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Deterministic synchronous systems consisting of two finite automata running in opposite directions
on a shared read-only input are studied with respect to their ability to perform reversible computa-
tions, which means that the automata are also backward deterministic and, thus, are able to uniquely
step the computation back and forth. We study the computational capacity of such devices and obtain
on the one hand that there are regular languages that cannot be accepted by such systems. On the
other hand, such systems can accept even non-semilinear languages. Since the systems communicate
by sending messages, we consider also systems where the number of messages sent during a compu-
tation is restricted. We obtain a finite hierarchy with respect to the allowed amount of communication
inside the reversible classes and separations to general, not necessarily reversible, classes. Finally,
we study closure properties and decidability questions and obtain that the questions of emptiness,
finiteness, inclusion, and equivalence are not semidecidable if a superlogarithmic amount of commu-
nication is allowed.

1 Introduction

Watson-Crick automata have been introduced in [7] as a formal model for DNA computing. The motiva-
tion for such automata comes from processes observed in nature and laboratories. Basically, the idea is
to consider finite automata with two reading heads that run on either strand of a double stranded DNA-
molecule. It is noted in [20] that in nature enzymes moving along DNA strands may obey the biochemical
direction of the single strands of the DNA sequence. Hence, so-called 5′→ 3′ Watson-Crick automata
have been introduced in [20], which are two-head finite automata where the heads start at opposite ends
of a strand and move in opposite physical directions. It is known that no additional information is en-
coded in the second strand provided that the complementarity relation of the double stranded sequence
is one-to-one. In this case, 5′→ 3′ Watson-Crick automata share a common input sequence.

Watson-Crick automata and 5′ → 3′ Watson-Crick automata have intensively been investigated in
the last years from different points of view. Descriptional complexity aspects of Watson-Crick automata
are studied in [6]. 5′ → 3′ Watson-Crick automata with several runs, which means that both heads
are sweeping between both ends of the input, are investigated in [18] and a hierarchy with respect to
the number of runs has been obtained. The aspect of the amount of communication between the two
heads that is necessary in accepting computations is highlighted in [12] where 5′ → 3′ Watson-Crick
automata with restricted communication are introduced and a finite hierarchy concerning the amount of
communication could be obtained. The concept of sensing heads, where one head can sense the presence
of the other head, has been applied to 5′→ 3′ Watson-Crick automata in [21, 24]. The concept of jumping
automata, where the input is processed in a discontinuous way, has been introduced and investigated for
5′→ 3′ Watson-Crick automata in [9]. Finally, the impact of replacing the underlying devices of finite
automata by finite transducers or pushdown automata is studied in [23] and in [5, 22], respectively.

Another line of research in recent years is the study of reversible devices. Here, a computation is con-
sidered reversible if every configuration has at most one unique successor configuration and at most one
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unique predecessor configuration. The study of such devices that perform logically reversible computa-
tions is motivated by Landauer’s question of whether logical irreversibility is an unavoidable feature of
useful computers. This question is of particular interest, since Landauer has demonstrated that whenever
a physical computer throws away information about its previous state it must generate a corresponding
amount of entropy that results in heat dissipation. A detailed discussion and suitable references can
be found in [2]. Reversible variants of many computational models have been studied in the literature.
For Turing machines the first investigations on reversible computations date back to the sixties of the
last century. It is shown in the work of Lecerf [17] and Bennett [2] that it is possible for every Turing
machine to construct an equivalent reversible Turing machine. Hence, every irreversible computation
can be made reversible. This is no longer true if finite automata are considered. On the one hand, it is
known that reversible one-way deterministic finite automata are computationally weaker than one-way
deterministic finite automata in general [1] (cf. also [8]). On the other hand, two-way deterministic finite
automata and reversible two-way deterministic finite automata are equally powerful [10]. Similar results
are known for multihead finite automata. In case of one-way motion, the reversible variant is compu-
tationally weaker than the general model ([14]), whereas in case of two-way motion the computational
power of the reversible variant and the general model coincides [19]. Several more types of devices as,
for example, queue automata [16], one-way counter machines with multiple counters [15], and parallel
communicating finite automata [3] have been investigated with respect to reversibility. An overview of
the topic is given in [11].

The aspect of reversibility has been studied for Watson-Crick automata in [4]. One result is that
every regular language can be accepted by a reversible Watson-Crick automaton. Here, it is essential
that the complementarity relation of the double stranded sequence is not one-to-one. If the comple-
mentarity relation is one-to-one, another result of [4] gives that the computational power of reversible
Watson-Crick automata and reversible two-head finite automata ([14]) coincides. In this paper, we study
5′ → 3′ Watson-Crick automata having a one-to-one complementarity relation and to differentiate the
notation from other variants we will call the devices in question two-party Watson-Crick systems. This
paper can be seen as a continuation of [12] where communication restricted two-party Watson-Crick
systems are introduced and a strict four-level hierarchy depending on the number of messages sent
was established, where the levels are given by O(1), O(log(n)), O(

√
n), and O(n) messages allowed.

