
Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 112–126, doi:10.4204/EPTCS.386.10

© N. Gribovskaya, I. Virbitskaite

This work is licensed under the

Creative Commons Attribution License.

Comparative Transition System Semantics for

Cause-Respecting Reversible Prime Event Structures

Nataliya Gribovskaya Irina Virbitskaite

A.P. Ershov Institute of Informatics Systems
the Siberian Branch of the Russian Academy of Sciences
6, Acad. Lavrentiev avenue, 630090, Novosibirsk, Russia

{natamosk,virbitskaite}@gmail.com

Reversible computing is a new paradigm that has emerged recently and extends the traditional

forwards-only computing mode with the ability to execute in backwards, so that computation can

run in reverse as easily as in forward. Two approaches to developing transition system (automaton-

like) semantics for event structure models are distinguished in the literature. In the first case, states

are considered as configurations (sets of already executed events), and transitions between states are

built by starting from the initial configuration and repeatedly adding executable events. In the second

approach, states are understood as residuals (model fragments that have not yet been executed), and

transitions are constructed by starting from the given event structure as the initial state and delet-

ing already executed (and conflicting) parts thereof during execution. The present paper focuses on

an investigation of how the two approaches are interrelated for the model of prime event structures

extended with cause-respecting reversibility. The bisimilarity of the resulting transition systems is

proved, taking into account step semantics of the model under consideration.

1 Introduction

Reversible computations, extensively studied during in recent years, is an unconventional form of compu-

tations that can be performed in the forward direction as easily as in the reverse direction. Any sequence

of actions executed by the system can subsequently be canceled for some reason (for example, in case

of an error), which allows the system to restore previous consistent states, as if these canceled actions

were not executed at all. Reversible computing is attracting interest for its applications in many fields

including program analysis and debugging [20], programming abstractions for reliable systems [11, 23],

modelling biochemical reactions [18], hardware design and quantum computing [12], and etc.

Despite the fact that reversing computations in concurrent/distributed systems has many promising

applications, it also involves many technical and conceptual challenges. One of the most essential issues

that arise concerns the techniques that should be applied when moving backwards. Several different

styles of the undoing of computation have been identified recently. The most prominent of these are

backtracking [26], causal reversibility [25, 26], and out-of-causal-order reversibility [26, 28], that differ

in the order of executing actions in backward direction. Backtracking is generally understood as the

ability to execute past actions in the exact reverse order in which they were executed. Causal reversibility

in concurrent systems means that actions that cause others can only be undone after the caused actions

are undone first, and that actions which are independent of each other can be reversed in an arbitrary

order. Out-of-causal reversibility, a form of reversal most characteristic of biochemical systems, does

not preserve causes. The interplay between reversibility and concurrency has been widely studied in

various models: parallel rewriting systems [1], cellular automata [16], process calculi [11, 19], Petri nets

[6, 13, 26], event structures [24, 27, 30], membrane systems [29], and etc.

http://dx.doi.org/10.4204/EPTCS.386.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

N. Gribovskaya, I. Virbitskaite 113

Event structures are a well-established model of concurrency. They were originally proposed by

Winskel in his PhD dissertation [32] and were considered as an intermediate abstraction between Scott

domains (i.e., a denotational model) and Petri nets (i.e., an operational model). Basically, event structures

are collections of possible events, some of which are conflicting (i.e., the execution of an event forbids

the execution of other events), while others are causally dependent (i.e., an event cannot be executed if

it has not been preceded by other ones), and events that are neither in causal dependency nor in conflict

are treated as concurrent. Events are often labelled with actions, to represent different occurrences of the

same action. Prime Event Structures (written PESs) are the earliest and simplest form of event structures,

where causality is a partial order and conflict between events is inherited by their causal successors. The

association of transition system (automaton-like) models with event structures has proved to contribute

to studying and solving various problems in the analysis and verification of concurrent systems. It is

distinguished two methods of providing transition system semantics for event structures: a configuration-

based and a residual-based method. In the first case (see [2, 3, 31, 15, 17, 32, 33] among others), states

are understood as sets of events, called configurations, and state transitions are built by starting with

the initial configuration and enlarging configurations by already executed events. In the second more

‘structural’ method (see [5, 9, 10, 17, 21] among others), states are understood as event structures, and

transitions are built by starting with the given event structure as an initial state and removing already

executed (and conflicting) parts thereof in the course of execution. In the literature, configuration-based

transition systems seem to be predominantly used as the semantics of event structures, and residual-

based transition systems are actively used in providing operational semantics of process calculi and in

demonstrating the consistency of operational and denotational semantics. The two kinds of transition

systems have occasionally been treated alongside each other (see [17] as an example), but their general

relationship has not been studied for a wide range of existing models. In a seminal paper, viz. [22],

bisimulations between configuration-based and residual-based transition systems have been proved to

exist for prime event structures [33]. The result of [22] has been extended in [7] to more complex event

structure models with asymmetric conflict. The paper [8] demonstrated that when using non-executable

events, the removal operators defined in [22, 7] to obtain residuals can be tightened in such a way that

isomorphisms, rather than just bisimulations, between the two types of transition systems belonging to

a single event structure can be obtained, for a full spectrum of semantics (interleaving, step, pomset,

multiset).

Reversible event structures extend event structures to represent reversible computational processes,

capable of undoing executed actions by allowing configurations to evolve by eliminating events. In

[27, 30], Phillips et. al. determined causal and out-of-causal reversible forms of prime, asymmetric

and general event structures and showed the correspondence between their configurations and traditional

ones when there are no reversible events. In [4], Aubert and Cristescu have provided a true concurrent se-

mantics of a reversible extension of CCS, RCCS (without auto-concurrency, auto-conflict, or recursion),

in terms of configuration structures. In [14], Graversen et. al. have developed a category of reversible

bundle event structures with symmetric conflict and used the causal subcategory to model semantics of

another reversible extension of CCS, CCSK. They also modified CCSK to control reversibility with a

rollback primitive, and gave, by exploiting the capacity for out-of-causal reversibility, semantics of this

kind of CCSK in terms of reversible bundle event structures with asymmetric conflict. Constructions as-

sociating causal reversible prime event structures to reversible occurrence nets and vice versa have been

proposed within causal reversibility in [25], as well as within out-of-causal reversibility in [24].

The aim of this paper is to identify two (configuration-based and residual-based) types of transition

system semantics for cause-respecting reversible prime event structures and to understand how these

types relate to each other, which can assist in the construction of algebraic calculi to describe and verify

114 Comparative Transition System Semantics for Cause-Respecting RPESs

reversible concurrent processes.

This paper is structured as follows. In Section 2, we start with recalling the syntax of prime and

reversible prime event structures and their (step) semantics in terms of configurations and traces. In Sec-

tion 3, we define a removal operator, which is useful for constructing model residuals, and demonstrate

the correctness of the operator. In Section 4, we develop two types of transition system semantics for

cause-respecting reversible prime event structures and establish bisimulation results between the seman-

tics. In Section 5, we provide some concluding remarks. The proofs of the propositions presented here

can be found at www.iis.nsk.su/virb/proofs-AFL-2023.

2 Reversing in Prime Event Structures

In this section, we first recall the notion of prime event structures (PESs) [32] labeled over the set L =
{a,b,c, . . .} of actions, and then formulate the concept of reversible prime event structures (RPESs) [27]

and consider their (step) semantics and properties.

The behavior of concurrent systems is formally modelled by event structure models where units

of the behavior are represented by events. There are different ways to relate events. In prime event

structures (PESs), the dependency between events, called causality, is given by a partial order, and the

incompatibility is determined by a conflict relation. Two events which are neither in causal dependency

nor in conflict are considered independent (concurrent).

