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The study of the operational complexity of minimal pumping constants started in [J. DASSOW and

I. JECKER. Operational complexity and pumping lemmas. Acta Inform., 59:337–355, 2022], where

an almost complete picture of the operational complexity of minimal pumping constants for two

different variants of pumping lemmata from the literature was given. We continue this research by

considering a pumping lemma for regular languages that allows pumping of sub-words at any posi-

tion of the considered word, if the sub-word is long enough [S. J. SAVITCH. Abstract Machines and

Grammars. 1982]. First we improve on the simultaneous regulation of minimal pumping constants

induced by different pumping lemmata including Savitch’s pumping lemma. In this way we are able

to simultaneously regulate four different minimal pumping constants. This is a novel result in the

field of descriptional complexity. Moreover, for Savitch’s pumping lemma we are able to completely

classify the range of the minimal pumping constant for the operations Kleene star, reversal, comple-

ment, prefix- and suffix-closure, union, set-subtraction, concatenation, intersection, and symmetric

difference. In this way, we also solve some of the open problems from the paper that initiated the

study of the operational complexity of minimal pumping constants mentioned above.

1 Introduction

Pumping lemmata are fundamental to the study of formal languages. An annotated bibliography on

variants of pumping lemmata for regular and context-free languages is given in [9]. One variant of

the pumping lemma states that for any regular language L, there exists a constant p (depending on L)

such that any word w in the language of length at least p can be split into three parts w = xyz, where y

is non-empty, and xytz is also in the language, for every t ≥ 0—see Lemma 1. By the contrapositive

one can prove that certain languages are not regular. Since the aforementioned pumping lemma is only

a necessary condition, it may happen that such a proof fails for a particular language such as, e.g.,

{ambncn | m ≥ 1 and n ≥ 0}∪{bmcn | m,n ≥ 0}. The application of pumping lemmata is not limited to

prove non-regularity. For instance, they also imply an algorithm that decides whether a regular language

is finite or not. A regular language L is infinite if and only if there is a word of length at least p, where p

is the aforementioned constant of the pumping lemma.1 Here a small p is beneficial. Thus, for instance,

the question arises on how to determine a small or smallest value for the constant p such that the pumping

lemma is still satisfied.

For a regular language L the value of p in the above-mentioned pumping lemma can always be chosen

to be the number of states of a finite automaton, regardless whether it is deterministic or nondeterministic,

accepting L. Consider the unary language ana∗, where all values p with 0 ≤ p ≤ n do not satisfy the

property of the pumping lemma, but p = n+1 does. A closer look on some example languages reveals

that sometimes a much smaller value suffices. For instance, consider the language

L = a∗+a∗bb∗+a∗bb∗aa∗+a∗bb∗aa∗bb∗,

1For the other pumping lemma constants p considered in this paper, the statement on infiniteness can be strengthened to: a

regular language L is infinite if and only if there is a word of length ℓ with p < ℓ ≤ 2p. This also holds true if p refers to the

deterministic state complexity of a language.
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which is accepted by a (minimal) deterministic finite automaton with five states, the sink state included,

but already for p = 1 the statement of the pumping lemma is satisfied. It is easy to see that regardless

whether the considered word starts with a or b, this letter can be readily pumped. Thus, the minimal

pumping constant satisfying the statement of pumping lemma for the language L is 1, because the case

p = 0 is equivalent to L = /0. This leads to the notation of a minimal pumping constant for a language L

w.r.t. a particular pumping lemma, which is the smallest number p such that the pumping lemma under

consideration for the language L is satisfied.

Recently minimal pumping lemmata constants were investigated from a descriptional complexity

perspective in [2]. Besides basic facts on these constants for two specific pumping lemmata [1, 6, 8, 10]

their relation to each other and their behaviour under regularity preserving operations was studied in

detail. In fact, it was proven that for three natural numbers p1, p2, and p3 with 1 ≤ p1 ≤ p2 ≤ p3, there is

a regular language L over a growing size alphabet such that mpc(L) = p1, mpl(L) = p2, and sc(L) = p3,

where mpc (mpl, respectively) refers to the minimal pumping constant induced by the pumping lemma

from [8] (from [1, 6, 10], respectively) and sc is the abbreviation of the deterministic state complexity.

This simultaneous regulation of three measures is novel in descriptional complexity theory. For the exact

statements of the pumping lemmata mentioned above we refer to Lemma 1 and its following paragraph.

The operational complexity of pumping or pumping lemmata for an n-ary regularity preserving opera-

tion ◦ undertaken in [2] is in line with other studies on the operational complexity of other measures for

regular languages such as the state complexity or the accepting state complexity to mention a few. The

operational complexity of pumping is the study of the set g◦(k1,k2, . . . ,kn) of all numbers k such that

there are regular languages L1,L2, . . . ,Ln with minimal pumping complexity k1,k2, . . . ,kn, respectively,

and the language L1 ◦L2 ◦ · · · ◦Ln has minimal pumping complexity k. In [2] a complete picture for the

operational complexity w.r.t. the pumping lemma from [8] (measure mpc) for the operations Kleene clo-

sure, complement, reversal, prefix and suffix-closure, circular shift, union, intersection, set-subtraction,

symmetric difference, and concatenation was given—see Table 1 on page 138. However, for the pumping

lemma from [1, 6, 10] (measure mpl) some results from [2] are only partial (set-subtraction and sym-

metric difference) and others even remained open (circular shift and intersection); for comparison see

the table mentioned above. The behaviour of these measures differ with respect to finiteness/infinity of

ranges, due to the fact that for the pumping lemma from [1, 6, 10] the pumping has to be done within a

prefix of bounded length.

This is the starting point of our investigation. As a first step we improve on the above mentioned

result on the simultaneous regulation of minimal pumping constants showing that already a binary lan-

guage suffices. If we additionally also consider a fourth measure (mps) induced by the pumping lemma

from [11], we obtain a similar result for a quinary language. Thus, we are able to regulate four de-

scriptional complexity measures simultaneously on a single regular language. Savitch’s pumping lemma

allows pumping of sub-words at any position of the considered word, if the sub-word is long enough—

see Lemma 3. Moreover, the outcome of our study on the operational complexity of pumping presents

a comprehensive view for the previously mentioned operations. In passing, we can also solve all the

partial and open problems from [2], completing the overall picture for the three pumping lemmata in

question—see the gray shaded entries in Table 1 on page 138. This provides a full understanding of the

operational complexity of these pumping lemmata. it is worth mentioning that the obtained result are

very specific to the considered pumping lemmata—compare with [3, 5] where descriptional and compu-

tational complexity aspects of Jaffe’s pumping lemma [7] are considered. For instance, the simultaneous

regulation of pumping constants involving those satisfying Jaffe’s pumping lemma seems to be much

more complicated, since only the deterministic state complexity can serve as an upper bound, while the

nondeterministic state complexity becomes incomparable. Due to space constraints almost all proofs are
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omitted; they can be found in the full version of this paper.