Moreover, it could be shown that the questions of emptiness, finiteness, inclusion, and equivalence are
not semidecidable, that is, not recursively enumerable, even if the communication is reduced to a limit
O(log(n) · log(log(n))). Here, we complement these results. After defining the model and giving two
illustrating examples in Section 2 we show in Section 3 that there are regular languages which can not be
accepted by any reversible two-party Watson-Crick systems with any amount of communication. This
is in strong contrast to general two-party Watson-Crick systems where no communication is necessary
to accept regular languages. This result can be used in Section 4 in which closure properties are inves-
tigated. It turns out that reversible two-party Watson-Crick systems are closed under complementation
and reversal, whereas they are not closed under union, intersection, intersection with regular languages,
concatenation, iteration, length-preserving homomorphism, and inverse homomorphism. In Section 5,
we can extend the strict four-level hierarchy depending on the number of messages sent from [12] to
reversible two-party Watson-Crick systems. Moreover, we obtain that for every level the reversible sys-
tems are computationally weaker than the general systems. Finally, we discuss in Section 6 decidability
questions. In a first step, we show that the questions of emptiness, finiteness, inclusion, and equiva-
lence are not semidecidable for reversible two-party Watson-Crick systems essentially disregarding the
number of messages communicated. In a second step, we refine the argumentation and apply and adapt
a result from [14] which enables us to show that the questions of emptiness, finiteness, inclusion, and
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equivalence are not semidecidable for reversible two-party Watson-Crick systems even if the number of
messages allowed is bounded by O(log(n) · log(log(n))).

2 Definitions and Preliminaries

We denote the set of nonnegative integers by N. We write Σ∗ for the set of all words over the finite
alphabet Σ. The empty word is denoted by λ , and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

A two-party Watson-Crick system is a device of two finite automata working independently and in
opposite directions on a common read-only input data. The automata communicate by broadcasting mes-
sages. The transition function of a single automaton depends on its current state, the currently scanned
input symbol, and the message currently received from the other automaton. Both automata work syn-
chronously and the messages are delivered instantly. Whenever the transition function of (at least) one
of the single automata is undefined the whole systems halts. The input is accepted if at least one of the
automata is in an accepting state. A formal definition is as follows.

A deterministic two-party Watson-Crick system (DPWK) is a construct A = ⟨Σ,M,▷,◁,A1,A2⟩,
where Σ is the finite set of input symbols, M is the set of possible messages, ▷ /∈ Σ and ◁ /∈ Σ are
the left and right endmarkers, and each Ai = ⟨Qi,Σ,δi,µi,q0,i,Fi⟩, i ∈ {1,2}, is basically a determin-
istic finite automaton with state set Qi, initial state q0,i ∈ Qi, and set of accepting states Fi ⊆ Qi.
Additionally, each Ai has a broadcast function µi : Qi× (Σ∪ {▷,◁})→ M ∪ {⊥} which determines
the message to be sent, where ⊥ /∈ M means nothing to send, and a (partial) transition function
δi : Qi× (Σ∪{▷,◁})× (M∪{⊥})→ Qi×{0,+}, where + means to move the head one square and 0
means to keep the head on the current square.

The automata A1 and A2 are called components of the system A , where the so-called upper compo-
nent A1 starts at the left end of the input and moves from left to right, and the lower component A2 starts
at the right end of the input and moves from right to left. A configuration of A is represented by a string
▷v1
−→p xv2y q←−v3◁, where v1xv2yv3 is the input and it is understood that component A1 is in state p with

its head scanning symbol x, and component A2 is in state q with its head scanning symbol y. System A
starts with component A1 in its initial state scanning the left endmarker and component A2 in its initial
state scanning the right endmarker. So, for input w ∈ Σ∗, the initial configuration is −→q0,1▷w◁q0,2←−

. A

computation of A is a sequence of configurations beginning with an initial configuration. One step from
a configuration to its successor configuration is denoted by ⊢. Let w = a1a2 · · ·an be the input, a0 = ▷,
and an+1 =◁, then we set

a0 · · ·ai−1
−→p ai · · ·a j q←−a j+1 · · ·an+1 ⊢ a0 · · ·ai′−1

−→p1ai′ · · ·a j′q1←−a j′+1 · · ·an+1,

for 0 ≤ i, j ≤ n+ 1, iff δ1(p,ai,µ2(q,a j)) = (p1,d1) and δ2(q,a j,µ1(p,ai)) = (q1,d2), i′ = i+ d1 and
j′ = j−d2. As usual we define the reflexive, transitive closure of ⊢ by ⊢∗.

A computation halts when the successor configuration is not defined for the current configuration.
This may happen when the transition function of one component is not defined. The language L(A )
accepted by a DPWK A is the set of inputs w ∈ Σ∗ such that there is some computation beginning with
the initial configuration for w and halting with at least one component being in an accepting state.

