
Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 170–184, doi:10.4204/EPTCS.386.14

© Benedek Nagy
This work is licensed under the
Creative Commons Attribution License.

State-deterministic Finite Automata with Translucent Letters
and Finite Automata with Nondeterministically Translucent

Letters

Benedek Nagy
Department of Mathematics, Faculty of Arts and Sciences

Eastern Mediterranean University
99628 Famagusta, North Cyprus, Mersin-10, Turkey

and
Department of Computer Science, Institute of Mathematics and Informatics,

Eszterházy Károly Catholic University
Eger, Hungary

nbenedek.inf@gmail.com

Deterministic and nondeterministic finite automata with translucent letters were introduced by Nagy
and Otto more than a decade ago as Cooperative Distributed systems of a kind of stateless restarting
automata with window size one. These finite state machines have a surprisingly large expressive
power: all commutative semi-linear languages and all rational trace languages can be accepted by
them including various not context-free languages. While the nondeterministic variant defines a
language class with nice closure properties, the deterministic variant is weaker, however it contains
all regular languages, some non-regular context-free languages, as the Dyck language, and also some
languages that are not even context-free. In all those models for each state, the letters of the alphabet
could be in one of the following categories: the automaton cannot see the letter (it is translucent),
there is a transition defined on the letter (maybe more than one transition in nondeterministic case)
or none of the above categories (the automaton gets stuck by seeing this letter at the given state and
this computation is not accepting).

State-deterministic automata are recent models, where the next state of the computation deter-
mined by the structure of the automata and it is independent of the processed letters. In this paper our
aim is twofold, on the one hand, we investigate state-deterministic finite automata with translucent
letters. These automata are specially restricted deterministic finite automata with translucent letters.

In the other novel model we present, it is allowed that for a state the set of translucent letters
and the set of letters for which transition is defined are not disjoint. One can interpret this fact
that the automaton has a nondeterministic choice for each occurrence of such letters to see them
(and then erase and make the transition) or not to see that occurrence at that time. Based on these
semi-translucent letters, the expressive power of the automata increases, i.e., in this way a proper
generalization of the previous models is obtained.

Keywords: finite state machines, automata with translucent letters, determinism vs. nondeterminism,
state-determinism

1 Introduction

The history of automata with translucent letters has begun using the technical name cooperative dis-
tributed systems of stateless restarting automata with window size one [27], while the term finite state
acceptors with translucent letters appeared in [16] reinterpreting the aforementioned technical name. Ba-
sically (formal definitions will be recalled in Section 2), in a finite automaton with translucent letters,

http://dx.doi.org/10.4204/EPTCS.386.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Benedek Nagy 171

in each state some of the letters of the alphabet are translucent, and the automaton sees the first occur-
rence of a non-translucent letter (after the occurrences of translucent letters in the prefix of the remaining
input in the given configuration, if any) and if there is a transition defined on this letter (say, the letter
is readable) in the actual state, after erasing this letter, the next state is chosen according to the transi-
tion function, and the computation continues. It may happen that there are only translucent letters (or
no letters at all) in the remained input, then the computation is accepting if the actual state is a final
state. Automata with translucent letters can be applied in linguistics [26], and also modelling various
trace languages used to describe parallel processes [4, 10, 13, 25] based on commutations and partial
commutations [2, 18].

In fact, there are various models in automata theory where the processing on the input may not go
strictly left to right. One of these models is the restarting automata which is developed for linguistical
motivation to do analysis by reduction: in a nutshell, these automata have a read-write window and they
are searching for some specific pattern in the window to reduce, i.e., shorten its content, and then they are
restarting the computation on the new content of the tape. It may also happen that the automaton accepts
based on what is in its window. Interested readers may be referred to [9, 36] to see the various models,
their computations, accepted languages and their properties. Restarting R automata with window size one
can do only one type of reduction, to erase the letter in the window, hereby shortening the tape. Stateless
deterministic variants of them are the simplest models of restarting automata. Instead of adding states to
the system, their cooperative distributed systems (shortly CD systems) are developed [27, 30] and found
to be very interesting with a surprisingly large expressive power as, e.g., they are able to accept all rational
trace languages. The components of such systems play the role of the states in the reinterpreted model,
in the nondeterministic finite automata with translucent letter. Two types of deterministic models of the
CD systems of restarting R automata with window size one are also studied [29]: In strictly deterministic
models, the next component is uniquely defined by the actual component and it does not depend on the
letter being processed (i.e., erased) in the actual computation step. However, in globally deterministic
CD systems of restarting R automata with window size one the next component is deterministically
chosen based on the actual component and on the erased letter, somewhat similarly as it is in the usual
deterministic finite automata. Consequently, this letter model is equivalent, by the reinterpretation, to the
deterministic finite automata with translucent letters.

Other models not consuming the input from left to right are various 2-head models that process the
input parallely from both extremes [6, 12, 17, 20, 21, 39]. Some of these finite state models are capable
to accept exactly the linear context-free languages. Moreover, in the bio-inspired models named 5′ → 3′

Watson-Crick finite automata, the automaton with its both heads may read strings in a computation
step [23, 34, 35]. There are various interesting concepts related to determinism introduced and studied
for these 5′ → 3′ Watson-Crick finite automata models. The deterministic variant where the concept
of determinism fits well to the usual concept of determinism is less powerful in the sense that only a
proper subset of the class of the linear context-free languages can be accepted by them. This class is
called 2detLIN, and it is incomparable with the class detLIN containing the languages that are accepted
by deterministic one-turn pushdown automata [33, 37]. The model where the next state is uniquely
defined by the actual state and does not depend on what is being processed from the input in this step of
computation is called state-deterministic and studied in [22]. At 5′ → 3′ Watson-Crick finite automata,
the state-deterministic variants are very restricted, but they may do some nondeterministic computations,
and thus, the language class accepted by them is incomparable with 2detLIN. Other type of determinism,
the quasi-determinism is introduced and studied in [24]. In these automata, even if the state of the next
configuration is uniquely determined by the actual configuration (actual state and remaining input), there
could be more than one possible next configuration. The quasi-deterministic 5′ → 3′ Watson-Crick finite

172 Nondeterministically translucent letters and state-determinism

automata accept a superclass of languages of both the classes accepted by state-deterministic and by
deterministic 5′ → 3′ Watson-Crick finite automata.

There are other models of computations which process the input not strictly left to right, including
various jumping automata [3, 14, 11] and input revolving automata [1], just to mention a few more
models. These models became very popular in the last decades. The combination of the mentioned 2-
head finite state model with translucent letters allow to accept all linear trace languages [32]. Pushdown
automata with translucent letters can be used to characterise context-free trace languages [28].