2 Preliminaries

We recall some definitions on finite automata as contained in [4]. Let Σ be an alphabet. Then, as usual Σ∗

refers to the set of all words over the alphabet Σ, including the empty word λ , and Σ≤k denotes the set of

all words of length at most k. For a word w = a1a2 . . .an ∈ Σ∗ and a natural number k ≥ 1 we refer to the

word a1a2 . . .ak, if k ≤ n, and a1a2 . . .an, otherwise, as the k-prefix of w. If k = 0, then λ is the unique

0-prefix of any word. Analogously one can define the k-suffix of a word w.

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, · ,q0,F), where Q is the finite set

of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting

states, and the transition function · maps Q×Σ to Q. The language accepted by the DFA A is defined

as L(A) = {w ∈ Σ∗ | q0 ·w ∈ F }, where the transition function is recursively extended to a mapping

Q×Σ∗ → Q in the usual way. Finally, a finite automaton is unary if the input alphabet Σ is a singleton set,

that is, Σ = {a}, for some input symbol a. The deterministic state complexity of a finite automaton A with

state set Q is referred to as sc(A) := |Q| and the deterministic state complexity of a regular language L

is defined as

sc(L) = min{sc(A) | A is a DFA accepting L, i.e., L = L(A)}.

A finite automaton is minimal if its number of states is minimal with respect to the accepted lan-

guage. It is well known that each minimal DFA is isomorphic to the DFA induced by the Myhill-Nerode

equivalence relation. The Myhill-Nerode equivalence relation ∼L for a language L ⊆ Σ∗ is defined as

follows: for u,v ∈ Σ∗ let u ∼L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗. The equivalence class

of u is referred to as [u]L or simply [u] if the language is clear from the context and it is the set of all

words that are equivalent to u w.r.t. the relation ∼L, i.e., [u]L = {v | u ∼L v}.

Regular languages satisfy a variety of different pumping lemmata—for a comprehensive list of pump-

ing or iteration lemmata we refer to [9]. A well known pumping lemma variant can be found in [8,

page 70, Theorem 11.1]:

Lemma 1. Let L be a regular language over Σ. Then, there is a constant p (depending on L) such that

the following holds: If w ∈ L and |w| ≥ p, then there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that

w = xyz and xytz ∈ L for t ≥ 0—it is then said that y can be pumped in w. Let mpc(L) denote the smallest

number p satisfying the aforementioned statement.

The above lemma can be slightly modified with the condition |xy| ≤ p, which can be found in [10,

page 119, Lemma 8], [1, page 252, Folgerung 5.4.10], and [6, page 56, Lemma 3.1]. Analogously, to mpc

one defines mpl(L), as the smallest number p satisfying the statement of the modified pumping lemma.

Recently, pumping lemmata were considered in [2], where besides some simple facts such as

1. mpc(L) = 0 if and only if mpl(L) = 0 if and only if L = /0,

2. for every non-empty finite language L we have mpc(L) = mpl(L) = 1+max{|w| | w ∈ L},

3. mpc(L) = 1 implies λ ∈ L, and

4. if mpl(L) = 1, then L is suffix closed,2

2A language L ⊆ Σ∗ is suffix closed if L = {x | yx ∈ L, for some y ∈ Σ∗ }, i.e., the word x is a member of L whenever yx is

in L, for some y ∈ Σ∗.
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also the inequalities

mpc(L)≤ mpl(L)≤ sc(L)

and results on the operational complexity w.r.t. these minimal pumping constants were shown. The upper

bound on the minimal pumping constants by the deterministic state complexity is obvious. Moreover,

in [2] it was also proven that for three natural numbers p1, p2, and p3 with 1 ≤ p1 ≤ p2 ≤ p3, there is a

regular language L such that mpc(L) = p1, mpl(L) = p2, and sc(L) = p3. The witness language to prove

this result is in almost all cases, except for p2 = p3,

L = bp1−1(ap2−p1+1)∗+ c∗1 + c∗2 + · · ·+ c∗p3−p2−1,

while for the remaining case a unary language is given. Hence, L is a language over an alphabet of

growing size. We improve on this result, showing that already a binary language can be used. Moreover,

we also fix a simple flaw3 on the size of the automaton in case p1 = p2 = 1 and p2 < p3 in the original

proof given in [2].

Theorem 2. Let p1, p2, and p3 be three natural numbers with 1 ≤ p1 ≤ p2 ≤ p3. Then, there is a regular

language L over a binary alphabet such that mpc(L) = p1, mpl(L) = p2, and sc(L) = p3.

Proof. First we define some useful languages. For k ≥ 1 let

B
(+)
k =

{

b+(a∗b∗)(k−1)/2, if k is odd,

b+(a∗b∗)(k−2)/2a∗, if k is even,

and

B
(∗)
k =

{

b∗(a∗b∗)(k−1)/2, if k is odd,

b∗(a∗b∗)(k−2)/2a∗, if k is even,

be languages over the alphabet Σ = {a,b}. Observe that in all cases there are k−1 alternations between

the blocks. Thus, e.g., B
(∗)
3 = b∗a∗b∗ and B

(+)
4 = b+a∗b∗a∗. In case k = 0 the languages B

(+)
k and B

(∗)
k

are set to /0. Observe that B
(+)
k +λ is not equal to B

(∗)
k .

Now we are ready for the proof. We distinguish whether p2 = 1 (this implies that p1 = p2 = 1)

or p2 = p3 (which implies p1 ≤ p2 = p3) or p2 /∈ {1, p3}.