Now we turn to reversible two-party Watson-Crick systems. Basically, reversibility is meant with
respect to the possibility of stepping the computation back and forth. So, the system has also to be back-
ward deterministic. That is, any configuration must have at most one predecessor which, in addition, is
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computable by a two-party Watson-Crick system. In particular for the read-only input tape, the machines
reread the input symbol which they have been read in a preceding forward computation step. Therefore,
for reverse computation steps the head of the upper component is either moved to the left or stays sta-
tionary, whereas the head of the lower component is either moved to the right or stays stationary. One
can imagine that in a forward step, first the input symbol is read and then the input head is moved to its
new position, whereas in a backward step, first the input head is moved to its new position and then the
input symbol is read.

So, a deterministic two-party Watson-Crick system A is said to be reversible (REV-PWK) if and only
if there exist reverse transition functions δ←i : Qi× (Σ∪{▷,◁})× (M∪{⊥})→ Qi×{0,−} and reverse
broadcast functions µ←i : Qi× (Σ∪{▷,◁})→M∪{⊥} inducing a relation ⊢← from a configuration to
its predecessor configuration, such that

a0 · · ·ai′−1
−→p1ai′ · · ·a j′q1←−a j′+1 · · ·an+1 ⊢← a0 · · ·ai−1

−→p ai · · ·a j q←−a j+1 · · ·an+1

if and only if

a0 · · ·ai−1
−→p ai · · ·a j q←−a j+1 · · ·an+1 ⊢ a0 · · ·ai′−1

−→p1ai′ · · ·a j′q1←−a j′+1 · · ·an+1.

In the following, we study the impact of communication in deterministic two-party Watson-Crick
systems. The communication is measured by the total number of messages sent during a computation,
where it is understood that ⊥ means no message and, thus, is not counted.

Let f : N→N be a mapping. If all w∈ L(A ) are accepted with computations where the total number
of messages sent is bounded by f (|w|), then A is said to be communication bounded by f . We denote
the class of DPWKs that are communication bounded by f by DPWK( f ). In case of reversible DPWKs
we have to consider the number of messages sent in reverse computations as well. If all w ∈ L(A ) are
accepted with computations where the total number of messages sent in forward computations and in
reverse computations is each bounded by f (|w|), then A is said to be communication bounded by f and
the corresponding class of REV-PWKs is denoted by REV-PWK( f ).

In general, the family of languages accepted by devices of type X is denoted by L (X). To illustrate
the definitions we start with two examples.
Example 1. The non-regular language L = {anbn | n ≥ 1} is accepted by a REV-PWK. The principal
idea of the construction is that the upper component starts with one time step delay and then moves its
head with maximum speed to the right, whereas the lower component immediately starts to move its
head with maximum speed to the left. Both components communicate in every time step the symbol they
read. When the lower component has read the rightmost a of the a-block after having passed the b-block,
the transition functions ensure that the upper component has to read the leftmost b of the b-block after
having passed the a-block. When the lower component has reached the left endmarker, it waits for one
time step. To accept the input, the upper component has to read the right endmarker in the final step.
In the backward computation the upper component immediately starts, whereas the lower component
starts with with one time step delay. When the upper component has read the rightmost a of the a-block
after having passed the b-block, the transition functions ensure that the lower component has to read the
leftmost b of the b-block after having passed the a-block. Finally, when the upper component has reached
the right endmarker, it waits for one time step. To reach the initial configuration the lower component
has to read the left endmarker in the next time step.

For the precise construction of a REV-PWK accepting the language L = {anbn | n ≥ 1} we define
A = ⟨{a,b},{a,b,▷,◁},▷,◁,A1,A2⟩ where

A1 = ⟨{p0, p1, . . . , p5},{a,b},δ1,µ1, p0,{p5}⟩ and A2 = ⟨{q0,q1, . . . ,q5},{a,b},δ2,µ2,q0,{}⟩.
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The broadcast functions µ1,µ2 and the reverse broadcast functions µ←1 ,µ←2 are defined as
µ1(p,x) = µ←1 (p,x) = x and µ2(q,x) = µ←2 (q,x) = x for all p ∈ {p0, p1, . . . , p5}, q ∈ {q0,q1, . . . ,q5},
and x ∈ {a,b,▷,◁}. The transition functions δ1,δ2 and δ←1 ,δ←2 are as follows.