In this paper, on the one hand, we investigate the state-deterministic finite automata with translucent
letters and give some results on the class of languages accepted by them.

On the other hand, we investigate finite automata with translucent letters by relaxing the condition
that for a state the set of translucent and readable letters is disjoint. In this way, the translucency becomes
nondeterministic and thus, we may expand both the deterministic and nondeterministic finite automata
with translucent letters to allow nondeterministic translucency. Our other main result is that we can show
that this model is a real expansion of the basic models, the class of accepted languages is a superclass of
the class languages of the original model.

Recently another extension of the finite automata with translucent letters was investigated in which in
the computation the head is not restarting after erasing a symbol, but continues from the position where
this letter has been erased [15]. We believe that our new type of restrictions and extensions are also
giving some new interesting insights and results to this particular field of automata theory.

The structure of the paper is as follows. In the next section we recall some formal preliminaries and
the basic definitions of finite automata with translucent letters. Section 3 is devoted to a restricted class
of deterministic models, namely, to the state-deterministic finite automata with translucent letters; while
in Section 4 we present our other new concept by allowing nondeterminism based on translucency. We
show that this model is more powerful than the original model, however, still only semi-linear languages
can be accepted. Finally, conclusions close the paper.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of formal languages and automata [7, 8],
however, to fix our notations, we formally recall some basic definitions. We denote the empty word by
λ .

We say that the languages L1 and L2 are letter equivalent, if for any word x ∈ L1 we may find a
word y ∈ L2 such that y is obtained from x by reordering (permuting) its letters and also for any word
x ∈ L2 we may find a word y ∈ L1 with the same property. It is known that a language is semi-linear
if there is a regular language that is letter equivalent with it. All context-free languages are semi-linear
[38] and there are context-sensitive languages that are not semi-linear. We do not detail here partial
commutations, commutations, traces and trace languages, interested readers may be referred to [2, 4]
and for their relations to automata with translucent letters to [27, 28, 32].

A nondeterministic finite automaton (NFA) is a pentuple A = (Q,Σ, I,F,δ), where Q is the finite set
of internal states, Σ is the finite alphabet containing the input letters, I ⊆ Q is the set of initial states,
F ⊆ Q is the set of final (or accepting) states, and δ : Q×Σ → 2Q is the transition relation. If |I|= 1 and
|δ (q,a)| ≤ 1 holds for all q ∈ Q and all a ∈ Σ, then A is a deterministic finite automaton (DFA). Notice
that, in general, in NFAs we allow multiple initial states, but we do not allow transitions by the empty
word.

An NFA A works as follows. Let an input string w ∈ Σ∗ be given, then A starts its computation in

Benedek Nagy 173

a state q0 that is chosen nondeterministically from the set I of all initial states. This configuration is
encoded as q0w (for simplicity, we may assume that Q∩Σ = /0). Now A reads the first letter of w, say a
(let w = au), thereby deleting (consuming) this occurrence of letter a, and it changes its internal state to
a state q1 that is chosen nondeterministically from the set δ (q0,a), formally we may write that the new
configuration q1u is reached. However, it may happen that δ (q0,a) is empty, then A gets stuck and this
computation fails in this input. Otherwise, A continues the computation from the configuration q1u by
reading the input letter by letter until either w has been consumed completely or the computation fails
(similarly as we have described). We say that A accepts w from the initial configuration q0w if it reaches a
configuration q f ·λ in a computation starting from q0w, where q f ∈ F is a final state. By L(A) we denote
the set of all strings w ∈ Σ∗ for which A has an accepting computation in the sense described above.

It is well-known that the class of languages that are accepted by NFAs coincides with the class of
regular languages, and that DFAs accept exactly the same languages.

Now we recall the nondeterministic finite automata with translucent letters from [16].
A finite state automaton with translucent letters (NFAwtl) is defined as A = (Q,Σ,$,τ, I,F,δ), where

Q, Σ, I and F are the same as at an NFA; $ ̸∈ Σ is a special symbol that is used technically as an
endmarker, τ : Q → 2Σ is the translucency mapping, and δ : Q×Σ → 2Q is the transition relation that
satisfies the following condition:

∀q ∈ Q ∀a ∈ τ(q) : δ (q,a) = /0.

For each state q ∈ Q, the letters from the set τ(q) are translucent for q, that is, in state q the automaton
A does not see these letters. A is called deterministic finite state automaton with translucent letters,
abbreviated as DFAwtl, if |I|= 1 and if |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈ Σ.

An NFAwtl A = (Q,Σ,$,τ, I,F,δ) works as follows. Let w ∈ Σ∗ be an input word. A starts in a
nondeterministically chosen initial state q ∈ I with the word w · $ on its input tape, that is q0w$ is an
initial configuration. A computation step of A is defined as follows. Assume that w = a1a2 · · ·an for
some n ≥ 1 and a1, . . . ,an ∈ Σ. Then A looks for the first occurrence from the left of a letter that is not
translucent (say visible) for the current state q, more precisely, if w = uav such that u ∈ (τ(q))∗ and
a ̸∈ τ(q), then A nondeterministically chooses a state q′ ∈ δ (q,a), erases the letter a from the tape thus
producing the tape contents uv ·$, and its internal state is set to q′. Therefore after this computation step
the configuration is q′uv$ and the computation continues from this configuration by looking for the first
visible letter of uv at state q′. However, it may happen that δ (q,a) = /0 for the first visible letter a, A
halts without accepting, this computation fails. Finally, if w ∈ (τ(q))∗ for a configuration qw$ (including
the possibility that the configuration is in fact q ·λ ·$), then A reaches the $-symbol and the computation
halts. In this case A accepts if q ∈ F is a final state; otherwise, it does not accept. A word w ∈ Σ∗ is
accepted by A if there exists an initial state q0 ∈ I and an accepting computation from q0w · $. Further,
the empty word λ is accepted by A if there exists an initial state q0 ∈ Q such that q0 is also a final state.
Now L(A) = {w ∈ Σ∗ | w is accepted by A} is the language accepted by A. Notice that the endmarker is,
in fact, needless; we kept it only for traditional reason.

The classical nondeterministic finite automata (NFA) is obtained from the NFAwtl by removing
the endmarker $ and by ignoring the translucency relation τ , and the deterministic finite-state acceptor
(DFA) is obtained from the DFAwtl in the same way. Thus, the NFA (DFA) can be interpreted as a
special type of NFAwtl (DFAwtl). Accordingly, all regular languages are accepted by DFAwtl. Moreover,
DFAwtls are much more expressive than standard DFAs as shown by the following example.

