . . .xn−1 = y0 . . .ym−1 = v, which contradicts
the assumption. Hence ℓ0 . . . ℓn−1 ∈ v̂(w)\ v̂(v). Additionally, such a language valuation v always exists
as follows. If some conditions conflict, then the first condition (ℓi ∈ v̂(xi)) and the second condition
when j = i+ 1 (ℓi ∈ v̂(yi)) are for some i. If yi = xi, then ℓi ∈ v̂(yi) = v̂(xi), so it does not conflict to
the condition ℓi ∈ v̂(xi); If yi = x−i (or y−i = xi), then ℓi ̸∈ v̂(yi), so it does not conflict to the condition
ℓi ∈ v̂(xi). Otherwise, they are not conflicted, as the variables occurring in xi and yi are different. Thus,
in either case, conditions are not conflicted. Hence, this completes the proof.

Theorem 32 (Completeness for words with variable complements). For all words w,v over V′,

LANG |= w = v ⇐⇒ w = v.
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Proof. ⇐=: Clear. =⇒: The contraposition is shown by Lem. 31.

Remark 33. Since [w]V′ = {w}, Thm. 32 also shows that: for all words w,v over V′,

[w]V′ = [v]V′ ⇐⇒ LANG |= w = v.

However, for general terms, the direction ⇐= fails: For example, when x ̸= y,

LANG |= x∪ x− = y∪ y− [x∪ x−]V′ ̸= [y∪ y−]V′ .

(The direction =⇒ always holds by Lem. 2.) Thus, we need more axioms to characterize the equational
theory.
Remark 34. As (‡) and Remark 1, for all words w,v over V′,

LANG |= w = v =⇒ [w] = [v].

However, the converse direction fails even for words (e.g., w = x− and v = x−x−).

6.1 Separating one-variable words with small number of letters

We write LANGn for the class of language models over a set of cardinality at most n. We write

LANGn |= t = s ⇐⇒∆ v̂(t) = v̂(s) holds for all (language) valuations v on S-algebras in LANGn.

Notice that words-to-letters valuations need an unbounded number of letters; so the proof of Thm. 32
cannot directly apply to the class LANGn. Nevertheless, for one-variable words (i.e., words over the set
{z,z−} where z is a variable), we can show completeness theorems (cf. Thm. 32) of the equational theory
over LANGn, as Thms. 35, 36. The valuation in the proof of Thm. 36 is given by the second author.

For a word w = x0 . . .xn−1 ∈ {z,z−}∗ and x ∈ {z,z−}, we write ∥w∥x for the number #({0 ≤ i < n |
xi = x}). For a letter a and n ∈ N, we write an for the word a . . .a of length n.

Theorem 35. For all words w,v ∈ {z,z−}∗, we have:

LANG1 |= w = v ⇐⇒ ∥w∥z = ∥v∥z ∧ ∥w∥z− = ∥v∥z− .

Proof. ⇐=: By the following commutative law: for all language valuations v over a set of cardinality at
most 1, v̂(zz−) = v̂(z−z). =⇒: If ∥w∥z < ∥v∥z, then let v be the language valuation defined by v(z) = {a}.
Then a∥w∥z ∈ v̂(w)\ v̂(v); thus LANG1 ̸|= w = v. If ∥w∥z− < ∥v∥z− , then let v be the language valuation
defined by v(z) = {a}∗ \ {a}. Then a∥w∥z− ∈ v̂(w) \ v̂(v). If ∥w∥z > ∥v∥z (resp. ∥w∥z− > ∥v∥z−), then
similarly to the cases above.

Theorem 36. For all words w,v ∈ {z,z−}∗, we have:

LANG2 |= w = v ⇐⇒ LANG |= w = v ⇐⇒ w = v.

Proof. The two ⇐= are clear by definition. We prove w ̸= v =⇒ LANG2 ̸|= w = v. By Thm. 35, it
suffices to show the case when ∥w∥z = ∥v∥z and ∥w∥z− = ∥v∥z− . Let n =∆ ∥w∥z− = ∥v∥z− and let w,v be
as follows:

w = zc0z−zc1 . . .z−zcn

v = zd0z−zd1 . . .z−zdn .
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Since w ̸= v, there is i ≤ n such that c j = d j for all j < i and ci ̸= di. Without loss of generality, we can
assume ci < di. Now, we consider the following language valuation v over A =∆ {a,b}:

v(z) =∆ [(aA∗)∩ (A∗a)] = {c0 . . .cn−1 ∈ {a,b}∗ | n ≥ 1,c0 = a,cn−1 = a}.

Then a(∑
i
j=0 c j)ba(∑

n
j=i+1 c j) ∈ v̂(w), as a ∈ v̂(z) and I,b ∈ v̂(z−). Assume, towards contradiction, that

a(∑
i
j=0 c j)ba(∑

n
j=i+1 c j) ∈ v̂(v). Each z occurring in v should map to a, as (∑n

j=0 c j) = (∑n
j=0 d j) and every

word in v(z) except for a has at least two occurrences of a. The (∑i
j=0 c j)-th occurrence and ((∑i

j=0 c j)+

1)-th occurrence of z− are adjacent (since (∑i
j=0 c j)< (∑i

j=0 d j)). Combining them yields b ∈ v̂(I), thus

reaching a contradiction. Hence, a(∑
i
j=0 c j)ba(∑

n
j=i+1 c j) ∈ v̂(w)\ v̂(v). This completes the proof.

The proof of Thms. 35, 36 only applies to one-variable words. We leave open Thms. 35, 36 for many
variables words (cf. Thm. 32).

7 Conclusion and future work

We have introduced words-to-letters valuations. By using them, we have shown the decidability and com-
plexity of the identity/variable/word inclusion problems (Cors. 6, 13, 26) and the universality problem
(Cor. 18) of the equational theory of KA terms with variable complements w.r.t. languages; in particular,
the inequational theory t ≤ s is coNP-complete when t does not contain Kleene-star (Cor. 29). Addi-
tionally, we have proved a completeness theorem for words with variable complements w.r.t. languages
(Thm. 32); moreover, for one-variable words, the equational theory over LANG coincides with that over
LANG2 (Thm. 36).

A natural interest is to extend our decidability results, e.g., for full KA terms with variable com-
plements. As Cor. 30 shows, even for full terms, words-to-letters valuations are sufficient valuations in
investigating the equational theory. The first author conjectures that the equational theory of KA terms
with variable complements is decidable, possibly by combining the technique like saturable paths [9]
(which were introduced for the equational theory w.r.t. binary relations). Additionally, we leave open
the (finite) axiomatizability of the equational theory (including that over sets of bounded cardinality; cf.
Sect. 6.1).
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A A direct proof of the coincidence between the equational theory w.r.t.
languages and the language equivalence for KA terms

(In this section, we use the notations of Sect. 2.)
We say that a term t is a KA term if the complement (_−) does not occur in t. Recall language

valuations for languages in Sect. 2.3.

Lemma 37 (cf. Lem. 2). Let v be a language valuation. For all KA terms t, we have

v̂(t) = v̂([t]).

Proof. By Lem. 2, as [t] = [t]V′ (since KA terms do not contain the complement).

Theorem 38. For all KA terms t,s,

LANG |= t = s ⇐⇒ [t] = [s].

Proof. We have

LANG |= t = s =⇒ [t] = [s] ([_] is an instance of language valuations)

=⇒ for all language valuations v, v̂([t]) = v̂([s])

⇐⇒ for all language valuations v, v̂(t) = v̂(s) (Lem. 37)

⇐⇒ LANG |= t = s. (By definition)
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