Definition 1. A (labeled) prime event structure (PES) (over the set L of actions) is a tuple E = (E, <, ♯,

l, C0), where

• E is a countable set of events;

• < ⊆ E ×E is an irreflexive partial order (the causality relation) satisfying the principle of finite

causes: ∀e ∈ E ⋄ ⌊e⌋ = {e′ ∈ E | e′ < e} is finite;

• ♯⊆ E ×E is an irreflexive and symmetric relation (the conflict relation) satisfying the principle of

hereditary conflict: ∀e,e′,e′′ ∈ E ⋄ e < e′ and e ♯ e′′ then e′ ♯ e′′;

• l : E → L is a labeling function;

• C0 = /0 is the initial configuration(1) .

So, the PES is a simple event-based model of concurrent and nondeterministic computations where

events labeled over the set L of actions are considered as atomic, indivisible and instantaneous action

occurrences, some of which can only be executed after another (i.e. there is a causal dependency repre-

sented by a partial order ≤ between the events) and some of which might not be executed together (i.e.

there is a binary conflict ♯ between the events). In addition, the principle of finite causes and the principle

of conflict inheritance are required.

The PES progresses by executing events, thus moving from one state to another, starting from the

initial state, which is an empty set. A state called a configuration is a set of events that have occurred. A

subset of events X ⊆ E is left-closed under < iff for all e ∈ X it holds that ⌊e⌋ ⊆ X ; is conflict-free iff for

all e,e′ ∈ X it holds that ¬(e ♯ e′), and we denote it with CF(X). A subset C ⊆ E is a configuration of E

iff C is finite, left-closed under < and conflict-free.

Reversible prime event structures (RPESs) [27, 30] are based on a weaker form of PESs because

conflict inheritance may not hold when adding reversibility to PESs. Also, in RPESs, some events are

(1)We add the initial configuration as an empty set to the classical PES definition, but this does not affect the behavior of the

structure in any way, because the PES progresses by moving from one configuration to another and starting from an empty set.

N. Gribovskaya, I. Virbitskaite 115

categorised as reversible, and two relations are added: the reverse causality relation and the prevention

relation. The first one is a dependency relation in the backward direction: to reverse an event in the

current configuration there must be other events on which the event reversibly depends. The second

relation, on the contrary, identifies those events whose presence in the current configuration prevents the

event being reversed.

Definition 2. A (labeled) reversible prime event structure (RPES) (over L) is a tuple E = (E, <, ♯, l, F,

≺, ✄, C0), where

• E is a countable set of events;

• ♯⊆ E ×E is an irreflexive and symmetric relation (the conflict relation);

• <⊆E×E is an irreflexive partial order (the causality relation) satisfying: ⌊e⌋ is finite and conflict-

free, for every e ∈ E;

• l : E → L is a labeling function;

• F ⊆ E are reversible events being denoted by the set F = {e | e ∈ F} such that F ∩E = /0;

• ≺⊆ E ×F is the reverse causality relation satisfying: a ≺ a and {e ∈ E | e ≺ a} is finite and

conflict-free, for every a ∈ F;

• ✄⊆ E ×F is the prevention relation such that ✄∩≺= /0;

• ≪ is the transitive sustained causation relation: a ≪ b is defined to mean that a < b and if a ∈ F

then b✄a. ♯ is hereditary w.r.t. the sustained causation ≪: if a ♯ b ≪ c then a ♯ c;

• C0 ⊆ E is the initial configuration which is finite, left-closed under < and conflict-free.

It is straightforward to check that any PES is also an RPES with F = /0 and C0 = /0. Then, any concept

defined for RPESs applies to PESs as well.

Example 1. Consider the structure E0 = (E0, <0, ♯0, l0, F0, ≺0, ✄0, C0
0), where E0 = {a,b,c,d,e};

<0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c), (c,b)}; l0 is the identical function; F0 = {b,c}; ≺0=
{(b,b),(c,c)}; ✄0 = /0; C0

0 = /0. It is easy to make sure that the components of the structure E0 meet the

requirements of the corresponding items of Definition 2. In particular, we see that ≺0= {(b,b),(c,c)}
and (b,b),(c,c) 6∈ ✄0. Notice that ♯0 is not hereditary w.r.t. <0 because a ♯0 b <0 d and ¬(a ♯0 d),
b ♯0 c <0 e and ¬(b ♯0 e), c ♯0 b <0 d and ¬(c ♯0 d). From Definition 2, we know that x and y are in

the sustained causation relation iff x causes y, and x cannot be reversed as long as y is present. In E0, the

pairs (b,d) and (c,e) are in the causality relation <0, and the prevention relation ✄0 is empty. Therefore,

the sustained causation relation ≪0 is empty. It is easy to see that ♯0 is hereditary w.r.t. ≪0. So, the

structure E0 is indeed an RPES. ✸

The RPES progresses by executing events and/or by undoing previously executed events, thus mov-

ing from one configuration to another. The act of moving is a computation step. Reachable configurations

are subsets of events which can be reached from the initial configuration by executing computation steps.

A sequence of computation steps is a trace of the RPES.

Definition 3. Given an RPES E = (E,<,♯, l,F,≺,✄,C0), and C ⊆ E such that CF(C),

• for A ⊆ E and B ⊆ F, we say that A∪B is enabled at C if

a) A∩C = /0, B ⊆C, CF(C∪A);

b) ∀e ∈ A, ∀e′ ∈ E : if e′ < e then e′ ∈ (C \B);

c) ∀e ∈ B, ∀e′ ∈ E : if e′ ≺ e then e′ ∈ (C \ (B\{e}));

116 Comparative Transition System Semantics for Cause-Respecting RPESs

d) ∀e ∈ B, ∀e′ ∈ E : if e′✄ e then e′ 6∈ (C∪A).

If A∪B is enabled at C then C
A∪B
−→C′ = (C\B)∪A. We shall write l(A∪B) = M iff M is a multiset

over the set L of actions, defined as follows: M(a) =| {e ∈ (A∪B) | l(e) = a} | for all a ∈ L.

• C is a forwards reachable configuration of E (from C0) iff for all i = 1, . . . ,n (n ≥ 0), there exists a

finite set Ai ⊆ E such that Ci−1
Ai∪ /0i−→ Ci and Cn =C.

• C is a (reachable) configuration of E (from C0) iff for all i = 1, . . . ,n (n ≥ 0), there exist finite sets

Ai ⊆ E and Bi ⊆ F such that Ci−1
Ai∪Bi−→ Ci and Cn = C. In this case, t = (A1 ∪B1) . . . (An ∪Bn)

(n ≥ 0) is a trace of E and last(t) =Cn. The set of (reachable) configurations of E is denoted by

Con f (E), and the set of traces of E — by Traces(E). Clearly, any configuration C ∈Con f (E) is

conflict-free, and any prefix of any trace t ∈ Traces(E) belongs to Traces(E).

• Two traces t = (A1 ∪B1) . . . (An ∪Bn) (n ≥ 0) and t ′ = (A′
1 ∪B′

1) . . . (A
′
m ∪B′

m) (m ≥ 0) of E are

called to be equivalent w.r.t. ∼ (denoted t ∼ t ′) iff last(t) = last(t ′).

The last two items of Definition 3 lead to the following auxiliary

Lemma 1. Given an RPES E = (E,<,♯, l,F,≺,✄,C0), it holds:

(i) {last(t) | t ∈ Traces(E)}= Conf (E);

(ii) for any t ∈ Traces(E), if t(A∪B) ∈ Traces(E) then last(t)
A∪B
→ last(t(A∪B));

(iii) for any t, t ′ ∈ Traces(E), if last(t)
A∪B
→ last(t ′) then t(A∪B) ∈ Traces(E) and t(A∪B)∼ t ′.