Example 1 Consider the DFAwtl A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,q,qa,qb,qc,qd}, I = {q0}, F =

174 Nondeterministically translucent letters and state-determinism

{q}, Σ = {a,b,c,d}, and the functions τ and δ are defined as follows:

τ(q0) = {b,c,d}, δ (q0,a) = {qa},
τ(q) = /0, δ (q,a) = {qa}, δ (q,b) = {qb}, δ (q,c) = {qc}, δ (q,d) = {qd},

τ(qa) = {a,c,d}, δ (qa,b) = {q},
τ(qb) = {b,c,d}, δ (qb,a) = {q},
τ(qc) = {a,b,c}, δ (qc,d) = {q},
τ(qd) = {a,b,d}, δ (qd ,c) = {q}.

Further, δ (p,x)= /0 for all other pairs (p,x)∈Q×Σ. Firstly, the input must have an a, which is consumed
in the first step of the computation, then a b is consumed. One may see that after that the automaton reads
the first letter of the remaining input and depending on what it was, in the next step consumes the first
occurrence of a letter that is a pair of the previously erased one, where pairs are a-s with b-s and c-s with
d-s. Consequently A accepts the language Lab = {w ∈ {a,b,c,d}∗ | |w|a = |w|b > 0 and |w|c = |w|d}.
Similarly, by permuting the roles of the letters, e.g., the language Lac = {w ∈ {a,b,c,d}∗ | |w|a = |w|c >
0 and |w|b = |w|d} is also accepted by a DFAwtl. However, the union of these two languages can be
accepted by an NFAwtl, but cannot with any DFAwtl. This latter fact can be shown somewhat analogously
to the fact that the context-free language {anbncmdm}∪{anbmcmdn} is not deterministic context-free. We
skip the formal proof because the lack of space.

As we have already described NFAwtl and DFAwtl are reformulations of cooperative distributed
systems of stateless deterministic restarting R automata with window size one. The DFAwtl, in fact, are
reinterpretations of stateless globally deterministic CD-R(1)-systems [29].

Recently various concepts about deterministic computations have been emerged, therefore, we recall
the concept of state-determinism from [22].

An automaton is state-deterministic if for each of its state q ∈ Q, if there is a transition from q and
it goes to state p (i.e., p ∈ δ (q,a)), then every transition from q goes to p, that is, if an automaton has
state q in its actual configuration, then, if the computation continues, the state of the next configuration
is uniquely determined and it is p.

We are continuing the paper in this line.

3 On state-deterministic finite automata with translucent letters

As our first result, we investigate the state-deterministic FAwtl (SFAwtl for short) by applying this type
of concept of determinism to NFAwtl.

First, we recall the concept of stateless strictly deterministic CD-R(1)-systems [29]. In these systems
there is only one initial state, and there is exactly one successor component for each component. One
may think, that in the terminology of finite automata with translucent letters we can interpret it with
the conditions |I| = 1 and for each q ∈ Q, |

⋃
a∈Σ δ (q,a)| = 1 which may lead to a very similar concept

as state-determinism. However, this is not exactly the case, stateless strictly deterministic CD-R(1)-
systems and the state-deterministic FAwtl are in close relation, but in a CD-R(1)-system one may use
the computation step “Accept” at any component on a given non translucent letter, while in NFAwtl the
acceptance condition is defined in a different way. We are showing some explicit difference of these
models in this section.

We present an example to show that these restricted automata are still able to accept non trivial
languages.

Benedek Nagy 175

Example 2 Let A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,q1}, I = {q0}= F, Σ = {0,1}, and the functions
τ and δ are defined as follows:

τ(q0) = /0, δ (q0,0) = {q1},
τ(q1) = {0}, δ (q1,1) = {q0}.

By observing the structure of this automaton, it is clearly state-deterministic. Considering the accepted
language, it is the Dyck language, where 0 refers to opening and 1 to closing brackets.

Example 3 Let A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,q1,q2,q3}, I = {q0} = F, Σ = {a,b,c,d}, and
the functions τ and δ are defined as follows:

τ(q0) = /0, δ (q0,a) = {q1},
τ(q1) = {a,c,d}, δ (q1,b) = {q2},
τ(q2) = {a,b,d}, δ (q2,c) = {q3},
τ(q3) = {a,b,c}, δ (q3,d) = {q0}.

Further, δ (q,x) = /0 for all other pairs (q,x) ∈ Q×Σ. On the one hand, it is easy to check that A is
a DFAwtl which is, in fact, also state-deterministic. On the other hand, the language accepted by A
intersected by the regular language a∗d∗c∗b∗ is the non context-free language {andncnbn | n ≥ 0}, and
thus A accepts a language that is not context-free.

From this example, using the fact that any language accepted by NFAwtl has a letter-equivalent
sublanguage that is regular [27] (but the language {andncnbn | n ≥ 0} does not), we can deduce that:

Proposition 1 The language class accepted by state-deterministic FAwtl is not closed under intersection
with regular languages.

Based on [22], we know that state-deterministic FAwtl have the graph structure with no branching,
that is, either a line graph (starting from the sole initial state) or a line graph with an additional edge from
the last state to a state.

Clearly languages like a∗, b∗, a+aaa, ab+ba are accepted by state-deterministic FAwtl with 1, 1, 4
and 3 states, respectively. For ab+ba translucency can be used in the initial state, e.g., a is translucent
and transition with b leads to the next state, from which the computation may continue by reading an a
to reach the final state.

Now, we present a relatively simple example language that is not accepted by any SFAwtl.

Example 4 The regular language described by a∗+b∗ is not accepted by any state-deterministic FAwtl.
It is easy to see that, by assuming that an SFAwtl A accepts the given language, after reading an a or
a b, A must be in the same state, however, the possible computations after erasing an a or erasing a b
must not be the same, since this would lead to accept words containing both a and b, contradicting to
our assumption on the accepted language.

Based on the above example, we may deduce the following closure property:

Proposition 2 The language class accepted by SFAwtl is not closed under union.

We may also summarize some hierarchy type results based on the previously shown examples.

Proposition 3 State-deterministic FAwtl are deterministic, i.e., they are also DFAwtl.
Further, the language class accepted by SFAwtl includes some non context-free languages, but on the
other hand, does not include all regular languages.