1. Case p1 = p2 = 1. For p3 = 1,2 we simply use the DFAs accepting the languages Σ∗, a∗, respec-

tively, for Σ = {a,b} being the input alphabet of those automata. For p3 ≥ 3 we observe that the

languages B
(∗)
p3−1 fulfill mpc(B

(∗)
p3−1) = mpl(B

(∗)
p3−1) = p1 = p2 = 1 since each accepted word can

be pumped by its first letter. Additionally those languages are accepted by the DFA A shown in

Figure 1—the non-accepting sink state is not shown. It is not hard to see that for each state of A

3For 1 ≤ p1 ≤ p2 ≤ p3 let

L = bp1−1(ap2−p1+1)∗+c∗1 +c∗2 + · · ·c∗p3−p2−1,

over the alphabet {a,b} ∪ {ci | 1 ≤ i ≤ p3 − p2 − 1}. For p1 = p2 = 1 consider the above given language. In case p3 = 2

we get the language L = a∗ over the alphabet {a,b}, which requires a minimal DFA with 2 states and in case p3 ≥ 3 we

have L = a∗+ c∗1 + c∗2 + · · ·+ c∗p3−2 over the alphabet {a,b}∪ {ci | 1 ≤ i ≤ p3 − 2}. Note that p3 − 2 ≥ 1 since p3 ≥ 3 and

therefore the latter set in the union of the alphabet letters is non-empty. Thus, the minimal DFA accepting the language L

has p3 +1 states, which are responsible for the Myhill-Nerode equivalence classes [λ ] = {λ}, [a] = a+, [c1] = c+1 , [c2] = c+2 ,

. . . , [cp3−2] = c+p3−2, and finally the equivalence class [b] = {w | w ∈ b+ or w contains at least two different letters}. Observe,

that all equivalence classes are accepting, except the class [b], which represents the non-accepting sink state. Hence in case

p1 = p2 = 1 and p2 < p3 the statement on the number of states of the minimal DFA accepting the language L presented in [2]

is off by one state. The claims on the minimal pumping constants mpc and mpl for L are correct. Note that the case p3 = 1 is

shown in [2] with the help of a unary language.
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q0 q1 q2 q3 qp3−2
a b a

ab a b a

Figure 1: The automaton A for p1 = p2 = 1 and p3 − 1 even, where the non-accepting sink state qp3−1

and all transitions to it are not shown. Recall, that the letter on the transition to qp3−2 depend on the

parity of p3 −2.

there is a unique shortest word that maps the state onto the non-accepting state. Therefore we have

that A is minimal and sc(B
(∗)
p3−1) = sc(A) = p3.

2. Case p1 ≤ p2 = p3. In this case we define the unary DFA

A = ({q0,q1, . . . ,qp3−1},{a}, ·A ,q0,{qp1−1}),

with qi ·A a = qi+1 mod p3
, for 0 ≤ i ≤ p3−1. By inspecting Figure 2 which shows A it is not hard to

see that L(A) = {ap2·i+p1−1 | i ≥ 0} and that A is already minimal; thus sc(L(A)) = p3. So every

q0 q1 qp1−1 qp1
qp3−1

a a a a

a

Figure 2: The unary automaton A for p1 < p2 = p3.

word in the language L(A) that has length greater or equal p1 contains the sub-word ap2 which

implies that it is pumpable. On the other hand the word ap1−1 cannot be pumped since it is the

shortest accepting word; hence it cannot be shortened by pumping. Therefore mpc(L(A)) = p1

and mpl(L(A)) = p2.

3. Case p2 /∈ {1, p3}. We define the language

L = bp1−1(ap2−p1+1)∗(B
(+)
p3−p2−1 +λ ).

This language is accepted by the DFA shown in Figure 3; again the non-accepting sink state is

not shown. Observe that each state qi, for i ∈ {0,1, . . . , p2 − 1} \ {p1 − 1}, is only mapped by

one letter onto a state that is unequal to the sink state while this is not true for each state qi,

for i ∈ {p2, p2 +1, . . . , p3 −3, p1 −1}. Then one can easily prove that this DFA is minimal. Thus,

the automaton A has p3 states. Further we observe that the word bp1−1 is in L but it cannot be

pumped since no shorter word is in L. Therefore, mpc(L) ≥ p1. Additionally we observe that

w ∈ bp1−1(ap2−p1+1)+ is a word in L which is only pumpable by ap2−p1+1. Since the shortest

prefix of w that ends with ap2−p1+1 has length p2 we obtain that mpl(L) ≥ p2. Clearly we can

pump all words in bp1−1(ap2−p1+1)+B
(+)
p3−p2−1 in the same way which implies that none of these

words has an impact on mpc(L) and mpl(L). Last we see that all words in bp1−1B
(+)
p3−p2−1 can be

pumped by their first letter or by their (p1 +1)th letter, respectively, for p1 = p2 and p1 < p2. So

we obtain that all words in L which have length at least p1 can be pumped by a sub-word in their

prefix of length at most p2. Thus, we have mpc(L) = p1 and mpl(L) = p2.
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q0 q1 qp1−1 qp1
qp2−1

qp2
qp2+1 qp3−2

b b a a

a

b

a

b a b

Figure 3: The automaton A for the language L in case p3 − p2 −1 is odd, where the non-accepting sink

state qp3−1 and all transitions to it are not shown. In case p3− p2−1 is even the lower sub-chain of states

looks similar by alternatively reading a’a and b’s, has appropriate self-loops on the states, and end with

the letter a.

This completes the construction and proves the stated claim for languages over a binary alphabet.

The previous theorem is best possible w.r.t. the alphabet size, because for unary languages there

are infinitely many combinations of minimal pumping constants like, e.g., mpc(L) = mpl(L) = 1 and

sc(L)≥ 2, which cannot be achieved by any unary language L. This is due to the fact that if mpl(L) = 1,

then the language L is suffix-closed, and {a}∗ is the only suffix-closed unary language. It is not hard to

prove that Theorem 2 is also valid if the nondeterministic state complexity instead of the deterministic

state complexity is considered.

3 Results on Sub-Word Pumping

Let us first introduce a pumping lemma which is a straight forward generalization of Lemma 1 with the

additional |xy| ≤ p condition. The lemma can be found in [11, page 49, Theorem 3.10] and reads as

follows— roughly speaking, this pumping lemma allows pumping of sub-words, whose length is large

enough, at any position of the considered word; hence we sometimes speak of sub-word pumping.

Lemma 3. Let L be a regular language over Σ. Then there is a constant p (depending on L) such that

the following holds: If w̃ = uwv ∈ L and |w| ≥ p, where u and v are any (possibly empty) words, then

there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz, |xy| ≤ p, and uxyt zv ∈ L for t ≥ 0.