Example 2. First, recall the RPES E0 = (E0, <0, ♯0, l0, F0, ≺0, ✄0, C0
0) (see Example 1) with the

components: E0 = {a,b,c,d,e}; <0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c),(c,b)}; l0 is the identical

function; F0 = {b,c}; ≺0= {(b,b),(c,c)}; ✄0 = /0; C0
0 = /0. We shall check if the sequence t = ({b}∪

/0)({d}∪ /0)(/0∪{b})({c}∪ /0)({e}∪ /0)(/0∪{c}) is a trace of E0, using Definition 3. First, we need to

show that ((A1 = {b})∪ (B1 = /0)) is enabled at C0
0 . Item a) is true because (A1 = {b})∩ (C0

0 = /0) = /0,

B1 = /0 ⊆C0
0 , and (/0∪{b}) is conflict-free. Item b) is correct, since the event b has no causes, i.e. there

is no e′ ∈ E0 such that e′ <0 b. As B1 = /0, items c) and d) are met. Then, we have C0
0

{b}∪ /0
−→ C0

1 = {b}.

Second, verify if ((A2 = {d})∪ (B2 = /0)) is enabled at C0
1 . We see that (A2 = {d})∩ (C0

1 = {b}) = /0,

B2 = /0 ⊆C0
1 , and {b,d} is conflict-free. Hence, item a) is correct. Item b) is met because d has the only

cause b belonging to C0
1 \B2. Due to B2 = /0, items c) and d) are true. So, we get C0

1

{d}∪ /0
−→ C0

2 = {b,d}.

Third, make sure that ((A3 = /0)∪ (B3 = {b})) is enabled at C0
2 . Items a) is fulfilled thanks to A3 = /0,

B3 = {b} ⊆ C0
2 , and C0

2 is conflict-free. Clearly, item b) is true. Item c) holds because the only reverse

cause for the event b is the event itself, which is in {b,d} = (C0
2 \ (B3 \ {b})). As ✄0 = /0, item d) is

correct. Hence, we obtain C0
2

/0∪{b}
−→ C0

3 = {d}. Fourth, demonstrate that ((A4 = {c})∪(B4 = /0)) is enabled

at C0
3 . We see that (A4 = {c})∩ (C0

3 = {d}) = /0, B4 = /0 ⊆C0
3 , and C0

3 ∪A4 = {c,d} is conflict-free. This

means that item a) is correct. Item b) is met thanks to the fact that c has no causes. Because of B4 = /0,

items c) and d) are met. Therefore, C0
3

{c}∪ /0
−→ C0

4 = {c,d} is true. Fifth, check that ((A5 = {e})∪ (B5 = /0))
is enabled at C0

4 . Since (A5 = {e})∩(C0
4 = {c,d}) = /0, B5 = /0⊆C0

4 , (C0
4 ∪A5) = {c,d,e} is conflict-free,

item a) is correct. As e has the only cause c belonging C0
4 \B5, item b) is met. Due to B5 = /0, items c)

and d) are true. Hence, we get C0
4

{e}∪ /0
−→ C0

5 = {c,d,e}. Finally, we examine if ((A6 = /0)∪ (B6 = {c})) is

enabled at C0
5 . Item a) is fulfilled thanks to A6 = /0, B6 = {c} ⊆ C0

5 , and C0
5 is conflict-free. Obviously,

item b) is true. Item c) holds because the only reverse cause for the event c is the event itself, which is in

N. Gribovskaya, I. Virbitskaite 117

{c,d,e} = (C0
5 \ (B6 \{c})). Because of ✄0 = /0, item d) is correct. So, we obtain C0

5

/0∪{c}
−→ C0

6 = {d,e}.

Thus, t is indeed a trace of E0.

Reasoning analogously, we get the following configurations of E0: /0, {a}, {b}, {c}, {d}, {e}, {b,d},

{c,e}, {c,d}, {b,e}, {d,e}, {b,d,e}, {c,d,e}. Since the event a is independent with each of the events c,

d, e, we get the additional configurations: {a,c}, {a,d}, {a,e}, {a,c,e}, {a,c,d}, {a,d,e}, {a,c,d,e}.

Since the pair (a,b) ((b,c)) is in the conflict relation ♯0, the events a and b (b and c) cannot occur

together in any configuration. Therefore, all the configurations of E0 are listed above. Some of the maxi-

mal traces of E0 are: (t1t2)
∗({a}∪ /0)t2t4t2, (t1t2)

∗t4(t1t2)
∗({a,c}∪ /0)t5, (t1t2)

∗t3(t1t2)
∗t4(t1t2)

∗({a,c}∪
/0)t5, (t1t2)

∗t3(t1t2)
∗({c}∪ /0)({a,e}∪ /0)t5, where t1 = (({b}∪ /0)(/0∪{b}))∗, t2 = (({c}∪ /0)(/0∪{c}))∗,

t3 = ({b}∪ /0)({d}∪ /0)(/0∪{b}), t4 = ({c}∪ /0)({e}∪ /0)(/0∪{c}), t5 = (/0∪{c})({c}∪ /0).

Second, consider the structure E1 = (E1, <1, ♯1, l1, F1, ≺1, ✄1, C1
0), where E1 = {a,b}; <1= {(a,b)};

♯1 = /0; l1 is the identical function; F1 = {a}; ≺1= {(a,a)}; ✄1 = /0; C1
0 = /0. It is easy to see that E1 is an

RPES. As the only pair (a,b) is in the causality relation <1, i.e., the event a has no cause and it causes the

event b, the event a can occur first and only after that b can happen. Then, we obtain the forward steps:

/0
({a}∪ /0)
→ {a}

({b}∪ /0)
→ {a,b}. The intended meaning of a ≺1 a is that the event a can be undone if it has

occurred in a configuration. In this regard, the reverse step {a}
(/0∪{a})
→ /0 is possible, thanks to (b,a) 6∈≺1

and ✄1 = /0. Moreover, the event a can be undone in the configuration {a,b} even though the event b is

present because (b,a) 6∈ ✄1. This means that we can move backwards from {a,b} to {b} by executing

the step (/0∪{a}). Therefore, the configurations of E1 are /0, {a}, {b}, {a,b}, and the traces of E1 are all

prefixes of the trace (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0)((/0∪{a})({a}∪ /0))∗(/0∪{a}).

Third, examine the structure RPES E2 = (E2, <2, ♯2, l2, F2, ≺2, ✄2, C2
0), where E2 = {a,b}; <2= /0;

♯2 = /0; l2 is the identical function; F2 = {a}; ≺2= {(a,a)}; ✄2 = {(b,a)}; C2
0 = /0. It is not difficult to

check that E2 is an RPES. As the causality relation <2 and the conflict relation ♯2 are empty, the events

a and b are independent, and, therefore, they can take place in any order. This leads to the following

forward steps: /0
({a}∪ /0)
→ {a}

({b}∪ /0)
→ {a,b} and /0

({b}∪ /0)
→ {b}

({a}∪ /0)
→ {a,b}. Since b✄2 a, we conclude that

b prevents the undoing of a, i.e. a cannot be undone if b is present. So, we can go back from {a} to /0

by executing the step (/0∪{a}) and cannot move backwards from {a,b}. The configurations of E2 are /0,

{a}, {b}, {a,b}, and the traces of E2 are all prefixes of the traces (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪
/0), (({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0), (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0).

It is not difficult to verify the truth of Lemma 1 for all the RPESs discussed above. ✸

RPESs are able to model such a peculiarity of reversible computation as causal-consistent reversibil-

ity which relates reversibility with causality: an event can be undone provided that all of its effects have

been undone. This allows the system to get back to a past state, which could only be reached by forward

computation. This notion of reversibility is natural in reliable concurrent systems since when an error

occurs the system tries to go back to a past consistent state.