176 Nondeterministically translucent letters and state-determinism

We recall from [31] that the language class accepted by stateless strictly deterministic CD-R(1)-
systems is closed under complement. We show that this is not the case with the state-deterministic
FAwtl, thus, in this way, we also show that the new concept is not a reinterpretation of these CD systems.
Proposition 4 The language class accepted by SFAwtl is not closed under complement.
Proof On the one hand, as we have described, the Dyck language over {0,1} is accepted by state-
deterministic FAwtl. Now, on the other hand, we show that its complement Lc is not. Let as assume
towards a contradiction that there is an SFAwtl A that accepts Lc. Since λ is not in Lc, the initial state q0
is not a final state of A. Let us consider the cases by seeing which of the letters could be translucent at
q0.

• Clearly, it cannot happen that both 0 and 1 are translucent, since then, no words would be accepted.

• In case either 0 or 1 is translucent, there must be a transition with the other letter from q0, to
another state, say state q1. Now, on the one hand, the input 01 should not be accepted, but the
input 10 should be. However, in this case, both of these inputs lead to the same configuration after
the first step of the computation. This leads to a contradiction, since from here either both of them
are accepted by A, or none of them.

• The last possibility is when there are no translucent letters at q0. Since A must accept words starting
with 0, e.g., 0,00,000,001,010 and also words starting with 1, e.g., 1,10,11,100, the transition
with both 0 and 1 must go an accepting state q1, i.e., δ (q0,a) = δ (q0,b) = q1. Considering the
possible input words 01 and 11, thus we reach the same configuration q11$, however, the former
word should not be accepted, while the latter one is in Lc. By this contradiction, the proof has been
finished.

•
Proposition 5 The language class accepted by SFAwtl is not closed under concatenation.
Proof Let us consider the languages a+aaa and b which both are accepted by state-deterministic FAwtl.
Let us consider now their concatenation Lc = {ab,aaab}. Let us assume that there is an SFAwtl A that
accepts Lc. In its initial state q0, there are the following options:

• There is no translucent letters for q0, then there must be a transition with a to a state q1(̸= q0) and
no other transition from q0. Neither q0, nor q1 is a final state. Now, at q1 A should be able to read
a b and it must reach an accepting state q2. Now there are two subcases:

– If there is no translucency used at q1, it must also have a transition with a (to q2) allowing to
process the word aaab, however, in this case there would be a false acceptance of aa by A
arriving to a contradiction.

– In the second subcase, a must be translucent in q1, and thus from the original input aaab, the
remaining was aab and in this way the last letter b could be read, and then the remaining aa
should be accepted. However, in this case A would also accept the word abaa with a similar
computation as aaab contradicting to the fact that it accepts Lc.

• If a is translucent at q0, then we must have a transition with b, then from q1 A should able to accept
the remaining word a. However, in this case a similar computation would accept also ba as the
computation for ab. Contradiction.

• If b is translucent at q0, then we must have a transition with a, leading to the state q1, similarly as
in the first case. For q1 the proof works in exactly in the same way as in that case.

• If both a and b are translucent in q0, no transition can be defined, consequently, the nonempty
language Lc cannot be accepted in this way.

•

Benedek Nagy 177

4 The new models with nondeterministic translucency

In this section, first we provide the formal definition of the new automata models and their work.
A (deterministic) finite state automaton with nondeterministically translucent letters, abbreviated

as (DFAwntl) NFAwntl, is defined as a septuple A = (Q,Σ,$,τ, I,F,δ), similarly to NFAwtl (DFAwtl),
respectively, but without the condition that ∀q ∈ Q ∀a ∈ τ(q) : δ (q,a) = /0. That is, for an NFAwntl
(DFAwntl) it is allowed that for a state q ∈ Q and for a letter a ∈ Σ both a ∈ τ(q) and δ (q,a) ̸= /0 hold.
Notice that at a DFAwntl, there is only one initial state, and there is at most one transition defined for any
input letter, as at DFAwtl.

A computation step of A is defined as follows. Assume that w = a1a2 · · ·an for some n ≥ 1 and
a1, . . . ,an ∈ Σ and A is in state q. Then A looks for an occurrence of a letter (say ai = b) for which a
transition is defined, i.e., δ (q,b) ̸= /0 such that each letter a j ∈ τ(q) with j < i. In this way, the actual
configuration can be written as q ·ubv$ with letter b in the position of ai, u ∈ τ(q)∗, v ∈ Σ∗, and the next
configuration could be p ·uv$ for a state p ∈ δ (q,b).
On the other hand, it may happen that such letter ai does not exist, i.e., there is a letter ai = c ̸∈ τ(q) such
that for each j < i a j ∈ τ(q) and δ (q,ak) = /0 (for all k ≤ j) including δ (q,c) = /0. In this case A halts
without accepting; this computation fails.
Further, if w ∈ (τ(q))∗ for a configuration qw$ with q ∈ F , then A reaches the $-symbol and the compu-
tation halts by accepting.
Finally, w ∈ (τ(q))∗, q ̸∈ F and there is no letter in w for which a transition has been defined (δ (q,ai) = /0
for each i, or w = λ), then the computation fails: A does not accept.

A word w ∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I and an accepting computation
from q0w ·$. Now L(A) = {w ∈ Σ∗ | w is accepted by A} is the language accepted by A.

Based on these definitions, we can define four categories of NFAwtl:

translucency \ transition mapping deterministic nondeterministic
disjoint DFAwtl NFAwtl
nondeterministic DFAwntl NFAwntl

As we will show although the model DFAwntl seems deterministic by its transition function, we may
easily cheat by the nondeterminism allowed by translucency.

Example 5 Let A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,qa,qb,qc}, I = {q0}, F = {qc}, Σ = {a,b,c}, and
the functions τ and δ are defined as follows:

τ(q0) = /0, δ (q0,a) = {qa},δ (q0,b) = {qb},δ (q0,c) = {qc},
τ(qa) = {a,b,c}, δ (qa,b) = {q0},
τ(qb) = {a,b,c}, δ (qb,a) = {q0},
τ(qc) = /0.

Further, δ (q,x) = /0 for all other pairs (q,x) ∈ Q×Σ. It is easy to check that A is a DFAwntl.
Let us see how A works. Since there are no translucent letters in q0, A consumes the first letter of the
remaining input always in this state. If it was an a, then it erases a b from anywhere in the tape; if A
consumes a b at state q0, then in the next computation step A erases an a from anywhere in the tape.
Finally, the input is accepted if only a c remains on the tape and A is in state q0, then it reaches the
accepting state qc.

Thus, for every accepted word the number of its a-s and b-s are the same and it contains a c. Let us
write such a word in the form vcu with v,u ∈ {a,b}∗. It is also easy to see that A may accept various

178 Nondeterministically translucent letters and state-determinism

words where |v| ≥ |u|, but no words with |v|< |u|. On the other hand, let us see which words are accepted
with the property |v|= |u|. By the work of A, the conditions |v|a = |u|b and |v|b = |u|a must hold, i.e., in
v the number of a-s is the same as the number of b-s in u and vice versa.