Similarly as for the aforementioned pumping lemmata, one can define the minimal pumping con-

stant mps(L), for a regular language, as the smallest number p that satisfies the condition of Lemma 3

when considering L. Observe, that the condition of the lemma requires that any sub-word that is long

enough can be pumped.

3.1 Comparing mps to Other Minimal Pumping Constants

We first prove some basic properties:

Lemma 4. Let L be a regular language over Σ. Then

• mps(L) = 0 if and only if L = /0, and

• mps(L) = 1, implies that L is prefix- and suffix-closed.4

4Moreover, mps(L) = 1, also implies that L is factor-closed. A regular language L is factor-closed if L contains all factors

of all words w ∈ L. We call wi1 wi2 . . .wik a factor of the word w1w2 . . .wn if 1 ≤ i1 < i2 < · · ·< ik ≤ n are natural numbers.
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Proof. First we observe that there are no words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that |xy| ≤ 0. This

implies directly that the statement of Lemma 3 is fulfilled for p = 0 and the language L if and only

if L = /0. Next we have that mps(L) = 1 implies that for all w with |w| ≥ 1 and all words u,v ∈ Σ∗ such

that w̃ = uwv ∈ L there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz, |xy| ≤ 1, and uxyt zv ∈ L

for t ≥ 0. In especially this holds for w ∈ Σ which implies that y = w. Since uxy0zv = uxzv ∈ L for all

letters y = w ∈ Σ and all (possibly empty) words u and v we obtain that each word w̃ of L can be pumped

by each of its letters, i.e, by each letter of each prefix and each suffix of w̃. Hence, L is prefix- and

suffix-closed.

Next we want to compare mps with the other minimal pumping constants considered in [2]. We find

the following situation—similarly as in Theorem 2 the nondeterministic state complexity is also an upper

bound:

Theorem 5. Let L be a regular language L over Σ. Then mpc(L)≤ mpl(L)≤ mps(L)≤ sc(L).

Proof. It suffices to show mpl(L) ≤ mps(L) ≤ sc(L). For the first inequality observe that if we set u =
v = λ in Lemma 3 we obtain statement of Lemma 1 with the additional length condition |xy| ≤ p, which

implies that mpl(L) ≤ mps(L). Finally, the sc(L) upper bound is immediate by the proof of the lemma

given in [11, page 49, Theorem 3.10].

Now the question arises whether we can come up with a similar result as stated in Theorem 2, but

now also taking the minimal pumping constant w.r.t. Lemma 3 into account. The following Theorem

will be very useful for this endeavor; a similar statement was shown in [5] for the minimal pumping

constant w.r.t. Jaffe’s pumping lemma [7], a pumping lemma that is necessary and sufficient for regular

languages.

Theorem 6. Let A = (Q,Σ, ·A ,q0,F) be a minimal DFA, state q ∈ Q, and letter a ∈ Σ. Define the finite

automaton B = (Q,Σ, ·B ,q0,F) with the transition function ·B that is equal to the transition function

of ·A, except for the state q and the letter a, where q ·B a = q. Then, K(L(B)) ≤ K(L(A)) for K ∈
{mpc,mpl,mps}.

Proof. Obviously we have that in each word of the form w = xaz with q0 ·B x = q the (|x|+1)st letter can

be pumped, because by construction

w = xazv ∈ L(B) if and only if xatzv ∈ L(B),

for all t ≥ 0 and each v ∈ Σ∗. On the other hand the change of the a-transition of q does not affect

all other words not satisfying the above property. On these words the pumping is that of the pumping

induced by the device A. Thus, we conclude that the three mentioned minimal pumping constants for the

language L(B) are bounded by the according ones of A.

Observe, that the statement of Lemma 3 for the constant n can also be understood as follows: for

each word w̃ in L and each sub-word w of w̃ with length at least n there is a sub-word y of w such that y

can be pumped in w̃. We will use this alternative version of Lemma 3 in the lemmata to come without

further notice.

Theorem 7. Let p1, p2, p3, and p4 be four natural numbers with 1 ≤ p1 ≤ p2 ≤ p3 ≤ p4. Then, there

is a regular language L over a quinary alphabet such that mpc(L) = p1, mpl(L) = p2, mps(L) = p3, and

sc(L) = p4 holds.
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Proof. By taking an intense look at the constructions shown in the proof of Theorem 2 we observe

that mpl(L) = mps(L) holds for all used languages L. Therefore we safely assume for the rest of the

proof that p2 < p3. On the other hand we distinguish for the proof whether p3 ≤ p4 − 1 or p3 = p4. In

the former case we additionally differ between p1 = 1 or p1 ≥ 2. Since the constructions in all cases are

adaptions of the case p3 ≤ p4 −1 and p1 ≥ 2 we give all constructions next.

We define the automaton A = ({q0,q1, . . . ,qp4−1},{a,b,c,d,e}, · ,q0,{qp1−1}∪F) with the state set

F = {qi | p3 ≤ i ≤ p4 − 2}, if p1 = 1, and F = {qi | p3 − 1 ≤ i ≤ p4 − 2}, otherwise. The transition

function of A depends on the relation of p3 and p4. For p3 = p4 we set

q2i ·a = q2i+1, for 0 ≤ i ≤ (p3 −2)÷2,

q2i+1 · c = q2i+2, for 0 ≤ i ≤ (p3 −3)÷2,

qi ·b = qi−1, for 1 ≤ i ≤ p3 −1,

qi ·d = qi+1 mod p2
, for 0 ≤ i ≤ p2 −1.

On the other hand we set for p3 ≤ p4 −1 and p1 ≥ 2,

q2i ·a = q2i+1, for 0 ≤ i ≤ (p3 −3)÷2,

q2i+1 ·a = q2i+1, for 0 ≤ i ≤ (p3 −3)÷2,

qi ·b = qi−1, for 1 ≤ i ≤ p3 −2,

q2i−1 · c = q2i, for 1 ≤ i ≤ (p3 −2)÷2,

q2i · c = q2i, for 0 ≤ i ≤ (p3 −2)÷2,

qp3+2i−1 · c = qp3+2i, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i · c = qp3+2i, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qi ·d = qi+1 mod p2
, for 0 ≤ i ≤ p2 −1,

q0 · e = qp3−1,

qp3+2i−1 · e = qp3+2i−1, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i · e = qp3+2i+1, for 0 ≤ i ≤ (p4 − p3 −1)/2−1.