Definition 4. An RPES E = (E,<,♯, l,F,≺,✄,C0) is called

• cause-respecting if for any e,e′ ∈ E, if e < e′ then e ≪ e′;

• causal if for any e ∈ E and u ∈ F it holds: e ≺ u iff e = u, and e✄u iff u < e.

Informally, in the cause-respecting and causal RPES, causes can be only undone if their effects are

not present in the current configuration. Clearly, if the RPES is causal, then it is cause-respecting as well.

Example 3. First, recall the RPES E0 (see Examples 1 and 2) with the components: E0 = {a,b,c,d,e};

<0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c), (c,b)}; l0 is the identical function; F0 = {b,c}; ≺0=

118 Comparative Transition System Semantics for Cause-Respecting RPESs

{(b,b),(c,c)}; ✄0 = /0; C0
0 = /0. We know from Example 1 that the sustained causation relation ≪0

is empty, because the causality relation <0 contains the pairs (b,d) and (c,e) and the prevention relation

✄0 is empty. Since ≪0 6=<0, we have that this RPES is neither cause-respecting nor causal.

Second, consider the RPES E1 (see Example 2) with the components: E1 = {a,b}; <1= {(a,b)};

♯1 = /0; l1 is the identical function; F1 = {a}; ≺1= {(a,a)}; ✄1 = /0; C1
0 = /0. It is easy to see that ≪1= /0,

since <1= {(a,b)} and (b,a) 6∈✄1. Then, we obtain <1 6=≪1. So, this RPES is neither cause-respecting

nor causal.

Third, examine the RPES E2 = (E2, <2, ♯2, l2, F2, ≺2, ✄2, C2
0) (see Example 2) with the components:

E2 = {a,b}; <2= /0; ♯2 = /0; l2 is the identical function; F2 = {a}; ≺2= {(a,a)}; ✄2 = {(b,a)}; C2
0 = /0.

The RPES is cause-respecting, because the causality relation <2 is empty, and, hence, for the only

reversible event a of E3, the set of its effects is empty, which implies <2=≪2= /0. On the other hand, E2

is not causal, because there are the events a and b such that b✄2 a and a ≮2 b.

Fourth, treat the RPES E3 = (E3, <3, ♯3, l3, F3, ≺3, ✄3, C3
0), where E3 = {a,b,c,d}; <3= {(b,d),

(c,d)}; ♯3 = {(a,c), (c,a), (a,d), (d,a)}; l3 is the identical function; F3 = {b}; ≺3= {(a,b), (b,b)};

✄3 = {(d,b)} and C3
0 = {b}. Since for the only reversible event b, the set of its effects is equal to {d} and

d✄3 b is true, we conclude that the RPES is cause-respecting, whereas it is not causal because (a,b)∈≺3

and a 6= b.

Finally, consider the RPES E4 = (E4, <4, ♯4, l4, F4, ≺4, ✄4, C4
0), where E4 = {a,b,c,d}; <4=

{(c,d)}; ♯4 = {(a,c), (c,a), (a,d), (d,a)}; l4 is the identical function; F4 = {c,b}; ≺4= {(b,b), (c,c)};

✄4 = {(d,c)}, C4
0 = {b,c}. The RPES is causal and therefore cause-respecting. This is because <4=

{(c,d)} and ✄4 = {(d,c)}, and the reverse cause for the undoing of the only reversible event is the event

itself, since we have F4 = {b,c} and ≺4= {(b,b),(c,c)}. ✸

Any cause-respecting RPES with the empty initial configuration can be presented as a PES. On the

other hand, any PES can be converted into a causal and therefore cause-respecting RPES with the empty

initial configuration, once we specify which events are to be reversible. The following facts are slight

modifications of Propositions 3.36 and 3.37 from [27].

Proposition 1.

(i) If E = (E,<,♯, l,F,≺,✄, /0) is a cause-respecting RPES then φ(E) = (E,<,♯, l, /0) is a PES.

(ii) If E = (E,<,♯, l, /0) is a PES and F ⊆ E then ϕ(E ,F) = (E,<,♯, l,F,≺,✄, /0) is a causal RPES,

where e ≺ e for any e ∈ F, and e ✄ e′ for any e ∈ E and e′ ∈ F such that e′ < e. Moreover,

φ(ϕ(E ,F)) = E .

The following lemma states specific features of the configurations of the cause-respecting RPES,

which are left-closed w.r.t. causality and forwards reachable. Thanks to Definitions 2 and 3, the truth

of item (i) follows from Proposition 3.38(1) [27], and the truth of item (ii) — from Proposition 3.40(2)

[27].

Lemma 2. Given a cause-respecting E and its configuration C ∈Con f (E), it holds:

(i) C is left-closed under <;

(ii) if C is reachable, then C is forwards reachable.

The below example explains the above lemma.

Example 4. Recall the non-cause-respecting RPES E0 (with <0= {(b,d),(c,e)}) from Examples 1–

3. We know that {d}, {e}, {b,e}, {c,d}, {d,e}, {b,d,e}, {c,d,e}, {a,d}, {a,e}, {a,c,d}, {a,d,e},

{a,c,e,d} are configurations of E0. Clearly, these configurations are not left-closed under <0. Also,

N. Gribovskaya, I. Virbitskaite 119

we can reach the configurations only by using a combination of forward and reverse steps, i.e. the

configurations are reachable but not forwards reachable.

Consider the non-cause-respecting RPES E1 (with <1= {(a,b)}) from Examples 2–3. The configu-

rations of E1 are /0, {a}, {b}, {a,b}. We see that the configuration {b} is not left-closed under <1. In

addition, the configuration {b} can only be reached with a combination of forward and reverse steps, but

this is not possible when doing only forward steps.

It is easy to check that in the cause-respecting RPES E2 from Examples 2–3, all its configurations

are left-closed under its causality relation and, moreover, forwards reachable. ✸

3 Residuals

The removal operator, the concept of which is based on deleting already executed configurations (traces)

and events that conflict with the events presenting in the configurations (traces), is necessary for residual

semantics.

Introduce the definition of the removal operator for RPESs by using their traces.

Definition 5. For an RPES E = (E,<,♯, l,F,≺,✄,C0) and its trace t = (A1 ∪ B1) . . . (An ∪ Bn) ∈
Traces(E) (n ≥ 0), the residual E \ t of E after t under the removal operator \ is defined by induc-

tion on 0 ≤ i ≤ n as follows:

i = 0. E \ (t0 = ε) = E .

i > 0. E \ ti = (E i, <i=<i−1 ∩ (E i ×E i), ♯i = ♯i−1 ∩ (E i ×E i), li = li−1 |E i , F i, ≺i=≺i−1 ∩ (E i ×F i),
✄

i =✄
i−1 ∩ (E i ×F i), Ci

0), with

– E i = E i−1 \ (Ãi ∪ ♯i−1(Ãi)), where

Ãi = (Ai \F i−1) ∪ (⌊(Ai \F i−1)⌋∩F i−1 = {ã ∈ F i−1 | ∃a ∈ Ai \F i−1 : ã <i−1 a}),
♯i−1(Ãi) = {a ∈ E i−1 | ∃ã ∈ Ãi : a ♯i−1 ã};

– F i = (F i−1 ∩E i)\
(
Âi ∪

ˆ̂Ai

)
, where

Âi = {e ∈ F i−1 | ∃a ∈ ♯i−1(Ãi) : a ≺i−1 e},
ˆ̂Ai = {e ∈ F i−1 | ∃a ∈ Ãi : a✄i−1 e};

– Ci
0 = ((Ci−1

0 \Bi)∪Ai)∩E i.

E \ t = E \ tn.