Now we are arguing that the same language cannot be accepted by any NFAwtl without using non-
deterministic translucency (due to lack of space we skip some parts of the formal proof). Let us assume
that there is an NFAwtl B that accepts the same language as A. Let the number of states of B is n. Let
us consider a word w = akbℓcaℓbk ∈ L(A) with k, ℓ > 2n. By our assumption B accepts w, thus consider
an accepting computation on w by B. Clearly, there are two cases based on the first n+ 1 steps of the
computation.

• If letter c is erased during these computation step, then it can be shown that some words vcu with
|v| < |u| would also be accepted by B having all the letters processed after the step in which c is
read after the c in the original input word.

• If c is not read during the first n+ 1 steps, only a-s and b-s before the c (in part v) are accessed
and processed in the first n+ 1 steps. However, by the pigeon-hole principle, a state is repeated
during these steps, meaning that there are also values i and j (0 ≤ i, j ≤ n+1, i+ j > 0) such that
from input w′ = ak−ibℓ− jcaℓbk in n+ 1− i− j steps exactly the same configuration is reached as
from w in n+ 1 steps. In this case, by continuing the computation on w′ in the same way as the
accepting computation on w, the word w′ will also be accepted.

Now, in both cases, we have reached contradiction by accepting words of the form vcu for which |v|< |u|.

4.1 Hierarchy of the accepted languages

In this subsection our aim is to give some hierarchy like results by establishing where the new families
of languages are comparing them to various other classes.

First, we note that, in fact, the following inclusions hold by definition.

Proposition 6 Every NFAwtl is an NFAwntl and every DFAwtl is a DFAwntl.
Moreover, every DFAwntl is an NFAwntl.

Based on Example 5, we can also state some hierarchy results on the accepted language classes.

Proposition 7 The language class accepted by NFAwtl is a proper subclass of the language class ac-
cepted by NFAwntl.
The language class accepted by DFAwtl is a proper subclass of the language class accepted by DFAwntl.

Here, we leave open the question if NFAwntl is more efficient and expressive than DFAwntl.
On the one hand, we have seen that we can construct DFAwntl that accept some non context-free

languages. Now, on the other hand, let us show some of their limitations.
To compare the new language classes with some classical classes of formal languages we establish

the following result.

Lemma 1 For every language accepted by an NFAwntl (DFAwntl), there is a letter equivalent sublan-
guage that is accepted by an NFAwtl (DFAwtl, resp.).

Proof In case there is no such letter in any state which is both in the set of translucent letters and there
is also a transition on it, the automaton is in fact, an NFAwtl (also a DFAwtl in deterministic case) and
its language, as its own sublanguage, fulfils the statement of the lemma.

Benedek Nagy 179

Now, let us assume that automaton A is an NFAwntl, but it is not an NFAwtl. On the one hand, since
there is no “forced” way not to see a letter for which a transition is defined, A may always consumes
the first occurrence of such a letter and in fact accepts words of a language that is also accepted by
an NFAwtl. More precisely, by removing those letters from the translucency set of a state for which
transitions are defined, an NFAwtl (DFAwtl) A′ can be obtained. Clearly all words that A′ may accept are
also accepted by A with a similar computation.

To see that this language is letter equivalent to the originally accepted language, consider a compu-
tation on any of the accepted word by A. Since the automaton never knows if the consumed letter in a
computation step is the first or only reached through some translucent letters, we may reorder the input
according to an accepting computation, and in this way for each accepted word there will be a letter
equivalent word that has also been accepted by A′. •

Moreover, if, by chance, the letters of the input are ordered in exactly the way as they are consumed
during an accepting computation, then, in fact, an NFAwntl is working in the same way as an NFA, thus
we may also establish the following fact:

Lemma 2 For every language accepted by an NFAwntl, there is a letter equivalent regular sublanguage.

From the previous lemma we can conclude:

Corollary 1 All languages accepted by NFAwntl are semi-linear.

This could be interesting in the mirror of the fact, that by changing the window size of an R automata
from 1 to 2 (like allowing to have the translucency and transitions not letter by letter, but somehow by
pairs of consecutive letters), the corresponding model, the CD system of stateless deterministic R(2)
automata is able to accept some non semi-linear languages [19].

On the other hand, as the linear context-free language {anbn} does not have any letter equivalent
regular sublanguage, there is no NFAwntl that could accept it. Since {anbn} is deterministic linear and
also in 2detLIN (accepted by deterministic 2-head finite automata consuming the input letters from the
two extremes until they are meeting [33]), we have the following incomparability results.

Theorem 1 The language classes accepted by NFAwntl and DFAwntl properly include the class of reg-
ular languages. Further, the language classes accepted by NFAwntl and DFAwntl are incomparable to
each of the following classes of languages: deterministic linear, 2detLIN, linear context-free, determin-
istic context-free, context-free.

Finally, we analyse the computations of DFAwntl.

4.2 Simulating nondeterministic computations with DFAwntl

In this section our aim is to show that although seemingly by the transition function, DFAwntl seem to
be deterministic automata, they have some real nondeterministic features.

Example 6 As we mentioned in Example 1, there are DFAwtl that accept the languages

Lab = {w ∈ {a,b,c,d}∗ | |w|a = |w|b > 0 and |w|c = |w|d},

Lac = {w ∈ {a,b,c,d}∗ | |w|a = |w|c > 0 and |w|b = |w|d}

and
Lad = {w ∈ {a,b,c,d}∗ | |w|a = |w|d > 0 and |w|b = |w|c}.

180 Nondeterministically translucent letters and state-determinism

Let these automata be having the set of states Qab = {qab
0 ,qab

a ,qab
b ,qab

c ,qab
d ,qab}; Qac = {qac

0 ,qac
a ,qac

b ,qac
c ,

qac
d ,qac} and Qad = {qad

0 ,qad
a ,qad

b ,qad
c ,qad

d ,qad}, respectively.
The union of these languages cannot be accepted by any DFAwtl. Let us define now a DFAwntl as

follows.
A = (Q,Σ,$,τ, I,F,δ), where Q = Qab∪Qac∪Qad ∪{q0}, I = {q0}, F = {qab,qac,qad}, Σ = {a,b,c,

d}, and the functions τ and δ are defined as follows:

τ(q0) = {a,b,c,d}, δ (q0,a) = /0,δ (q0,b) = {qab
b },δ (q0,c) = {qac

c },δ (q0,d) = {qad
d }

for the newly added initial state and they are inherited from the respective automata for each other state.
Now, for any input, A nondeterministically guesses in which of the three languages the input is: as

τ(q0)=Σ it has access to any occurrence of a b, a c or a d as transitions are defined for these letters in q0.
By guessing the input belonging to Lab, it should have at least one b, thus by reading a b in the first step,
the subautomaton accepting Lab is chosen such that a b has already been processed. Now, it is easy to
see that after this nondeterministic choice in the first step, the computation continues in a deterministic
manner. The other nondeterministic choices in the first step of the computation are: by consuming a
c anywhere from the input A chooses to check whether the input belongs to Lac, and by consuming a d
anywhere from the input in the first step of the computation, A chooses to check whether the input belongs
to Lad . If the guess was correct, the input will be accepted. Otherwise, A must use another computation
to accept the given input, if any. Consequently the DFAwntl A accepts Lab ∪Lac ∪Lad .