A1 forward
(1) δ1(p0,▷,◁) = (p1,0)
(2) δ1(p1,▷,b) = (p2,+)

(3) δ1(p2,a,b) = (p2,+)

(4) δ1(p2,a,a) = (p3,+)

(5) δ1(p3,b,a) = (p3,+)

(6) δ1(p3,b,▷) = (p4,+)

(7) δ1(p4,◁,▷) = (p5,0)

A1 backward
(1) δ←1 (p1,▷,◁) = (p0,0)
(2) δ←1 (p2,▷,b) = (p1,−)
(3) δ←1 (p2,a,b) = (p2,−)
(4) δ←1 (p3,a,a) = (p2,−)
(5) δ←1 (p3,b,a) = (p3,−)
(6) δ←1 (p4,b,◁) = (p3,−)
(7) δ←1 (p5,◁,▷) = (p4,0)

A2 forward
(1) δ2(q0,◁,▷) = (q1,+)

(2) δ2(q1,b,▷) = (q2,+)

(3) δ2(q2,b,a) = (q2,+)

(4) δ2(q2,a,a) = (q3,+)

(5) δ2(q3,a,b) = (q3,+)

(6) δ2(q3,▷,b) = (q4,0)
(7) δ2(q4,▷,◁) = (q5,0)

A2 backward
(1) δ←2 (q1,◁,▷) = (q0,−)
(2) δ←2 (q2,b,▷) = (q1,−)
(3) δ←2 (q2,b,a) = (q2,−)
(4) δ←2 (q3,a,a) = (q2,−)
(5) δ←2 (q3,a,b) = (q3,−)
(6) δ←2 (q4,▷,b) = (q3,0)
(7) δ←2 (q5,▷,◁) = (q4,0)

We note that it is shown in [13] that L = {anbn | n≥ 1} is not accepted by any reversible pushdown
automaton. ■

Example 2. The non-context-free language L′= {w$wR$a|w| |w∈ {a,b}∗ } is accepted by a REV-PWK.
Here, the principal idea is that the upper component waits at the left endmarker, while the lower com-
ponent moves across the a-block. Having reached the second $, both components move with maximum
speed and test the structure w$wR by communicating in every time step they read. If no error occurred,
the upper component moves to the second $, while the lower component waits at the first $. Finally, both
components move with maximum speed and test the length of w equals the length of the a-block. The
moving of the components in the backward computation is straightforward. ■

3 Reversibility versus Irreversibility

We now turn to the question of whether reversible two-party Watson-Crick systems are weaker than
irreversible ones or not; it turns out that they are. In fact, there are languages accepted by irreversible
two-party Watson-Crick systems that do not need any communication which cannot be accepted by any
reversible two-party Watson-Crick system regardless of the number of communications. To show this
claim, we will use regular witness languages. Let Σ ⊇ {a,b} be an alphabet and I ⊆ Σ∗ be regular such
that I = IR. Then we define LI = {am1bvbam2 | m1,m2 ≥ 0,v ∈ b∗ or v ∈ I }. So, the words in LI have a
nonempty prefix of a’s, followed by a b, followed by a factor of b’s or a factor from I, followed by a b,
followed by a nonempty suffix of a’s.

Theorem 3. Let Σ⊇ {a,b} and I ⊆ Σ∗. Then language LI is not accepted by any REV-PWK.
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Proof. Assume for the purpose of contradiction that LI is accepted by some REV-PWK A . Since we
do not limit the number of possible communications, we simply assume that both components send a
message at every time step. In this case, for the sake of easier writing, we can assume that there is one
common finite-state control for both components. This control receives a pair of input symbols in every
step, changes the state, and moves the components if required. Now we can argue that the system is
irreversible if there are two reachable states that have a common successor state for the same pair of
input symbols.

We denote this system M, its set of states Q, and its transition function δ . We now consider accepting
computations on words w = axbyaz ∈ LI , where x,y,z are long enough. In a first phase of such a compu-
tation, eventually at least one component has to start to move across the a-prefix or a-suffix. Otherwise
the overall computation would loop forever. Since LI = LR

I , we can safely assume that the upper com-
ponent moves. The lower component may move across the a-suffix or stay stationary on the endmarker
or some a. We choose x and z large enough such that M runs into a state cycle in this phase. Moreover,
we choose z that large that the upper component arrives at the first b after the a-prefix before the lower
component has passed the a-suffix. Let p1, p2, . . . , pk be the state cycle. We can adjust the length of the
prefix such that M moves the upper component on the first b while entering state pk. So, we have a con-
figuration of the form pk : ▷aa · · ·a−→b b · · ·baa · · · σ←−·· · , where the state of M is written in front of ▷, and
σ = a or σ = ◁, and the components are scanning the symbols indicated by the arrows. Next, we can
enlarge z such that M runs again in a state loop while the upper component is reading b’s and the lower
component is reading ◁ or a’s. Assume that the sequence of states passed through is extended from pk by
p′1, p′2, . . . , p′i, p′′1, . . . p′′j , p′′1 . Then we know δ (p′i,(b,σ1)) = (p′′1,d1,d2) and δ (p′′j ,(b,σ2)) = (p′′1,d1,d2),
where d1,d2 indicate whether the components are moved or not. Since M is reversible, we derive
p′1, p′2, . . . , p′i, p′′1, . . . p′′j , p′′1 = p1, p2, . . . , pk, p1 or (b,σ1) ̸= (b,σ2) and, thus, σ1 ̸= σ2 and, hence, σ1 =◁
and σ2 = a. Dependent on whether the loop on the (a,σ)’s is continued on the (b,σ)’s, or the second
possibility, we distinguish two cases. A similar distinction will be made in several sub-cases.