The intuitive interpretation of the above definition is as follows. In the process of constructing the

residual of the RPES after a trace, all the irreversible events occurred in the current computation step,

their reversible causes and conflicting events thereof are removed, yielding a reduction of all the relations,

the labelling function and the initial configuration in the residual. This is due to the fact that all these

removed events will never be able to occur in any subsequent step. In addition, reversible events become

irreversible, whenever at least one of their reverse causes and/or at least one of the events preventing their

undoing are eliminated because the reversible events can never be undone afterwards. At the same time,

the other reversible events presented in the current step are retained, since they can be reversed in next

steps.

It should be emphasized that for any trace t of the RPES ϕ(E , /0)(2), where E is a PES, the residual

ϕ(E , /0)\ t coincides with the residual E \′ last(t), where \′ is the removal operator defined in [22](3).

(2)See Proposition 1(ii).
(3)In [22], for the PES E = (E,<,♯, l) and its configuration C ∈Con f (E), the residual E \′ C is defined as follows: E \′ C =

(E ′ = E \ (C∪ ♯(C)), ≤ ∩(E ′×E ′), ♯∩ (E ′×E ′), l |E ′), where ♯(C) denotes the events conflicting with the events in C.

120 Comparative Transition System Semantics for Cause-Respecting RPESs

We illustrate the application of the above removal operator with

Example 5. Consider the RPES E2 = (E2, <2, ♯2, l2, F2, ≺2, ✄2, C2
0) (see Examples 2–4) with the

components: E2 = {a,b}; <2= /0; ♯2 = /0; l2 is the identical function; F2 = {a}; ≺2= {(a,a)}; ✄2 =
{(b,a)}; C2

0 = /0. From Example 2 we know that the traces of E2 are (({a}∪ /0)(/0∪{a}))∗, (({a}∪ /0)(/0∪
{a}))∗({a}∪ /0), (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0), (({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0), (({a}∪
/0)(/0∪{a}))∗({b}∪ /0), (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0).

Applying the removal operator to the RPES E2 and its traces, we obtain the following structures:

– Ẽ2 = E2 \ (A1 = {a} ∪ B1 = /0) = (Ẽ = E2, <̃ =<2, ♯̃ = ♯2, l̃ = l2, F̃ = F2, ≺̃ =≺2, ✄̃ = ✄2,

C̃0 = {a}), because (Ã1 ∪ ♯2(Ã1)) = /0, due to a ∈ F2, and C̃0 = ((C2
0 = /0)∪ (A1 = {a}))∩ (Ẽ =

{a,b}) = {a};

– Ê2 = E2 \ (A1 = {a}∪B1 = /0)(A2 = /0∪B2 = {a}) = E2, since (Ã2 ∪ ♯̇(Ã2)) = /0, thanks to a ∈ F̃ ,

and ((C̃0 = {a})\B2 = {a})∩ Ê2 = /0;

– Ĕ2 = E2 \ (A1 = {a}∪B1 = /0)(A2 = {b}∪B2 = /0) = (Ĕ = {a}, <̆ = /0, ♯̆ = /0; l̆ = l2|{a}; F̆ = /0;

≺̆ = /0; ✄̆ = /0, C̆0 = {a}), because Ã2 = {b}, due to b ∈ A2 \ F̃ , a 6∈ F̆ , due to (b,a) ∈ ✄̃, and

C̆0 = ((C̃0 = {a})∪ (A2 = {b}))∩ (Ĕ = {a}) = {a};

– Ě2 = E2 \(A1 = {a,b}∪B1 = /0) = Ĕ2, since Ã1 = {b}, due to b∈ A1 \F2, a 6∈ F̌ , due to (b,a)∈✄2,

and Č0 = ((C0
2 = /0)∪ (A1 = {a,b}))∩ (Ě = {a}) = {a} = C̆0;

– Ė2 = E2 \(A1 = {b}∪B1 = /0) = (Ė = {a}, <̇= /0, ♯̇= /0, l̇ = l2|{a}, Ḟ = /0, ≺̇= /0, ✄̇= /0, Ċ0 = /0),

because Ã1 = {b}, due to b ∈ A1 \F2, a 6∈ Ḟ , due to (b,a) ∈ ✄2, and Ċ0 = ((C0
2 = /0)∪ (A1 =

{b}))∩ (Ė = {a}) = /0;

– Ë2 = E2 \ (A1 = {b}∪B1 = /0)(A2 = {a}∪B2 = /0) = (Ë = /0, <̈ = /0, ♯̈= /0, l̈ = /0, F̈ = /0, ≺̈ = /0,

✄̈= /0, C̈0 = /0), since Ã2 = {a}, due to a∈ A2\ Ḟ , and C̈0 = ((Ċ0 = /0)∪(A2 = {a}))∩(Ė = /0) = /0.

Notice that the removal operator produces the same residuals after the different traces. For example,

it is easy to see that:

E2 \ ({a}∪ /0)(/0∪{a}) = E2 \ (({a}∪ /0)(/0∪{a}))∗,

E2 \ ({a}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({a}∪ /0),
E2 \ ({a}∪ /0)({b}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0),
E2 \ ({a,b}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0),
E2 \ ({b}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({b}∪ /0),
E2 \ ({b}∪ /0)({a}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0). ✸

Below are some technical facts specific to the removal operator for RPESs.

Lemma 3. Given a cause-respecting RPES E = (E,<,♯, l,F,≺,✄,C0), a trace t = (A1∪B1) . . . (An∪Bn)

(C0

A1∪B1

→ C1 . . . Cn−1

An∪Bn

→ Cn) (n ≥ 0) of E , and E \ t = (En, <n, ♯n, ln, Fn, ≺n, ✄n, Cn
0), it holds:

(i) E j ⊆ E i, F j ⊆ F i, l j ⊆ li, ∇ j ⊆ ∇i (∇ ∈ {<,♯,≺,✄}), for any 0 ≤ i ≤ j ≤ n;

(ii) E \ ti is a cause-respecting RPES, for any 0 ≤ i ≤ n;

(iii) Bi ⊆ F i−1, for any 1 ≤ i ≤ n;

(iv) Ai ⊆ E i−1, for any 1 ≤ i ≤ n;

(v) Ãi ⊆Cn, for any 1 ≤ i ≤ n;

(vi) Cn
0 =Cn ∩En.

N. Gribovskaya, I. Virbitskaite 121

The following two statements demonstrate compositional properties of the residual operator for

cause-respecting RPESs.

Proposition 2. Given a cause-respecting RPES E with a trace t ∈ Traces(E) and its residual E ′ = E \ t

with a trace t ′ ∈ Traces(E ′), it holds that tt ′ ∈ Traces(E), and, moreover, E \ tt ′ = E ′ \ t ′.

So, it turned out that the concatenation of any trace t of the cause-respecting RPES E and any trace

t ′ of the residual E \ t is a trace of E , and, moreover, the residuals E \ tt ′ and E \ t \ t ′ coincide.