We left open if NFAwntl can accept more languages than DFAwntl (the properness of the inclusion
relation of these two language classes is open). It is known (see [31], for the proof) that DFAwtl cannot
accept all rational trace languages, and this fact was used to prove the properness of the hierarchy between
NFAwtl and DFAwtl. Actually, it was shown that the language {w∈ {a,b}∗ | |w|a = |w|b or 2|w|a = |w|b}
cannot be accepted by any DFAwtl. Here we show that with a similar method as in Example 6, DFAwntl
is able to accept this language. The automaton is shown in Figure 1. In each state the indicated set, if
any, shows the translucent letters of the given state. The other notation is standard, e.g., double circles
for final states, etc.

Last, but not least, we present some closure properties.

Proposition 8 The class of languages accepted by NFAwntl is closed under union.

Proof Wlog. we may assume that the two languages are over the same alphabet Σ. Now, having
two NFAwntl, say A1 = (Q1,Σ,$,τ1, I1,F1,δ1) and A2 = (Q2,Σ,$,τ2, I2,F2,δ2) with Q1 ∩Q2 = /0, we

construct A = (Q1 ∪Q2,Σ,$,τ, I1 ∪ I2,F1 ∪F2,δ), where τ(q) =
{

τ1(q), if q ∈ Q1;
τ2(q), if q ∈ Q2.

and for each a ∈

Σ, δ (q,a) =
{

δ1(q,a), if q ∈ Q1;
δ2(q,a), if q ∈ Q2.

. Then A may choose nondeterministically among the possible

initial states, depending on if the chosen state is in I1 or I2, A will do a computation that is similar to a
computation of A1 or A2, respectively. •

It is known that the language class accepted by DFAwtl is not closed under union [30]. On the
other hand, we have also seen, that DFAwntl may also be able to compute the union of some languages
accepted by DFAwntl, however, in general we leave open the problem if this class is closed under union.

On the other hand, the language class of NFAwtl is closed under concatenation, and the proof was
based on guessing when the last occurrence of the letters are consumed to give a construction when the

Benedek Nagy 181

 a

 a {a,b} a {a,b} a {a} b {a} b {a}

 b

 b b b a b

 {a,b} {a,b} a {a} b {a} b {a} {b}

 a b b b b

 a

 {a,b} {a} b {a}

 b

 b

 b a b b b

 {a} a {b}

 a {a,b} {b}

 b

 b a

 a a a

 {b} {b} {b} {a}

 b b

 a b {a}

 a b

 {a} b {a}

 b

Figure 1: A DFAwntl accepting {w ∈ {a,b}∗ | |w|a = |w|b or 2|w|a = |w|b}.

last occurrence of any letter was consumed without using any translucency [30]. As in the new model,
generally, we may not be sure when the last occurrence is consumed (maybe even in the first step), the
original construction definitely does not work. Thus, the closure of the new classes under concatenation
is also left as an open problem.

The fact that each accepted language must have a letter equivalent regular sublanguage and the ex-
amples shown lead also to the following non-closure property:

Proposition 9 Language classes accepted by NFAwntl and DFAwtl are not closed under intersection
with regular sets, and thus they are not closed under intersection.

5 Conclusions

Recently, another extension of the finite automata with translucent letters was investigated in which in the
computation the head is not restarting after erasing a symbol, but continues from the position where this
letter has been erased (or by reaching the endmarker, it starts from the beginning again) [15]. This model
is defining some new interesting classes of languages that are superclasses of the classes of languages
of the original model, as the new model is able to simulate the original nondeterministic finite automata
with translucent letters. Our extensions, the FAwntl, are such extensions that the original deterministic

182 Nondeterministically translucent letters and state-determinism

and nondeterministic finite automata with translucent letters are special cases of our new models (we may
not need to simulate them as they are included in our new classes of automata), thus the computational
power of the original models has been increased by relaxing the condition of disjointness of the sets of
letters for a state which is containing the translucent letters of the given state and which is containing the
letters that can be read in the given state. However, we left open if nondeterministic transitions are more
powerful in case we allow nondeterministic translucency (the author guesses/conjectures that the model
DFAwntl is weaker than NFAwntl in terms of accepted languages). It is also left open if DFAwntl are
able to accept all rational trace languages.

Although the expressive power has been increased, the new model still has various limitations, as the
accepted languages must always have a letter equivalent regular sublanguage. As the class is not closed
under intersection with regular languages, transduced-input variants can be investigated and studied in
the future similarly to [5]. Various closure properties of the new classes of languages are left open, they
are also subjects of future studies.

We believe that the combination of the new directions by continuing the computation from the posi-
tion of the erased letter and by using nondeterministic translucency, can fruitfully be considered also in
the future.

In the other newly investigated model we have applied the state-deterministic restriction for FAwtl
showing that this model is accepting an interesting family of languages. Combining state-determinism
and nondeterministic translucency and/or the non-returning feature could also be a nice topic for future
research.

Acknowledgements

The comments of the anonymous reviewers are gratefully acknowledged.

References

[1] Henning Bordihn, Markus Holzer & Martin Kutrib (2005): Revolving-Input Finite Automata. In Clelia
de Felice & Antonio Restivo, editors: Developments in Language Theory, 9th International Conference, DLT
2005, Palermo, Italy, July 4-8, 2005, Proceedings, Lecture Notes in Computer Science 3572, Springer, pp.
168–179, doi:10.1007/11505877_15.

[2] P. Cartier & D. Foata (1969): Problèmes combinatoires de commutation et réarrangements. Springer,
doi:10.1007/BFb0079468.