Case A The system M continues to loop through the states p1, p2, . . . , pk while reading (b,σ)’s.
Recall that the current state determines the last movements of the components. Therefore, the upper
component moves across the b’s. Moreover, we can choose y and z again large enough such that the upper
component runs through several loops and M moves the upper component on the first a of the suffix while
entering state pk. So, we have a configuration of the form pk : ▷aa · · ·abb · · ·b−→a a · · ·a σ←−·· · . Now, we
can repeat the argument from above and distinguish the two sub-cases that M continues to loop through
the states p1, p2, . . . , pk, p1, or (a,σ1) ̸= (a,σ2) and, thus, σ1 ̸= σ2 and, hence, σ1 =◁ and σ2 = a.

Case A.1 The system M continues to loop through the states p1, p2, . . . , pk while reading (a,σ)’s. In
this sub-case the upper component may reach the right endmarker before the lower component reaches
the b before the a-suffix. Then the remaining computation of M is that of a finite automaton, that is, of
the lower component. Since the language a∗b∗a∗ is not accepted by any reversible DFA, we obtain a
contradiction.

Therefore, the upper component may reach the right endmarker not before the lower component
reaches the b before the a-suffix. Now, again we can repeat the argument from above and distinguish
the two sub-cases that M continues to loop through the states p1, p2, . . . , pk while moving the lower
component or (a,σ1) must not be equal to (a,σ2) which can be violated by adjusting the value of z. In
this way σ1 = σ2 = a, a contradiction. If, however, M continues to loop through the states p1, p2, . . . , pk,
by almost the same arguments as before we can obtain a contradiction unless M continues to loop through
the states p1, p2, . . . , pk until the lower component has reached the left endmarker. In this case, the
language {a,b}+ is accepted.
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Case A.2 The sequence of states passed through to reach the configuration
pk : ▷aa · · ·abb · · ·b−→a a · · ·a σ←−·· · is extended from state pk by the states q′1,q

′
2, . . . ,q

′
i′ ,q
′′
1, . . .q

′′
j′ ,q
′′
1 , and

we have δ (q′i′ ,(a,σ1)) = (q′′1,d1,d2) and δ (q′′j′ ,(a,σ2)) = (q′′1,d1,d2), and therefore (a,σ1) ̸= (a,σ2)
which implies σ1 =◁ and σ2 = a.

Now, the upper component may or may not reach the right endmarker before the lower component
reaches the b before the a-suffix. We obtain a contradiction almost literally as in Case A.1.

Case B The sequence of states passed through to reach the configuration ▷aa · · ·a−→b b · · ·baa · · · σ←−·· ·
in state pk is extended from pk by p′1, . . . , p′i, p′′1, . . . p′′j , p′′1 . Then we have δ (p′i,(b,σ1)) = (p′′1,d1,d2) and
δ (p′′j ,(b,σ2)) = (p′′1,d1,d2), and therefore, (b,σ1) ̸= (b,σ2) which implies σ1 =◁ and σ2 = a.

Case B.1 If the upper component moves in the state cycle p′′1, . . . p′′j , then we can choose z again large
enough such that the upper component reaches the first a after the b-factor before the lower component
reaches the b before the a-suffix. So, a configuration ▷aa · · ·abb · · ·b−→a a · · · a←−·· · is reached in some
state from the cycle. We obtain a contradiction along the argumentation as in Case A.1.

Case B.2 If the upper component does not move in the state cycle p′′1, . . . p′′j , then a configuration

· · ·−→b b · · · b←−aa · · · is reached in some state from the cycle.
Assume that from here the computation continues in the same state cycle until the lower component

has reached the left endmarker. Then the upper component stays on the current input in this phase,
and the remaining computation of M is that of a finite automaton, that is, of the upper component on
its remaining input of the form b∗a∗, which is not accepted by any reversible DFA. So, we obtain a
contradiction.

We conclude that the computation cannot continue in the same state cycle. If it continues in some
state cycle q′1,q

′
2, . . . ,q

′
i′ ,q
′′
1, . . .q

′′
j′ ,q
′′
1 while both components read b’s, then we have δ (q′i′ ,(b,b)) =

(q′′1,d1,d2) and δ (p′′j′ ,(b,b)) = (p′′1,d1,d2) which violates the reversibility.
If the computation continues in some state cycle q′1,q

′
2, . . . ,q

′
i′ ,q
′′
1, . . .q

′′
j′ ,q
′′
1 after at least one com-

ponent has passed across the b-factor, we obtain a similar contradiction with input pairs (a,b), (b,a),
or (a,a).

This concludes the case analysis. Since in any possible case a contradiction is derived, the initial
assumption that LI is accepted by some REV-PWK is wrong and the assertion follows.