For p3 ≤ p4 − 1 and p1 = 1 we elongate the chain of states which are reachable by applying words

from {a,c}∗ to q0 by setting

q2i ·a = q2i+1, for 0 ≤ i ≤ (p3 −2)÷2

q2i+1 ·a = q2i+1, for 0 ≤ i ≤ (p3 −2)÷2,

qi ·b = qi−1, for 1 ≤ i ≤ p3 −1

q2i−1 · c = q2i, for 1 ≤ i ≤ (p3 −1)÷2,

q2i · c = q2i, for 0 ≤ 0 ≤ (p3 −1)÷2,

qp3+2i · c = qp3+2i+1, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i−1 · c = qp3+2i−1, for 1 ≤ i ≤ (p4 − p3 −1)/2−1,

qi ·d = qi+1 mod p2
, for 0 ≤ i ≤ p2 −1,

q0 · e = qp3
,

qp3+2i · e = qp3+2i, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i−1 · e = qp3+2i, for 1 ≤ i ≤ (p4 − p3 −1)/2−1.
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Additionally to the previously explicitly given transitions we set all other transitions to be transitions

to the non-accepting sink state qp4−1 for p3 ≤ p4 −1 and for p3 = p4 we set them to be self-loops. The

automaton A is depicted in Figure 4 for the case p3 ≤ p4 −1, p1 ≥ 2 (on top), if p3 ≤ p4 −1, p1 = 1 (in

the middle) and for the case p3 = p4 (on the bottom). We will use small claims for making it easier to

q0 q1 q2 q3 qp1−2 qp1−1 qp2−2 qp2−1 qp2

qp3−3qp3−2

qp3−1 qp3
qp4−2

a,d

b,c

c,d
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Figure 4: The automaton A for the case p3 ≤ p4−1, p1 ≥ 2 (on top), if p3 ≤ p4−1, p1 = 1 (in the middle)

and for the case p3 = p4 (on the bottom). For the first two cases the state qp4−1 is a non-accepting sink

state and all not shown transitions are mappings onto qp4−1. In the case p3 = p4 the letter e is not needed.

Recall, that the a-, c-, and e-transitions in all cases depend on the parity of p3−2 and p4−2, respectively.

prove that the language L := L(A) fulfills the requested properties.

Claim 1. The automaton A is minimal.

Proof. We observe that for all states in S1 := {q0, q1, . . . , qp1−2} there is a unique shortest word in {a,c}∗

mapping the state onto qp1−1. The analogue is true for the states in S2 := {qp1−1, qp1
, . . . , qp3−2} and the

set {b}∗. Therefore the above mentioned states cannot contain a pair of equivalent states. Additionally

for all states S3 := {qp3
, qp3+1, . . . , qp4−2,q0} there is a unique shortest word in {c,e}∗ mapping the state

onto the state qp4−2 which implies S3 cannot contain equivalent states. Since S1 ·b
p1 = {q0} and S3 ·b

p1 =
{qp4−1} we obtain that there are no states in S1 ∪ S2 ∪ S3 ∪{qp4−1} which are equivalent. Indeed this

directly implies that A is minimal.
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Claim 2. We have mpl(L) = p2.

Proof. Due to the fact that L∩{d}∗ = ({d}p2)∗{d}p1−1 we have that the word dp2+p1−1 is only pumpable

by the sub-word dp2 and no shorter sub-word. Indeed this implies that mpl(L) ≥ p2. We will show that

each word w̃∈ L of length at least p1 is pumpable by a sub-word of its p2-prefix. Therefore we distinguish

between the several beginnings of w̃:

• The first letter of w̃ is an a or a d. Here we observe that either w̃ contains one of the words ab, cb,

db, aa or cc in its p2-prefix or its p2-prefix w1 is from {a,c,d}p2 such that q0 ·w1 = q0.

If w̃ contains one of the words ab, cb, db, aa or cc in its p2-prefix then w̃ can be pumped by the

sub-words ab, cb, db, a and c, respectively.

If w̃ has a p2-prefix w1 which is from {a,b,c}p2 such that q0 ·w1 = q0 then we can pump w̃ by w1

since q0 ·w
i
1 = q0 for all i ≥ 0.

• The word w̃ starts with the letter b or c. It is obvious that w̃ is pumpable by its first letter.

• If the word w̃ has e as its first letter we observe that w̃ ∈ {e,c}∗. For p2 = 1 we can pump w̃

by its first letter since q0 · c = q0 and q0 · e
i = qp3−1 for all i ≥ 1, which are both accepting states.

For p2 ≥ 2 we can pump w̃ by its second letter since qp3
·ci = qp3

and qp3−1 ·e
i = qp3−1 for all i≥ 0.

Claim 3. We have mpc(L) = p1.

Proof. Since we have shown that each word of length at least p1 is pumpable by its p2−prefix it remains

to observe that the word dp1−1 is not pumpable since L∩{d}∗ = ({d}p2)∗{d}p1−1.

Claim 4. We have mps(L) = p3.

Proof. Observe that for p1 = 1 and p3 ≤ p4−1 the chain of non-sink states which are reachable from the

initial state in A by applying a word in {a,c}∗ is exactly one state longer as for p1 ≥ 2 and p3 ≤ p4 −1.

Therefore we have that w̃ = (ac)(p3−2÷2)ap3−2 mod 2bp3−2e is not pumpable by any sub-word of w =
bp3−2e for p1 ≥ 2 and w̃ = (ac)(p3−1÷2)ap3−1 mod 2bp3−1 is not pumpable by any sub-word of w = bp3−1

for p1 = 1 which implies that mps(L) ≥ p3. We now distinguish between all possible words w ∈ Σ∗

with |w|= p3 and the words w̃ which can contain them to give a sub-word y of w such that w̃ is pumpable

by y:

• If w contains aa or cc then w̃ can be pumped by y = a and c, respectively.

• In the case w contains a sub-word in {xb | x ∈ {a,c,d}} then we can pump w̃ by y = x if x induces

a self-loop for the according state or by y = b if b from xb induces a self-loop on the according

state or by xb otherwise. The last way of pumping is possible since xb induces a self-loop on the

according state.

• The case that w contains a sub-word from {bx | x ∈ {a,c,d}} can be treated similarly as above.