Example 6. First, consider the non-cause-respecting E0 = (E0, <0, ♯0, l0, F0, ≺0, ✄0, C0
0) from Ex-

amples 1–4, where E0 = {a,b,c,d,e}; <0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c),(c,b)}; l0 is the

identical function; F0 = {b,c}; ≺0= {(b,b),(c,c)}; ✄0 = /0; C0
0 = /0. As was demonstrated in Example 2,

the sequences ({b}∪ /0), ({b}∪ /0)({d}∪ /0) are traces of E0. Construct the following residuals of E0:

– Ė0 = E0 \ (A1 = {b}∪B1 = /0) = (Ė0 = E0, <̇0 =<0, ♯̇0 = ♯0, l̇0 = l0, Ḟ0 = F0, ≺̇0 =≺0, ✄̇0 =✄0,

Ċ0 = {b}), because (Ã1 ∪ ♯0(Ã1)) = /0, due to b ∈ F0, and, moreover, Ċ0 = ((C0
0 = /0)∪ (A1 =

{b}))∩ (Ė0 = {a,b,c,d,e}) = {b};

– Ë0 = E0 \(A1 = {b}∪B1 = /0)(A2 = {d}∪B2 = /0) = Ë0 = {e}, <̈0 = /0, ♯̈0 = /0, l̈0 = l̇0|{e}, F̈0 = /0,

≺̈0 = /0, ✄̈0 = /0, C̈0 = /0), because Ã2 = {b,d} thanks to d ∈ A2 \ Ḟ0, (b,d) ∈ <̇0 and b ∈ Ḟ0, and

♯̇0(Ã2) = {a,c}, due to (a,b),(b,c) ∈ ♯̇0, and, moreover, Ċ0 = ((Ċ0 = {b})∪ (A2 = {d}))∩ (Ė0 =
{e}) = /0.

It is easy to see that ({e}∪ /0) is a trace of Ë0, whereas the sequence ({b}∪ /0)({d}∪ /0)({e}∪ /0) is

not a trace of E0.

Using Examples 2–5, it is not difficult to make sure that Proposition 2 holds for the cause-respecting

RPES E2. ✸

It is stated below that any suffix t ′ of any trace tt ′ of the cause-respecting RPES E is a trace of the

residual E \ t.

Proposition 3. Given a cause-respecting RPES E with traces t ′, t ′t ′′ ∈ Traces(E), t ′′ ∈ Traces(E \ t ′)
holds.

Example 7. Examine the non-cause-respecting RPES E1 from Examples 2–4, with the components:

E1 = {a,b}; <1= {(a,b)}; ♯1 = /0; l1 is the identical function; F1 = {a}; ≺1= {(a,a)}; ✄1 = /0; C1
0 = /0.

We know that t ′ = ({a}∪ /0)({b}∪ /0) and t = ({a}∪ /0)({b}∪ /0)(/0∪{a})({a}∪ /0) are traces of E1. Let

t ′′ = (/0∪{a})({a}∪ /0). Using Definition 5, we obtain the RPES E1 \t ′ = (E ′
1 = /0, <′

1= /0, ♯′1 = /0, l′1 = /0,

F ′
1 = /0, ≺′

1= /0, ✄′
1 = /0, C′1

0 = /0). It is clear that Traces(E1 \t ′)= /0. Therefore, we get t ′′ 6∈ Traces(E1 \t ′).

Using Examples 2–5, it is not difficult to check that Proposition 3 holds for the cause-respecting

RPES E2. ✸

4 Transition System Semantics for Cause-Respecting RPESs

In this section, we first give some basic definitions concerning labeled transition systems. Then, we

define the mappings TC(E) and TR(E), which associate two distinct kinds of transition systems – one

whose states are configurations and one whose states are residuals – with the RPES E labeled over the

set L of actions.

A transition system T = (S,→, i) labeled over a set L of labels consists of a set of states S, a

transition relation →⊆ S×L ×S, and an initial state i ∈ S. Two transition systems labeled over L are

122 Comparative Transition System Semantics for Cause-Respecting RPESs

isomorphic if their states can be mapped one-to-one to each other, preserving transitions and initial states.

We call a relation R ⊆ S×S′ a bisimulation between transition systems T = (S,→, i) and T ′ = (S′,→′, i′)
over L iff (i, i′) ∈ R, and for all (s,s′) ∈ R and l ∈L : if (s, l,s1)∈→ then (s′, l,s′1)∈→

′ and (s1,s
′
1) ∈ R,

for some s′1 ∈ S′; and if (s′, l,s′1) ∈→
′ then (s, l,s1) ∈→ and (s1,s

′
1) ∈ R, for some s1 ∈ S. Two transition

systems over L are bisimilar if there is a bisimulation between them.

For a fixed set L of actions in RPESs, define the set L :=NL
0 (the set of multisets over L, or functions

from L to the non-negative integers). The set L will be used as the set of labels in transition systems.

We are ready to define transition systems (labeled over L) with configurations as states.

Definition 6. For an RPES E = (E,<,♯, l,F,≺,✄,C0) over L,

TC(E) is a transition system (Conf (E), ⇁, C0) over L,

where C
M
⇁C′ iff C

(A∪B)
→ C′ in E and M = l(A∪B)(4).

Let us explain the above definition with

Example 8. Consider the cause-respecting RPES E2 from Examples 2–5. In Example 2, we can see that

C2
0 = /0 and Conf (E2) = { /0, {a}, {b}, {a,b}}. Using Definition 6, we obtain ⇁= {(/0,({a}∪ /0),{a}),

({a},(/0∪{a}), /0), ({a},({b}∪ /0),{a,b}), (/0,({b}∪ /0),{b}), ({b},({a}∪ /0),{a,b}), (/0, ({a,b}∪ /0),
{a,b})}. A graphical representation of the configuration transition system TC(E2) is shown in Fig. 1. ✸

/0

{a}

{b}

{a,b}

({
a,

b}
∪

/0)

({
a
}
∪

/0
)

(/0
∪
{

a
}
)

({b}∪ /0)

({b}∪ /0)

({
a
}
∪

/0
)

Figure 1: The configuration transition system TC(E2)

We next propose the definition of labeled transition systems over L with RPESs as states.

Definition 7. For an RPES E = (E,<,♯, l,F,≺,✄,C0) over L,

TR(E) is a transition system (Reach(E), ⇀, E) over L,

where F
M
⇀ F ′ iff F ′ = F \ (A∪B) and M = l(A∪B), and Reach(E) = {F | ∃E0, . . . ,Ek (k ≥ 0) s.t.

E0 = E \ ε , Ek = F , and Ei
l(A∪B)
⇀ Ei+1 (0 ≤ i < k)}.

We illustrate the above definition with

Example 9. Consider the RPES E2 from Examples 2–5. Using Definitions 5 and 7, we construct the

residual transition system TR(E2) which is depicted in Fig. 2. It is easy to check that the configuration

transition system TC(E2) (see Fig. 1) and the residual transition system TR(E2) are bisimilar but not

isomorphic. ✸

We establish the relationships between the states and transitions of the configuration-based and

residual-based transition systems of the RPES.

(4)See Definition 3.

N. Gribovskaya, I. Virbitskaite 123

E2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗

Ẽ2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗({a}∪ /0)

Ė2 = E2 \ (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)

Ĕ2 = Ě2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0) = E2 \ ((({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0)

Ë2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0)
({

b
}
∪

/0
)

(/0
∪
{a
})

({
a
}
∪

/0
)

({a,b}∪
/0)

({
b}

∪
/0)

({
a}

∪
/0)

Figure 2: The residual transition system TR(E2)

Proposition 4. Given a cause-respecting RPES E = (E,<,♯, l,F,≺,✄,C0) over L,

(i) for any last(t) ∈Con f (E), E \ t ∈ Reach(E);

(ii) for any E ′ ∈ Reach(E), there is last(t) ∈Con f (E) such that E ′ = E \ t;

(iii) for any last(t), last(t ′) ∈ Con f (E), if last(t)
l(A∪B)
⇁ last(t ′) then E \ t

l(A∪B)
⇀ E \ t(A ∪ B) and

last(t(A∪B)) = last(t ′);

(iv) for any E ′,E ′′ ∈ Reach(E), if E ′ l(A∪B)
⇀ E ′′ then, for any last(t) ∈Con f (E) such that E ′ = E \ t,

there is last(t ′) ∈Con f (E) such that E ′′ = E \ t ′ and last(t)
l(A∪B)
⇁ last(t ′).

Theorem 1. Given a cause-respecting RPES E over L, TC(E) and TR(E) are bisimilar and in general

not isomorphic.