The result of Theorem 3 that there is a regular language that is not accepted by any REV-PWK to-
gether with Example 1 showing that the non-regular language {anbn | n≥ 1} is accepted by a REV-PWK
proves that the class of languages accepted by REV-PWK and the regular languages are incomparable.
Since {anbn | n≥ 1} is a linear and real-time deterministic context-free language, we immediately obtain
the incomparability to the linear context-free languages as well as to the real-time deterministic context-
free languages. It is shown in [13] that every regular language can be accepted by a reversible pushdown
automaton. Moreover, it is shown that the language {anbn | n≥ 1} cannot be accepted by any reversible
pushdown automaton. Hence, the classes of languages accepted by REV-PWK and reversible pushdown
automata are incomparable as well.

4 Closure Properties

The goal of this section is to collect some closure properties of the families L (REV-PWK). For this pur-
pose, the regular languages LI can be used very well in several cases. In particular, we consider Boolean
operations (complementation, union, intersection) and AFL operations (union, intersection with regu-
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lar languages, homomorphism, inverse homomorphism, concatenation, iteration). The positive closure
under reversal is trivial. The results are summarized in Table 1 at the end of the section.

Proposition 4. The family L (REV-PWK) is closed under complementation.

Proposition 5. The family L (REV-PWK) is not closed under union, intersection, and intersection with
regular languages.

Proof. Let Σ= {a,b}. For I = /0, we consider the regular language L /0 = {am1bbm3bam2 |m1,m2,m3≥ 0}.
By Theorem 3, the regular language L /0 does not belong to the family L (REV-PWK). On the other
hand, the language Σ∗ does belong to the family. Since Σ∗ ∩L /0 = L /0, we obtain the non-closure under
intersection with regular languages.

The non-closure under intersection is witnessed by the languages, L1 = {ambbv |m≥ 0,v ∈ {a,b}∗ }
and L2 = {vbbam | m≥ 0,v ∈ {a,b}∗ }.

We show that L1 is accepted by some more or less trivial REV-PWK without any communication as
follows.

The lower component does nothing, that is, it loops in its non-accepting initial state on the right
endmarker. The behavior of the upper component is depicted as a state graph in Figure 1. If and only
if the component has seen a correct prefix of the form a∗bb it halts in an accepting state (the rest of the
input cannot affect the computation result any more and, by definition, there is no need to read it).

q0 q1 q2 q3
▷

a

b bstart

Figure 1: State graph of the upper component of a REV-PWK accepting L1.

Since L2 = LR
1 and the closure of L (REV-PWK) under reversal, we conclude that L2 belongs to

L (REV-PWK) as well. However, L1 ∩ L2 = LI for I = b{a,b}∗b and, thus, the non-closure under
intersection follows.

The non-closure under union follows from the closure under complementation and the non-closure
under intersection by De Morgan’s law.

Proposition 6. The family L (REV-PWK) is not closed under concatenation and iteration.

Proof. The witness language for both operations is L = {anbn | n≥ 1} which belongs to L (REV-PWK)
by Example 1.

For the concatenation we consider L ·L and for the iteration we consider L∗.
Essentially, using a different but similar language, in [18] it is shown that for n long enough both

components have to scan some symbol from each two factors whose lengths have to be compared simul-
taneously. This argument applies also here. However, the two components can simultaneously stay in
two corresponding factors at most for one such pair. This implies that neither the language L ·L nor the
language L∗ is accepted even by any not necessarily reversible DPWK.

Proposition 7. The family L (REV-PWK) is not closed under length-preserving homomorphisms.

Proposition 8. The family L (REV-PWK) is not closed under inverse homomorphisms.
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Family ∪ ∩ ∩reg · ∗ hlen.pres. h−1 R

REV-PWK ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Closure properties of the language families discussed.

5 Restricted Communication

The REV-PWK considered in the previous sections may communicate arbitrarily often. In this section,
we want to consider DPWK and REV-PWK with a restricted amount of communications. According
to the definition in Section 2 we have a function f : N→ N and define that a DPWK is communication
bounded by f if all words w in the language are accepted with computations where the total number
of messages sent is bounded by f (|w|). A REV-PWK is communication bounded by f if, in addition,
the total number of messages sent in reverse computations is bounded by f (|w|) as well. Here, we
will study the language class with constant communication, where f ∈ O(1), the class with logarithmic
communication, where f ∈O(log(n)), the class with square root communication, where f ∈O(

√
n), and

the class with arbitrary, i.e., linear communication, where f ∈ O(n). The relations of these classes have
been investigated for DPWK in [12]. Here, we will complement the results for REV-PWK and clarify
the relations between reversible and general, possibly irreversible, devices. We start with an example
presenting a non-semilinear language that is accepted by a REV-PWK(O(log(n))).