• If w contains a sub-word y from {a,c,d}∗ with length p2 such that w̃ = uxyzv and w = xyz for

words u,x,z,v ∈ Σ∗, q0 ·ux ∈ {q0,q1, . . . ,qp2
} and q0 ·uxy = q0 ·ux. Clearly w̃ can be pumped by y.

• The word w contains the letter b = y such that w̃ = uxyzv and w = xyz for words u,x,z,v ∈ Σ∗,

and q0 · ux = q0. Then w̃ can be pumped by y = b because q0 · uxy = q0 · yi = q0 · bi = q0 for

all i ≥ 0.

• If the word w contains the sub-word ec or ee then we can pump w̃ by y = c or y = e, respectively.
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It remains to observe that w has to contain one of the previously mentioned sub-words. Therefore we

study how long the longest prefix w′ of w in {a,b,c,d}∗ can be such that none of the above-mentioned

sub-words are contained. Afterwards we elongate this prefix by a word in Σ∗.

First one may understand that for any given state q of A the longest word w′ in {a,b,c,d}∗ , that

cannot be decomposed into w′ = xyz for words x, y, z ∈ Σ∗ such that |y| ≥ 1 and q · x = q · xy, has length

at most p3 −1 for p3 = p4 and length at most p3 −2 for p3 ≤ p4 −1. Roughly speaking this can be seen

by observing that the longest such word has to map the state q onto each of the states q0,q1, . . . ,qp3−1

for p3 = p4 and onto each of the states q0,q1, . . . ,qp3−2 for p3 ≤ p4−1. The only possibilities to elongate

such a word w′ are to either violate the previously described decomposing property or to elongate w′ by

the letter e. Due to the construction of the automaton the word w′e can only be a sub-word of a word w̃∈ L

iff w̃= uw′ew′′v for q0 ·uw′e= qp3
, w′′,v ∈ Σ∗, and w =w′ew′′. Again the transition mapping of A implies

that w′′ is empty or starts with one of the letters c and e. Indeed this implies that w = w′ew′′ either has

length |w|= |w′e| ≤ p3−1 for w′′ = λ or contains one of the sub-words ee or ec and is therefore pumpable

by its p3-th letter.

One observes that if we choose w′ to be not maximal it similarly that w either has length less than p3

or it contains one of the sub-words y mentioned above such that that w̃ is pumpable by y.

In conclusion we have that mpc(L) = p1, mpl(L) = p2, mps(L) = p3, and sc(L) = p4 for p3 ≤
p4 − 1. Due to Theorem 6 we directly obtain for p3 = p4 that the according pumping constants have

to be at most equal to the pumping constants in the case p3 ≤ p4 − 1. In turn we observe that the

witnesses for mpc(L) ≥ p1 and mpl(L) ≥ p2 can also applied for p3 = p4. Additionally the word w̃ =
(ac)(p3−1÷2)ap3−1 mod 2bp3−1 with w= bp3−1 witnesses mps(L)≥ p3 for p3 = p4. The minimality of A can

be shown similarly as for p3 ≤ p4−1. Therefore we conclude that mpc(L) = p1, mpl(L) = p2, mps(L) =
p3, and sc(L) = p4.

3.2 Operational Complexity of Sub-Word Pumping

We study the effect of regularity preserving standard formal language operations on the minimal pumping

constant w.r.t. Lemma 3 and compare them to previously obtained results [2] for the other minimal

pumping constants. To this end we need some notation: let ◦ be a regularity preserving n-ary function on

languages and K ∈ {mpc,mpl,mps}. Then, we define gK
◦ (k1,k2, . . . ,kn) as the set of all numbers k such

that there are regular languages L1,L2, . . . ,Ln with K(Li) = ki, for 1 ≤ i ≤ n and K(◦(L1,L2, . . . ,Ln)) = k.

Results for some regularity preserving operations on mpc and mpl can be found in the comprehensive

Table 1. The set of all natural numbers not including zero is denoted by N; if zero is included, then we

write N0 instead. The gray shaded entries in Table 1 are new results, left open results, or corrected results

from [2]. We only give the proofs for two of these new results, namely Kleene star and intersection.

Let us start with the Kleene star operation. In [2] it was shown that for the Kleene star operation the

following results hold:

g
mpc
∗ (n) = {1} and g

mpl
∗ (n) =

{

{1}, if n = 0,

{1,2, . . . ,n}, otherwise,

for every n ≥ 0. For the minimal pumping constant mps a larger set of numbers is attainable as we show

next.

Theorem 8. It holds

g
mps
∗ (n) =

{

{1}, if n = 0,

{1,2, . . . ,2n−1}, otherwise.
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Minimal pumping constant

Operation mpc mpl mps

Kleene star {1}
{1}, if n = 0,

{1,2, . . . ,n}, otherwise.

{1}, if n = 0,

{1,2, . . . ,2n−1}, otherwise.

Reversal {n}
{0}, if n = 0,

N, otherwise.
{n}

Complement

{1}, if n = 0,

N0 \{1}, if n = 1,

N, otherwise.

{1}, if n = 0

N0 \{1}, if n = 1,

N, otherwise.

{1}, if n = 0,

N0 \{1}, if n = 1,

N, otherwise.

Prefix-Closure
{0}, if n = 0,

N, otherwise.

{0}, if n = 0,

{1,2, . . . ,n}, otherwise.

{0}, if n = 0,

{1,2, . . . ,n}, otherwise.

Suffix-Closure
{0}, if n = 0,

N, otherwise.

{0}, if n = 0,

{1}, if n = 1,

N, otherwise.

{0}, if n = 0,

{1,2, . . . ,n}, otherwise.

Union
max{m,n}, if m = 0 or n = 0,

{1,2, . . . ,max{m,n}}, otherwise.

max{m,n}, if m = 0 or n = 0,

{1,2, . . . ,max{m,n}}, otherwise.

max{m,n}, if m = 0 or n = 0,

{1,2, . . . ,max{m,n}}, otherwise.

Set-Subtraction

{0}, if m = 0,n ≥ 0,

{m}, if m ≥ 0,n = 0,

N0 \{1}, if m ≥ 1,n = 1,

N0, otherwise.

{0}, if m = 0,n ≥ 0,

{m}, if m ≥ 0,n = 0,

N0 \{1}, if m ≥ 1,n = 1,

N0, otherwise.