[3] Hiroyuki Chigahara, Szilárd Zsolt Fazekas & Akihiro Yamamura (2016): One-Way Jumping Finite Automata.
Int. J. Found. Comput. Sci. 27(3), p. 391, doi:10.1142/S0129054116400165.

[4] Volker Diekert & Gregorz (eds.) Rozenberg (1995): The Book of Traces. World Scientific, Singapore,
doi:10.1142/2563.

[5] Madeeha Fatima & Benedek Nagy (2020): Transduced-Input Automata with Translucent Letters. Comptes
rendus de l’Académie bulgare des Sciences 73(1), pp. 33–39, doi:10.7546/CRABS.2020.01.04.

[6] Rudolf Freund, Gheorghe Paun, Grzegorz Rozenberg & Arto Salomaa (1997): Watson-Crick finite automata.
In Harvey Rubin & David Harlan Wood, editors: DNA Based Computers, Proceedings of a DIMACS Work-
shop, Philadelphia, Pennsylvania, USA, June 23-25, 1997, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 48, DIMACS/AMS, pp. 297–327, doi:10.1090/dimacs/048/22.

[7] M. A. Harrison (1978): Introduction to Formal Language Theory. Addison-Wesley.

https://doi.org/10.1007/11505877_15
https://doi.org/10.1007/BFb0079468
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1142/2563
https://doi.org/10.7546/CRABS.2020.01.04
https://doi.org/10.1090/dimacs/048/22

Benedek Nagy 183

[8] J.E. Hopcroft & J.D. Ullman (1979): Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, M.A.

[9] Petr Jancar, Frantisek Mráz, Martin Plátek, Martin Procházka & Jörg Vogel (1995): Restarting Automata,
Marcus Grammars and Context-Free Languages. In Jürgen Dassow, Grzegorz Rozenberg & Arto Salomaa,
editors: Developments in Language Theory II, At the Crossroads of Mathematics, Computer Science and
Biology, Magdeburg, Germany, 17-21 July 1995, World Scientific, Singapore, pp. 102–111.

[10] Ryszard Janicki, Jetty Kleijn, Maciej Koutny & Lukasz Mikulski (2019): Classifying invariant structures of
step traces. J. Comput. Syst. Sci. 104, pp. 297–322, doi:10.1016/j.jcss.2017.05.002.

[11] Radim Kocman, Zbynek Krivka, Alexander Meduna & Benedek Nagy (2022): A jumping $5’\rightarrow 3’$
Watson-Crick finite automata model. Acta Informatica 59(5), pp. 557–584, doi:10.1007/s00236-021-00413-
x.

[12] Roussanka Loukanova (2007): Linear Context Free Languages. In Cliff B. Jones, Zhiming Liu & Jim
Woodcock, editors: Theoretical Aspects of Computing - ICTAC 2007, 4th International Colloquium, Macau,
China, September 26-28, 2007, Proceedings, Lecture Notes in Computer Science 4711, Springer, pp. 351–
365, doi:10.1007/978-3-540-75292-9_24.

[13] Alexandru Mateescu, Kai Salomaa & Sheng Yu (2000): On Fairness of Many-Dimensional Trajectories. J.
Autom. Lang. Comb. 5(2), pp. 145–157, doi:10.25596/jalc-2000-145.

[14] Alexander Meduna & Petr Zemek (2012): Jumping Finite Automata. Int. J. Found. Comput. Sci. 23(7), pp.
1555–1578, doi:10.1142/S0129054112500244.

[15] Frantisek Mráz & Friedrich Otto (2022): Non-Returning Finite Automata With Translucent Letters. In Hen-
ning Bordihn, Géza Horváth & György Vaszil, editors: Proceedings 12th International Workshop on Non-
Classical Models of Automata and Applications, NCMA 2022, Debrecen, Hungary, August 26-27, 2022,
EPTCS 367, pp. 143–159, doi:10.4204/EPTCS.367.10.

[16] B. Nagy & F. Otto (2011): Finite-state acceptors with translucent letters. In G. Bel-Enguix, V. Dahl & A.O.
De La Puente, editors: BILC 2011: AI Methods for Interdisciplinary Research in Language and Biology,
Proc.; in ICAART 2011: 3rd International Conference on Agents and Artificial Intelligence, SciTePress,
Portugal, pp. 3–13.

[17] Benedek Nagy (2008): On 5′ → 3′ Sensing Watson-Crick Finite Automata. In Max H. Garzon & Hao Yan,
editors: DNA Computing, 13th International Meeting on DNA Computing, DNA13, Memphis, TN, USA,
June 4-8, 2007, Revised Selected Papers, Lecture Notes in Computer Science 4848, Springer, pp. 256–262,
doi:10.1007/978-3-540-77962-9_27.

[18] Benedek Nagy (2009): Languages generated by context-free grammars extended by type AB → BA rules.
Journal of Automata, Languages and Combinatorics 14, pp. 175–186.

[19] Benedek Nagy (2011): On CD-Systems of Stateless Deterministic R(2)-Automata. J. Autom. Lang. Comb.
16(2-4), pp. 195–213, doi:10.25596/jalc-2011-195.

[20] Benedek Nagy (2012): A class of 2-head finite automata for linear languages. Triangle 8 (Languages.
Mathematical Approaches), pp. 89–99.

[21] Benedek Nagy (2013): On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata languages. J. Log.
Comput. 23(4), pp. 855–872, doi:10.1093/logcom/exr049.

[22] Benedek Nagy (2021): State-deterministic 5′ → 3′ Watson-Crick automata. Nat. Comput. 20(4), pp. 725–
737, doi:10.1007/s11047-021-09865-z.

[23] Benedek Nagy (2009): On a hierarchy of 5′ → 3′ sensing WK finite automata languages. In: Mathematical
Theory and Computational Practice, CiE, Abstract Booklet, Heidelberg, Germany, pp. 266–275.

[24] Benedek Nagy (2022): Quasi-deterministic 5′ → 3′ Watson-Crick Automata. In Henning Bordihn, Géza
Horváth & György Vaszil, editors: Proceedings 12th International Workshop on Non-Classical Models of
Automata and Applications, NCMA 2022, Debrecen, Hungary, August 26-27, 2022, EPTCS 367, pp. 160–
176, doi:10.4204/EPTCS.367.11.

https://doi.org/10.1016/j.jcss.2017.05.002
https://doi.org/10.1007/s00236-021-00413-x
https://doi.org/10.1007/s00236-021-00413-x
https://doi.org/10.1007/978-3-540-75292-9_24
https://doi.org/10.25596/jalc-2000-145
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.4204/EPTCS.367.10
https://doi.org/10.1007/978-3-540-77962-9_27
https://doi.org/10.25596/jalc-2011-195
https://doi.org/10.1093/logcom/exr049
https://doi.org/10.1007/s11047-021-09865-z
https://doi.org/10.4204/EPTCS.367.11

184 Nondeterministically translucent letters and state-determinism

[25] Benedek Nagy & Arif A. Akkeles (2017): Trajectories and Traces on Non-traditional Regular Tessellations
of the Plane. In Valentin E. Brimkov & Reneta P. Barneva, editors: Combinatorial Image Analysis - 18th
International Workshop, IWCIA 2017, Plovdiv, Bulgaria, June 19-21, 2017, Proceedings, Lecture Notes in
Computer Science 10256, Springer, pp. 16–29, doi:10.1007/978-3-319-59108-7_2.