Example 9. The language Lexpo = {a20
ba22

b · · ·ba22m
ca22m+1

b · · ·ba23
ba21 | m ≥ 1} is accepted by a

REV-PWK. The rough idea of the construction is that in a first phase the components compare the
lengths 20 with 21, 22 with 23, . . . , and 22m with 22m+1. The first phase ends when both components
reach the center symbol c. In a second phase, the components compare the length 22m with 22m−1, 22m−2

with 22m−3, . . . , and 22 with 21. To achieve this the lower component has to wait on the c until the upper
component has moved across the block a22m+1

. To realize the comparisons, the upper component moves
across its a-blocks with half speed, whereas the lower component moves across its a-blocks with full
speed, that is, one square per step. The length comparisons in the first and second phase are checked by
communicating when a b, c, or the right endmarker is reached which must happen synchronously.

The length of an accepted input is n = 22m+2 + 2m. There are communications only on symbols
b, c, and ◁ both in forward computations and reverse computations. Hence, there are at most 2m+ 3
communications in forward computations as well as in reverse computations. Thus, the REV-PWK
constructed is a REV-PWK(O(log(n))) and Lexpo belongs to L (REV-PWK(O(log(n)))). ■
Lemma 10. The language Llin = {wcwR | w ∈ {0,1}∗ } belongs to L (REV-PWK(O(n))).

Proof. A REV-PWK accepting Llin will move its both components synchronously towards the middle
marker c as long as the input symbol read and communicated in every step is equal. In case of in-
equivalence the computation halts non-accepting. If both components reach the middle marker c at
the same time, the first task is nearly accomplished. It remains for the lower component to read the
input completely and to halt non-accepting in case of another symbol c occurring. Since both com-
ponents move synchronously and communicate in every step, it is clear that Llin can be accepted by a
REV-PWK(O(n)).

As a combination of Example 9 and Lemma 10 we obtain the following lemma.
Lemma 11. L̂expo = {a20

x1a22
x2 · · ·xma22m

ca22m+1
xm · · ·x2a23

x1a21 | m ≥ 1 and xi ∈ {0,1},1 ≤ i ≤ m}
belongs to L (REV-PWK(O(log(n)))).
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Proof. It can be observed from the construction in Example 9 that in the first phase both components
communicate on every symbol b and c. So, on the corresponding input from L̂expo both components
can communicate on every symbol 0, 1, and c in order to simulate the REV-PWK accepting Llin as a
subtask.

With similar ideas it is possible to show the following lemma.
Lemma 12. L̂poly = {ax1a5x2 · · ·xma4m+1ca4m+3xm · · ·x2a7x1a3 | m≥ 0 and xi ∈ {0,1},1 ≤ i ≤ m} be-
longs to L (REV-PWK(O(

√
n))).

It is shown in [12] that Llin does not belong to L (DPWK(O( f ))) if f ∈ n
ω(log(n)) . Hence, Llin

does not belong to L (REV-PWK(O(
√

n))). It is also shown in [12] that L̂poly does not belong to
L (DPWK(O( f ))) if f ∈ O(log(n)). Thus, L̂poly does not belong to L (REV-PWK(O(log(n)))). Fi-
nally, it is known due to [12] that every language in L (DPWK(O(1))) is semilinear. Since L̂expo is
not semilinear, it does not belong to L (REV-PWK(O(1))). Together with Lemma 10, Lemma 11, and
Lemma 12 we obtain the following proper hierarchy:

L (REV-PWK(O(1)))⊂L (REV-PWK(O(log(n))))⊂
L (REV-PWK(O(

√
n)))⊂L (REV-PWK(O(n)))

Theorem 3 presents a regular language that is not accepted by any REV-PWK(O(n)). Since the regu-
lar languages belong to L (DPWK(O(1))) we immediately obtain proper inclusions between reversible
and general language classes with the same amount of communication. These results and the other results
of this section are summarized in Figure 2.

L (REV-PWK(O(n))) L (DPWK(O(n)))

L (REV-PWK(O(
√
n))) L (DPWK(O(

√
n)))

L (REV-PWK(O(log(n)))) L (DPWK(O(log(n))))

L (REV-PWK(O(1))) L (DPWK(O(1)))

REG

Figure 2: Relationships between language families induced by two-party Watson-Crick systems. An
arrow between families indicates a strict inclusion.

6 Decidability Questions

In this section, we will discuss several decidability questions for REV-PWK. It has been shown in [12]
that the questions of emptiness, finiteness, inclusion, and equivalence are decidable for general, possibly
irreversible, DPWK in case of a finite number of communications. This result leads immediately to the
following decidability results for REV-PWK in case of a finite number of communications.
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Theorem 13. Let k ≥ 0 be a constant. Then emptiness, finiteness, inclusion, and equivalence are decid-
able for REV-PWK(k).

Next, we want to obtain that the decidability questions become undecidable if a non-constant number
of communications is used. In a first step, we show that the questions of emptiness, finiteness, inclusion,
and equivalence are undecidable and, moreover, not even semidecidable for REV-PWK in case of a linear
number of communications used. In a second step, we will obtain the same non-semidecidability results
with a superlogarithmic number of communications used.