{0}, if m = 0,n ≥ 0,

{m}, if m ≥ 0,n = 0,

N0 \{1}, if m ≥ 1,n = 1,

N0, otherwise.

Concatenation
{0}, if m = 0 or n = 0,

{1,2, . . . ,m+n−1}, otherwise.

{0}, if m = 0 or n = 0,

{1,2, . . . ,m+n−1}, otherwise.

{0}, if m = 0 or n = 0,

{1,2, . . . ,m+n−1}, otherwise.

Intersection

{0}, if m = 0 or n = 0,

N0 \{2}, if m = n = 1,

N0, otherwise.

{0}, if m = 0 or n = 0,

{1}, if m = n = 1,

N0, otherwise.

{0}, if m = 0 or n = 0,

{1}, if m = n = 1,

N0, otherwise.

Symmetric Difference

max{m,n}, if m = 0 or n = 0,

N0 \{1}, if m = n = 1,

N0, if m = n > 1,

N, otherwise.

max{m,n}, if m = 0 or n = 0,

N0 \{1}, if m = n = 1,

N0, if m = n > 1,

N, otherwise.

max{m,n}, if m = 0 or n = 0,

N0 \{1}, if m = n = 1,

N0, if m = n > 1,

N, otherwise.

Table 1: Results on the operational complexity of the minimal pumping constants mpc, mpl, and mps. The results for the former two minimal

pumping constants are from [2]. Gray shaded entries indicate new results, previous left open results, or corrected ones. Here N refers to the set

of all natural number not including zero; if zero is included we refer to this set as N0.
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Proof. First we look at the case where n = 0. Afterwards we argue why, for n ≥ 1, no value in N0 \
{1,2, . . . ,2n−1} can be reached, and at last we define languages Ln,k with the property that mps(Ln,k) = n

and for the Kleene star of Ln,k we have mps(L∗
n,k) = k.

For mps(L0,k) = n = 0 we observe that L0,k = /0. So we have that mps(L0,k) = n = 0 implies that k =
mps(L∗

0,k) = mps( /0∗) = mps({λ}) = 1. Next we show that for any language L with mps(L) = n we

have that mps(L∗) ≤ 2n − 1. We observe that each non-empty word w̃ ∈ L∗ is equal to w̃1w̃2 . . . w̃t ,

for w̃1, w̃2, . . . , w̃t ∈ L. We know for each of those words that each of their sub-words of length n can be

pumped by a sub-word of length at most n. Assume that mps(L∗) ≥ 2n and the sub-word w of w̃ is a

witness for that, which means there are words u and v in Σ∗ such that w̃ = uwv ∈ L∗ cannot be pumped

by a sub-word of the 2n− 1-prefix of w. W.l.o.g. we assume that the words w̃1, w̃2, . . . , w̃t ∈ L are not

empty. Obviously, we have that

w̃ = w̃1w̃2 . . . w̃t = w̃1w̃2 . . . w̃i−1w′
iww′

jw̃ j+1 . . . w̃t

for w′
iww′

j = w̃iw̃i+1 . . . w̃ j−1w̃ j. We know that each sub-word of length n of w̃i and w̃i+1 can be pumped

by one of its sub-words. Especially this holds for the n-suffix of w̃i. If this suffix is contained in w

than uwv = w̃ can be pumped by that sub-word of w which contradicts the assumption that w is a witness

for mps(L∗) ≥ 2n. The analogue holds true if the n-prefix of w̃i+1 is contained in w. Additionally, if w̃i

(or w̃i+1, respectively) is completely contained in w and has length less than n, then word uwv = w̃

can be pumped by w̃i (or w̃i+1, respectively). Again this contradicts the assumption that w is a witness

for mps(L∗)≥ 2n. Due to the fact that |w| ≥ 2n−1 one of the previously described cases must occur. In

conclusion we have that w cannot be a witness for mps(L∗)≥ 2n. Therefore, mps(L∗)≤ 2n−1.

Now we prove the reachability of the above-mentioned values for k. We distinguish the cases

whether n > k, n = k, or n < k:

1. Case n > k: let Ln,k = {ai | 0 ≤ i ≤ n−1}∪{bk} which is a finite language and thus mps(Ln,k) = n.

Observe, that L∗
n,k is the language of all words that contain only b-blocks with lengths that are

divisible by k. Therefore the word w = bk cannot be pumped by a sub-word of length at most k−1

which implies that mps(L∗
n,k) ≥ k. Assume there is a word w ∈ {a,b}∗ witnessing mps(L∗

n,k) > k

then there are words u,v ∈ {a,b}∗ such that uwv cannot be pumped by a sub-word of the k-prefix y

of w. Due to the structure of L∗
n,k we know that uwv can be pumped by a sub-word of y, if y contains

an a or it contains the sub-word bk. Since |y| = k one of the conditions must be fulfilled which

implies that mps(Ln,k) = k.

2. Case k = n: Let L = (an)∗ = L∗. Then mps(L) = mps(L∗) = n = k.

3. Case n < k: Let Ln,k = (an)∗∪ (bk−n+1)∗. We have mps(Ln,k) = n, since k−n+1 ≤ (2n−1)−n+
1 = n due to the fact that k ∈ {1,2, . . . ,2n− 1}. On the other hand we have that L∗

n,k contains all

words which only contain a- and b-blocks whose length are divisible by n and k− n+ 1, respec-

tively. Therefore the word w= an−1bk−n cannot be pumped by a sub-word of length n−1+k−n=
k − 1, which implies that mps(L∗

n,k) ≥ k. So we assume that there is a word w ∈ {a,b}∗ wit-

nessing mps(L∗
n,k) > k, which implies that there are words u,v ∈ {a,b}∗ such that uwv cannot be

pumped by a sub-word of the k-prefix y of w. Since |y|= k ≥ n ≥ k−n+1 the word y must contain

the sub-word an or bk−n+1, which implies that uwv can be pumped by that sub-word of y. Since

this contradicts the assumption that w is a witness for mps(L∗
n,k) > k we have that mps(L∗

n,k) ≤ k.

In summary mps(L∗
n,k) = k as desired.

This proves the stated claim.
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For the intersection operation it was left open in [2], which numbers are reachable for the pumping

constant mpl. We close this gap and show that for mpc, mpl, and mps the same set of numbers is

reachable.