Proof. From Example 9 we know that, for the cause-respecting RPES E2, TC(E2) and TR(E2) are not

isomorphic.

We shall check that TC(E) and TR(E) are bisimilar for an arbitrary cause-respecting RPES E = (E ,

<, ♯, L, l, F , ≺, ✄, C0). Due to Lemma 1(i) and Propositions 4(i), we can define a relation R ⊆
Conf (E)×Reach(E) as follows: R = {(last(t),E \ t) | t ∈ Traces(E)}.

We need to show that R is a bisimulation between TC(E) and TR(E). Clearly, we have that ε ∈
Traces(E), and, moreover, C0 = last(ε) ∈ Conf (E) and E = E \ ε ∈ Reach(E). So, (C0,E) ∈ R holds.

Take an arbitrary (last(t),E \ t) ∈ R. Suppose that last(t)
l(A∪B)
⇁ C′ in TC(E) for some C′ ∈ Con f (E).

By Lemma 1(i), there is t ′ ∈ Traces(E) such that C′ = last(t ′). According to Proposition 4(iii), it is true

that E \ t
l(A∪B)
⇀ E \ t(A∪B) and last(t(A∪B)) = last(t ′). Thanks to Lemma 1(i), we have t(A∪B) ∈

Traces(E). Hence, (C′ = last(t(A∪B)),E \ t(A∪B)) ∈ R holds. In the opposite direction, assume that

124 Comparative Transition System Semantics for Cause-Respecting RPESs

E \t
l(A∪B)
⇀ E ′ in TR(E) for some E ′ ∈ Reach(E). Due to Propositions 4(iv), for last(t) ∈Con f (E), there

is last(t ′) ∈Con f (E) such that E ′ = E \ t ′ and last(t)
l(A∪B)
⇁ last(t ′). Due to Lemma 1(i), t ′ ∈ Traces(E)

is true. This implies that (last(t ′),E \ t ′ = E ′) ∈ R holds. Hence, R is indeed a bisimulation.

5 Concluding Remarks

In this paper, we dealt with two different – configuration-based and residual-based – ways of giving

(step) transition system semantics for cause-respecting reversible prime event structures which encom-

pass prime event structures. For this purpose, we firstly defined (step) semantics from [27], which is

based on configurations/traces obtained by starting with the initial configuration and by executing events

and/or undoing previously executed events, and, secondly, developed a removal operator which is useful

for constructing residuals (model fragments) by retaining an appropriate amount of structure during the

execution of the model. We also stated some correctness criteria for the removal operator. The mean-

ing of the correctness properties is that the obtained residuals do not allow configurations/traces that are

disallowed by the original structure. Also, in some sense, this signifies some compositionality proper-

ties of the removal operator. It turned out that in the context of PESs, the removal operator developed

here produces the same residuals as the removal operator proposed in [22]. As our main result, we

have obtained a (step) bisimulation between configuration-based and residual-based transition systems

of the models under consideration. The configuration-based method discussed here can be useful in an-

alyzing the state space of reversible concurrent systems whose behavior is represented as RPESs, and

the proposed residual-based method can be suitable for specification and visualization of changes in the

structures of reversible concurrent processes during their simulation in tools. Due to the good compo-

sitionality properties of the residual-based transition systems of RPESs and their complementarity and

consistency with the configuration-based ones, it is hoped that the results obtained here may be helpful in

demonstrating the correspondence between operational and denotational semantics of algebraic calculi

of reversible concurrent processes, similar to how the results from [5, 9, 17] have found their application

in traditional (irreversible) process algebras.

As for future work, we plan to broaden the list of studied models by adding flow/bundle/general

event structures with symmetric and asymmetric conflict. Work on extending our approach to out-of-

causal reversible prime event structures is under way and has yielded promising intermediate results.

Another future line of our research is to generalize the model of reversible prime event structures with

non-executable (impossible) events (for example, by dropping the transitivity/acyclicity of causality, as

well as the principles of finite causes) in order to obtain isomorphisms between the two types of transi-

tion systems of the models, as was done for the corresponding extension of PESs in the paper [8]. There,

the authors have been able to argue that non-executable events are useful in comparative semantics,

facilitating the elimination of non-fundamental inconsistencies between models. Furthermore, isomor-

phisms between the transition system semantics are expected to allow one to relate those constructed on

configurations and those derived from denotational semantics of process calculi in a tight way.

References

[1] Bogdan Aman & Gabriel Ciobanu (2018): Controlled Reversibility in Reaction Systems. In Marian Ghe-

orghe, Grzegorz Rozenberg, Arto Salomaa & Claudio Zandron, editors: Membrane Computing, Springer

International Publishing, Cham, pp. 40–53, doi:10.1007/978-3-319-73359-3_3.

https://doi.org/10.1007/978-3-319-73359-3_3

N. Gribovskaya, I. Virbitskaite 125

[2] Youssef Arbach, David Karcher, Kirstin Peters & Uwe Nestmann (2015): Dynamic Causality in Event

Structures. In Susanne Graf & Mahesh Viswanathan, editors: Formal Techniques for Distributed Ob-

jects, Components, and Systems, Springer International Publishing, Cham, pp. 83–97, doi:10.1007/

978-3-319-19195-9_6.

[3] Abel Armas-Cervantes, Paolo Baldan & Luciano Garcia-Banuelos (2016): Reduction of event structures

under history preserving bisimulation. Journal of Logical and Algebraic Methods in Programming 85(6), pp.

1110–1130, doi:10.1016/j.jlamp.2015.10.004.

[4] Clement Aubert & Ioana Cristescu (2017): Contextual equivalences in configuration structures and re-

versibility. Journal of Logical and Algebraic Methods in Programming 86(1), pp. 77–106, doi:10.1016/

j.jlamp.2016.08.004.

[5] Christel Baier & Mila Majster-Cederbaum (1994): The connection between an event structure semantics and

an operational semantics forTCSP. Acta Informatica 31(1), doi:10.1007/BF01178923.

[6] Kamila Barylska, Anna Gogolinska, Lukasz Mikulski, Anna Philippou, Marcin Piatkowski & Kyriaki Psara

(2022): Formal Translation from Reversing Petri Nets to Coloured Petri Nets. In Claudio Antares Mezzina &

Krzysztof Podlaski, editors: Reversible Computation, Springer International Publishing, Cham, pp. 172–186,

doi:10.1007/978-3-031-09005-9_12.

[7] Eike Best, Nataliya Gribovskaya & Irina Virbitskaite (2017): Configuration- and Residual-Based Transi-

tion Systems for Event Structures with Asymmetric Conflict. In Bernhard Steffen, Christel Baier, Mark

van den Brand, Johann Eder, Mike Hinchey & Tiziana Margaria, editors: SOFSEM 2017: Theory and

Practice of Computer Science, Springer International Publishing, Cham, pp. 132–146, doi:10.1007/

978-3-319-51963-0_11.

[8] Eike Best, Nataliya Gribovskaya & Irina Virbitskaite (2018): From Event-Oriented Models to Transition

Systems. In Victor Khomenko & Olivier H. Roux, editors: Application and Theory of Petri Nets and Concur-

rency, Springer International Publishing, Cham, pp. 117–139, doi:10.1007/978-3-319-91268-4_7.

[9] Gérard Boudol (1990): Flow event structures and flow nets. In Irène Guessarian, editor: Semantics of

Systems of Concurrent Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 62–95, doi:10.1007/

3-540-53479-2_4.

[10] Silvia Crafa, Daniele Varacca & Nobuko Yoshida (2012): Event Structure Semantics of Parallel Extrusion

in the π-Calculus. In Lars Birkedal, editor: Foundations of Software Science and Computational Structures,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 225–239, doi:10.1007/978-3-642-28729-9_15.