It has been shown in [14] that the questions of testing emptiness, finiteness, inclusion, and equiva-
lence are not semidecidable for reversible two-head finite automata. The difference between such au-
tomata and DPWK is that the former move their two heads in the same direction from left to right,
whereas the latter move both heads in opposite directions. Now, the idea is to simulate a reversible
two-head finite automaton by a REV-PWK.

The non-semidecidability results for reversible two-head finite automata are obtained by showing
that the set VALCM of suitably encoded valid computations of a deterministic linearly space bounded
one-tape, one-head Turing machine M, so-called linear bounded automaton (LBA) can be accepted by a
reversible two-head finite automaton. It should be noted that the due to technical reasons the definition
of the set VALCM in [14] considers valid computations on inputs of length at least 2.

Now, we will construct a REV-PWK(O(n)) that accepts the set VALC′M = {wRcw | w ∈ VALCM },
where the set VALCM is defined over some alphabet A and c ̸∈ A is a new symbol.

Lemma 14. Let M be an LBA. Then, a REV-PWK(O(n)) accepting VALC′M can effectively be con-
structed.

Proof. Let M be an LBA. A REV-PWK M′ accepting VALC′M has to accomplish two tasks. First, M′ will
test the structure wRcw disregarding whether w belongs to VALCM or not. To achieve this task we use
a similar approach as described in the proof of Lemma 10. Both components will move synchronously
towards the middle marker c as long as the input symbol read and communicated in every step is equal.
The structure wRcw is correctly tested, if both components reach the middle marker c at the same time.
Then, the first task is nearly accomplished, but it remains for the lower component, while accomplishing
the second task, to read the input completely and to halt non-accepting in case of another symbol c
occurring. Since both components move synchronously and communicate in every step, it is clear that
the first task can be realized by a REV-PWK(O(n)).

For the second task, we first observe that the remaining input for both components is the same
word w and it remains to be checked whether or not w belongs to VALCM. This can now be realized
by implementing the construction given in [14] for two-head finite automata. The head 1 is simulated
by the upper component and head 2 is simulated by the lower component, whereby the middle marker c
is interpreted as the left endmarker for the two-head finite automaton. In this construction the lower
component reads the input completely and can halt non-accepting if another symbol c is read. Since the
two-head finite automaton is reversible, the second task and, therefore, the complete construction can be
realized by a REV-PWK(O(n)).

This leads immediately to the following non-semidecidability results.

Theorem 15. The problems of testing emptiness, finiteness, inclusion, and equivalence are not semide-
cidable for a given REV-PWK(O(n)).

Proof. Let M be an LBA accepting inputs over the alphabet Σ. According to Lemma 14 we can effec-
tively construct a REV-PWK(O(n)) M′ accepting VALC′M. Clearly, L(M′) = VALC′M is empty if and
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only if VALCM is empty if and only if L(M) is either empty or contains some words from the finite
set {λ} ∪ Σ. The latter words have to be considered, since M may accept words of length less than
two. Since the word problem is decidable for LBAs and emptiness is not semidecidable for LBAs, the
non-semidecidability of emptiness follows.

We also obtain that L(M′) = VALC′M is finite if and only if VALCM is finite if and only if L(M) is
finite. Since finiteness is not semidecidable for LBAs, the non-semidecidability of finiteness follows.

Finally, it is easy to effectively construct a REV-PWK(1) that accepts nothing. Hence, the non-
semidecidability of equivalence and inclusion follows immediately.

Our next step is to obtain these non-semidecidability results also for REV-PWK with less communi-
cation. Our approach is to define another variant of VALC′M in which the length of each configuration
is enlarged while the same amount of communication is being kept. A similar approach has been used
in [12] for general, possibly irreversible, DPWK. However, here the details are quite different and more
complicated since the construction has to be reversible. The detailed and lengthy construction is omitted
here. With all these prerequisites it is possible to show the following theorem.

Theorem 16. The problems of testing emptiness, finiteness, inclusion, and equivalence are not semide-
cidable for a given REV-PWK(O(log(n) · log(log(n)))).
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pp. 2597–2600.

[18] Peter Leupold & Benedek Nagy (2010): 5′→ 3′ Watson-Crick Automata with Several Runs. Fund. Inform.
104, pp. 71–91, doi:10.3233/FI-2010-336.

[19] Kenichi Morita (2011): Two-Way Reversible Multi-Head Finite Automata. Fund. Inform. 110, pp. 241–254,
doi:10.3233/FI-2011-541.

[20] Benedek Nagy (2007): On 5′ → 3′ Sensing Watson-Crick Finite Automata. In: DNA Computing, LNCS
4848, Springer, pp. 256–262, doi:10.1007/978-3-540-77962-9 27.

[21] Benedek Nagy (2013): On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata languages. J. Log.
Comput. 23, pp. 855–872, doi:10.1093/logcom/exr049.

[22] Benedek Nagy (2020): 5′→3′ Watson-Crick pushdown automata. Inf. Sci. 537, pp. 452–466,
doi:10.1016/j.ins.2020.06.031.
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