[26] Benedek Nagy & László Kovács (2014): Finite Automata with Translucent Letters Applied in Natural and
Formal Language Theory. In: Transactions on Computational Collective Intelligence XVII, Lecture Notes in
Computer Science 8790, Springer, pp. 107–127, doi:10.1007/978-3-662-44994-3_6.

[27] Benedek Nagy & Friedrich Otto (2010): CD-Systems of Stateless Deterministic R(1)-Automata Accept
All Rational Trace Languages. In Adrian-Horia Dediu, Henning Fernau & Carlos Martín-Vide, editors:
Language and Automata Theory and Applications, 4th International Conference, LATA 2010, Trier, Ger-
many, May 24-28, 2010. Proceedings, Lecture Notes in Computer Science 6031, Springer, pp. 463–474,
doi:10.1007/978-3-642-13089-2_39.

[28] Benedek Nagy & Friedrich Otto (2011): An Automata-Theoretical Characterization of Context-Free Trace
Languages. In Ivana Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Jeffery, Rastislav Královic, Marko
Vukolic & Stefan Wolf, editors: SOFSEM 2011: Theory and Practice of Computer Science - 37th Conference
on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 22-28,
2011. Proceedings, Lecture Notes in Computer Science 6543, Springer, pp. 406–417, doi:10.1007/978-3-
642-18381-2_34.

[29] Benedek Nagy & Friedrich Otto (2011): Globally Deterministic CD-Systems of Stateless R(1)-Automata. In
Adrian-Horia Dediu, Shunsuke Inenaga & Carlos Martín-Vide, editors: Language and Automata Theory and
Applications - 5th International Conference, LATA 2011, Tarragona, Spain, May 26-31, 2011. Proceedings,
Lecture Notes in Computer Science 6638, Springer, pp. 390–401, doi:10.1007/978-3-642-21254-3_31.

[30] Benedek Nagy & Friedrich Otto (2012): On CD-systems of stateless deterministic R-automata with window
size one. J. Comput. Syst. Sci. 78(3), pp. 780–806, doi:10.1016/j.jcss.2011.12.009.

[31] Benedek Nagy & Friedrich Otto (2013): Globally deterministic CD-systems of stateless R-automata with
window size 1. Int. J. Comput. Math. 90(6), pp. 1254–1277, doi:10.1080/00207160.2012.688820.

[32] Benedek Nagy & Friedrich Otto (2020): Linear automata with translucent letters and linear context-free
trace languages. RAIRO Theor. Informatics Appl. 54, p. 3, doi:10.1051/ita/2020002.

[33] Benedek Nagy & Shaghayegh Parchami (2021): On deterministic sensing 5′ → 3′ Watson-Crick finite au-
tomata: a full hierarchy in 2detLIN. Acta Informatica 58(3), pp. 153–175, doi:10.1007/s00236-019-00362-6.

[34] Benedek Nagy & Shaghayegh Parchami (2022): 5′ → 3′ Watson-Crick automata languages – without sensing
parameter. Nat. Comput. 21(4), pp. 679–691, doi:10.1007/s11047-021-09869-9.

[35] Benedek Nagy, Shaghayegh Parchami & Hamid Mir Mohammad Sadeghi (2017): A New Sensing 5′ → 3′

Watson-Crick Automata Concept. In Erzsébet Csuhaj-Varjú, Pál Dömösi & György Vaszil, editors: Proceed-
ings 15th International Conference on Automata and Formal Languages, AFL 2017, Debrecen, Hungary,
September 4-6, 2017, EPTCS 252, pp. 195–204, doi:10.4204/EPTCS.252.19.

[36] Friedrich Otto (2006): Restarting Automata. In Zoltán Ésik, Carlos Martín-Vide & Victor Mitrana, editors:
Recent Advances in Formal Languages and Applications, Studies in Computational Intelligence 25, Springer,
pp. 269–303, doi:10.1007/978-3-540-33461-3_11.

[37] Shaghayegh Parchami & Benedek Nagy (2018): Deterministic Sensing 5′ → 3′ Watson-Crick Automata
Without Sensing Parameter. In Susan Stepney & Sergey Verlan, editors: Unconventional Computation and
Natural Computation - 17th International Conference, UCNC 2018, Fontainebleau, France, June 25-29, 2018,
Proceedings, Lecture Notes in Computer Science 10867, Springer, pp. 173–187, doi:10.1007/978-3-319-
92435-9_13.

[38] R. J. Parikh (1961): Language generating devices. MIT Res. Lab., Quarterly Progress Report 60, pp. 199–
212.

[39] Gheorghe Paun, Grzegorz Rozenberg & Arto Salomaa (1998): DNA Computing - New Computing Paradigms.
Texts in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/978-3-662-03563-4.

https://doi.org/10.1007/978-3-319-59108-7_2
https://doi.org/10.1007/978-3-662-44994-3_6
https://doi.org/10.1007/978-3-642-13089-2_39
https://doi.org/10.1007/978-3-642-18381-2_34
https://doi.org/10.1007/978-3-642-18381-2_34
https://doi.org/10.1007/978-3-642-21254-3_31
https://doi.org/10.1016/j.jcss.2011.12.009
https://doi.org/10.1080/00207160.2012.688820
https://doi.org/10.1051/ita/2020002
https://doi.org/10.1007/s00236-019-00362-6
https://doi.org/10.1007/s11047-021-09869-9
https://doi.org/10.4204/EPTCS.252.19
https://doi.org/10.1007/978-3-540-33461-3_11
https://doi.org/10.1007/978-3-319-92435-9_13
https://doi.org/10.1007/978-3-319-92435-9_13
https://doi.org/10.1007/978-3-662-03563-4

	Introduction
	Preliminaries
	On state-deterministic finite automata with translucent letters
	The new models with nondeterministic translucency
	Hierarchy of the accepted languages
	Simulating nondeterministic computations with DFAwntl

	Conclusions