[11] Vincent Danos & Jean Krivine (2005): Transactions in RCCS. In Martı́n Abadi & Luca de Alfaro, edi-

tors: CONCUR 2005 – Concurrency Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 398–412,

doi:10.1007/11539452_31.

[12] Alexis De Vos, Stijn De Baerdemacker & Yvan Van Rentergem (2018): Synthesis of Quantum Cir-

cuits vs. Synthesis of Classical Reversible Circuits, first edition. Springer Cham, doi:10.1007/

978-3-031-79895-5.

[13] David de Frutos Escrig, Maciej Koutny & Łukasz Mikulski (2019): Reversing Steps in Petri Nets. In Su-

sanna Donatelli & Stefan Haar, editors: Application and Theory of Petri Nets and Concurrency, Springer

International Publishing, Cham, pp. 171–191, doi:10.1007/978-3-030-21571-2_11.

[14] Eva Graversen, Iain Phillips & Nobuko Yoshida (2021): Event structure semantics of (controlled) reversible

CCS. Journal of Logical and Algebraic Methods in Programming 121, p. 100686, doi:10.1016/j.jlamp.

2021.100686.

[15] P.W. Hoogers, H.C.M. Kleijn & P.S. Thiagarajan (1996): An event structure semantics for general Petri nets.

Theoretical Computer Science 153(1), pp. 129–170, doi:10.1016/0304-3975(95)00120-4.

[16] Jarkko Kari (2018): Reversible Cellular Automata: From Fundamental Classical Results to Recent Develop-

ments. New Generation Computing 36(3), pp. 145–172, doi:10.1007/s00354-018-0034-6.

[17] Joost-Pieter Katoen (1996): Quantitative and Qualitative Extensions of Event Structures. Ph.D. thesis, Uni-

versity of Twente, Netherlands.

https://doi.org/10.1007/978-3-319-19195-9_6
https://doi.org/10.1007/978-3-319-19195-9_6
https://doi.org/10.1016/j.jlamp.2015.10.004
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1007/BF01178923
https://doi.org/10.1007/978-3-031-09005-9_12
https://doi.org/10.1007/978-3-319-51963-0_11
https://doi.org/10.1007/978-3-319-51963-0_11
https://doi.org/10.1007/978-3-319-91268-4_7
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/978-3-642-28729-9_15
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-031-79895-5
https://doi.org/10.1007/978-3-031-79895-5
https://doi.org/10.1007/978-3-030-21571-2_11
https://doi.org/10.1016/j.jlamp.2021.100686
https://doi.org/10.1016/j.jlamp.2021.100686
https://doi.org/10.1016/0304-3975(95)00120-4
https://doi.org/10.1007/s00354-018-0034-6

126 Comparative Transition System Semantics for Cause-Respecting RPESs

[18] Stefan Kuhn, Bogdan Aman, Gabriel Ciobanu, Anna Philippou, Kyriaki Psara & Irek Ulidowski (2020):

Reversibility in Chemical Reactions, pp. 151–176. Springer International Publishing, Cham, doi:10.1007/

978-3-030-47361-7_7.

[19] Ivan Lanese, Claudio Antares Mezzina & Jean-Bernard Stefani (2016): Reversibility in the higher-order

π-calculus. Theoretical Computer Science 625, pp. 25–84, doi:10.1016/j.tcs.2016.02.019.

[20] Ivan Lanese, Adrián Palacios & Germán Vidal (2019): Causal-Consistent Replay Debugging for Message

Passing Programs. In Jorge A. Pérez & Nobuko Yoshida, editors: Formal Techniques for Distributed Ob-

jects, Components, and Systems, Springer International Publishing, Cham, pp. 167–184, doi:10.1007/

978-3-030-21759-4_10.

[21] Rom Langerak (1991): Bundle event structures: a non-interleaving semantics for LOTOS. In Michel Diaz

& Roland Groz, editors: Formal Description Techniques V, IFIP transactions C, Communication systems,

North Holland, Netherlands, pp. 331–346. 5th International Conference on Formal Description Techniques

for Distributed Systems and Communications Protocols, FORTE 1992.

[22] Mila Majster-Cederbaum & Markus Roggenbach (1998): Transition systems from event structures revisited.

Information Processing Letters 67(3), pp. 119–124, doi:10.1016/S0020-0190(98)00105-7.

[23] Doriana Medić, Claudio Antares Mezzina, Iain Phillips & Nobuko Yoshida (2020): Towards a Formal Ac-

count for Software Transactional Memory. In Ivan Lanese & Mariusz Rawski, editors: Reversible Computa-

tion, Springer International Publishing, Cham, pp. 255–263, doi:10.1007/978-3-030-52482-1_16.

[24] Hernan Melgratti, Claudio Antares Mezzina & G. Michele Pinna (2021): A distributed operational view of

Reversible Prime Event Structures. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS), pp. 1–13, doi:10.1109/LICS52264.2021.9470623.

[25] Hernan Melgratti, Claudio Antares Mezzina, Iain Phillips, G. Michele Pinna & Irek Ulidowski (2020):

Reversible Occurrence Nets and Causal Reversible Prime Event Structures. In Ivan Lanese & Mariusz

Rawski, editors: Reversible Computation, Springer International Publishing, Cham, pp. 35–53, doi:10.

1007/978-3-030-52482-1_2.

[26] Anna Philippou & Kyriaki Psara (2020): Reversible Computation in Cyclic Petri Nets. CoRR

abs/2010.04000, doi:10.48550/arXiv.2010.04000.

[27] Iain Phillips & Irek Ulidowski (2015): Reversibility and asymmetric conflict in event structures. Journal

of Logical and Algebraic Methods in Programming 84(6), pp. 781–805, doi:10.1016/j.jlamp.2015.07.

004.

[28] Iain Phillips, Irek Ulidowski & Shoji Yuen (2013): A Reversible Process Calculus and the Modelling of the

ERK Signalling Pathway. In Robert Glück & Tetsuo Yokoyama, editors: Reversible Computation, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 218–232, doi:10.1007/978-3-642-36315-3_18.

[29] Giovanni Michele Pinna (2017): Reversing steps in membrane systems computations. In M. Gheorghe,

G. Rozenberg, A. Salomaa & C. Zandron, editors: Membrane Computing, 10725, Springer International

Publishing, Cham, pp. 245–261, doi:10.1007/978-3-319-73359-3_16.

[30] Irek Ulidowski, Iain Phillips & Shoji Yuen (2018): Reversing event structures. New Generation Computing

36(3), pp. 281–306, doi:10.1007/s00354-018-0040-8.

[31] R.J. van Glabbeek & G.D. Plotkin (2009): Configuration structures, event structures and Petri nets. Theo-

retical Computer Science 410(41), pp. 4111–4159, doi:10.1016/j.tcs.2009.06.014.

[32] Glynn Winskel (1980): Events in computation. Ph.D. thesis, University of Edinburgh.

[33] Glynn Winskel (1989): An introduction to event structures. In J. W. de Bakker, W. P. de Roever & G. Rozen-

berg, editors: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 364–397, doi:10.1007/BFb0013026.

https://doi.org/10.1007/978-3-030-47361-7_7
https://doi.org/10.1007/978-3-030-47361-7_7
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1016/S0020-0190(98)00105-7
https://doi.org/10.1007/978-3-030-52482-1_16
https://doi.org/10.1109/LICS52264.2021.9470623
https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.48550/arXiv.2010.04000
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/s00354-018-0040-8
https://doi.org/10.1016/j.tcs.2009.06.014
https://doi.org/10.1007/BFb0013026

	Introduction
	Reversing in Prime Event Structures
	Residuals
	Transition System Semantics for Cause-Respecting RPESs
	Concluding Remarks