Theorem 9. For K ∈ {mpl,mps} we have

gK
∩(m,n) =











{0}, if m = 0 or n = 0,

{1}, if m = n = 1,

N0, otherwise,

Proof. Obviously we have that L ∩ /0 = /0 ∩ L = /0 for each regular language L. Assume that L, L′

are regular languages with mpl(L) = mpl(L′) = 1. Given a word w̃ ∈ L∩ L′ such that w̃ is a witness

for mpl(L∩L′) ≥ 2 then w̃ cannot be pumped by its first letter. On the other side we know that w̃ can

be pumped in L and in L′ by its first letter since mpl(L) = mpl(L′) = 1. This implies that each word

we obtain from w̃ by pumping its first letter is in L and L′; therefore in L∩L′. Hence, we can pump w̃

in L∩L′ by its first letter which is a contradiction to the assumption on w̃. The previously shown reason-

ing also applies similarly for mps(L) = mps(L′) = 1 because with this property each word in L and L′ can

be pumped by any of its letters. The value k = 0 is unreachable for n = m = 1 because each language L

with mpl(L)= 1 or mps(L) = 1 contains the letter λ due to Lemma 4 and the remark after Lemma 1. Next

we construct languages such that all values k ≥ 0 can be achieved in the general case for m and n. Here

we distinguish whether k is equal to zero, one or an odd or an even value which is at least two—notice

that the construction for k = 1 also applies for m = n = 1:

• For k = 0 we define Lm,k = {am−1} and Ln,k = {bn−1} which are finite languages and therefore

fulfill mpl(Lm,k) = mps(Lm,k) = m and mpl(Ln,k) = mps(Ln,k) = n. Clearly Lm,k ∩Ln,k = /0 which

provides mpl( /0) = mps( /0) = 0 = k.

• In the case k= 1 we define Lm,k = {am−1}∪{b}∗ and Ln,k = {cn−1}∪{b}∗ which fulfill mpl(Lm,k)=
mps(Lm,k)=m and mpl(Ln,k)= mps(Ln,k)= n because am−1 ∈ Lm,k and cn−1 ∈ Ln,k are not pumpable

by any of their sub-words. Obviously we have Lm,k ∩ Ln,k = {b}∗ which suffices mpl({b}∗) =
mps({b}∗) = 1 = k.

• Now we study the case where k ≥ 2 is an even integer. If k ≥ 2 one of the values m and n must be

at least equal to two. Since the intersection of regular languages is symmetric in its arguments we

assume without loss of generality that m ≥ 2 and n ≥ 1.

We set Lm,k = {cm−1}∪{ba}∗{b}{ad}∗ ∪{da}∗{d} and Ln,k = {en−1}∪B
(∗)
k−2{d}∗. We observe

that cm−1 ∈ Lm,k and en−1 ∈ Ln,k are not pumpable which implies that m ≤ mpl(Lm,k)≤ mps(Lm,k)
and n ≤ mpl(Ln,k) ≤ mps(Ln,k). Since each word in Ln,k is pumpable by each of its letters ex-

cept en−1 we obtain n = mpl(Ln,k) = mps(Ln,k). Further each word in w̃ ∈ {ba}∗{b}{ad}∗ ∪
{da}∗{d} is pumpable by a sub-word y of each sub-word w of w̃ with |w| ≥ 2. This can be seen by

looking at the different cases for the prefixes of length two of w which is done next. For the sake

of simplicity we assume |w|= 2. We will give for each case the word y and then verify that w̃ can

be pumped by y by distinguishing between the words w̃ which can contain w:

– For w= ab we can choose y= ab which is observed by understanding that {ba}∗{b}{ad}∗ =
{b}{ab}+{ad}∗ ∪{b}{ad}∗.

– For w = ba we can choose y = ba. First let w̃ = (ba)ib(ad) j ∈ {ba}∗{b}{ad}∗ . If w̃ =
(ba)i′w(ba)i′′b(ad) j for i= i′+ i′′+1 then we obtain by pumping w̃ via y a word (ba)i+ℓb(ad)∗

for −1 ≤ ℓ. For w̃ = (ba)iwd(ad) j−1 we obtain by pumping w̃ via y a word (ba)i+ℓb(ad)∗

for 0 ≤ ℓ and the word d(ad) j−1 = (da) j−1d ∈ {da}∗{d} for ℓ=−1.
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– For w = ad we can choose y = ad which is easy to confirm for each word in {ba}∗{b}{ad}∗

and each word in {da}∗{d}= {d}{ad}∗.

– For w = da we can choose y = da because {ba}∗{b}{ad}∗ = {ba}∗{b}{a}{da}∗{d} ∪
{ba}∗{b} and for the words in {ba}∗{b}{a}{da}∗{d} ∪ {da}∗{d} it is obvious that they

can be pumped by y = da.

In conclusion each word w̃ in Lm,k can be pumped by a sub-word y of every sub-word w of w̃

if |w| ≥ 2. Therefore we obtain that mpl(Lm,k) = mps(Lm,k) = m.

We observe that Lm,k ∩ Ln,k = ({cm−1}∪ {ba}∗{b}{ad}∗ ∪{da}∗{d})∩ ({en−1}∪B∗
k−2{d}∗) =

{(ba)id | 0 ≤ i ≤ (k− 2)/2} which is a finite language and therefore suffices mpl(Lm,k ∩Ln,k) =
mps(Lm,k ∩ Ln,k) = k. This is due to the fact that the longest word in this language is w̃ =
(ba)(k−2)/2d which fulfills |w̃|= 2 · (k−2)/2+1 = k−1.

• In the case that k ≥ 2 is an odd integer we adapt the language Lm,k shown in the previous case to be

equal to {cm−1}∪{ba}∗{bd}∗ ∪{da}∗{d}. Indeed the property mpl(Lm,k) = mps(Lm,k) = m can

be proven in the same style as in the previous case. Additionally we have Lm,k ∩Ln,k = ({cm−1}∪
{ba}∗{bd}∗∪{da}∗{d})∩({en−1}∪B∗

k−2{d}∗) = {(ba)ibd | 0 ≤ i≤ (k−3)/2}, which is a finite

language and therefore suffices mpl(Lm,k ∩Ln,k) = mps(Lm,k ∩Ln,k) = k. Here the longest word in

this language is w̃ = (ba)(k−3)/2bd which fulfills |w̃|= 2 · (k−3)/2+2 = k−1.
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