
Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 3–10, doi:10.4204/EPTCS.386.1

© G. Jirásková
This work is licensed under the
Creative Commons Attribution License.

Operations on Boolean and Alternating Finite Automata

Galina Jirásková*

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk

We examine the complexity of basic regular operations on languages represented by Boolean and
alternating finite automata. We get tight upper bounds m+ n and m+ n+ 1 for union, intersection,
and difference, 2m+n and 2m+n+1 for concatenation, 2n+n and 2n+n+1 for square, m and m+1
for left quotient, 2m and 2m +1 for right quotient. We also show that in both models, the complexity
of complementation and symmetric difference is n and m+n, respectively, while the complexity of
star and reversal is 2n. All our witnesses are described over a unary or binary alphabets, and whenever
we use a binary alphabet, it is always optimal.

1 Introduction

Boolean and alternating finite automata [1, 2, 6, 7, 10, 11, 12] are generalizations of nondeterministic
finite automata. They recognize regular languages, however, they may be exponentially smaller, with
respect to the number of states, than equivalent nondeterministic finite automata (NFAs). While in an
NFA the transition function maps any pair of a state and input symbol to a set of states that can be viewed
as a disjunction of the states, in a Boolean finite automaton (BFA) the result of the transition function is
given by any Boolean function with variables in the state set.

Fellah et al. [3] examined alternating finite automata (AFAs), that is, Boolean automata in which the
initial Boolean function is given by a projection. They proved that every n-state AFA can be simulated by
a (2n +1)-state nondeterministic finite automaton with a unique initial state, and left as an open problem
the tightness of this upper bound. An answer to this problem was given in [7, Lemma 1, Theorem 1]
by describing an n-state binary AFA whose equivalent NFA with a unique initial state has at least 2n +1
states. Here we present a different example in which the reachability and co-reachability of all singleton
sets immediately implies the result.

In [3] it was also shown that given an m-state and n-state AFAs for languages K and L, the lan-
guages Lc, K∪L, K∩L, KL, and L∗ are recognized by AFAs of at most n,m+n+1,m+n+1,2m+n+1,
and 2n +1 states, respectively, and the tightness of these upper bounds was left open as well.

Here we present the results obtained in [5, 6, 7, 8, 11] that provide the exact complexity of basic regu-
lar operations on languages represented by Boolean and alternating finite automata. Table 1 summarizes
these results. It also displays the sizes of alphabet used to describe witness languages.

2 Preliminaries

Let Σ be a non-empty alphabet of symbols. Then Σ∗ denotes the set of all strings over the alphabet Σ

including the empty string ε . A language over Σ is any subset of Σ∗.

*This research was supported by the Slovak Grant Agency for Science (VEGA) under contract 2/0096/23 “Automata and
Formal Languages: Descriptional and Computational Complexity”.

http://dx.doi.org/10.4204/EPTCS.386.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

4 Operations on Boolean and Alternating Finite Automata

Table 1: The complexity of basic regular operations on Boolean and alternating finite automata.

operation BFA |Σ| AFA |Σ| source

complementation n 1 n 1 [6, Thm. 1]
union m+n 1 m+n+1 1 [7, Thm. 2(1) and 3(1)], [11, Thm. 4.3 and 4.4]
intersection m+n 1 m+n+1 1 [7, Thm. 2(2) and 3(2)], [11, Thm. 4.3 and 4.4]
difference m+n 1 m+n+1 1 [6, Thm. 13(a) and 14(a)], [11, Thm. 4.3 and 4.4]
symm. difference m+n 1 m+n 1 [6, Thm. 13(b) and 14(b)], [11, Thm. 4.3 and 4.4]
star 2n 2 2n 2 [6, Thm. 12]
reversal 2n 2 2n 2 [6, Thm. 13(c) and 14(c)]
right quotient 2m 2 2m +1 2 [6, Thm. 13(d) and 14(d)]
left quotient m 1 m+1 1 [6, Thm. 13(e) and 14(e)]
concatenation 2m +n 2 2m +n+1 2 [7, Thm. 4 and 5],[5, Thm. 6.4]
square 2n +n 2 2n +n+1 2 [8, Thm. 13 and 14]

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, ·,gs,F) where Q = {q1,q2, . . . ,qn} is a
finite non-empty set of states, Σ is a finite input alphabet, · is a transition function that maps Q×Σ into
the set Bn of Boolean functions with variables {q1,q2, . . . ,qn}, gs ∈ Bn is the initial Boolean function,
and F ⊆ Q is the set of final states. The transition function · is extended to the domain Bn × Σ∗ as
follows: For each g ∈ Bn, each a ∈ Σ, and each w ∈ Σ∗, we have

• g · ε = g,

• if g = g(q1,q2, . . . ,qn), then g ·a = g(q1 ·a,q2 ·a, . . . ,qn ·a),
• g · (wa) = (q ·w) ·a.

Let f = (f1, f2, . . . , fn) be a Boolean vector (finality vector) such that fi = 1 if and only if qi ∈ F . The
language accepted by a BFA A is the set of strings L(A) = {w ∈ Σ∗ | (gs ·w)(f) = 1}. We illustrate the
above mentioned notions in the following example.

Example 1. Consider the 2-state binary Boolean finite automaton A = ({q1,q2},{a,b}, ·,q1 ∧q2,{q1})
where the transition function · is defined in Table 2.

Table 2: The transition function of the BFA A.

· a b

q1 q1 ∨q2 q1

q2 q2 q1 ∧¬q2

Then the string ab is accepted by A since we have

gs ·ab = (q1 ∧q2) ·ab = ((q1 ∨q2)∧q2) ·b = (q1 ∨ (q1 ∧¬q2))∧ (q1 ∧¬q2),

and the resulting function evaluates to 1 in the finality vector (1,0).

G. Jirásková 5

A BFA A is called alternating (AFA) if its initial function is a projection gs(q1,q2, . . . ,qn) = q1;
cf. [2, 3, 15]. It is nondeterministic with multiple initial states (MNFA) if gs and all qi · a are of the
form qi1 ∨ qi2 ∨ ·· · ∨ qiℓ . If moreover gs = q1, then A is nondeterministic (with a unique initial state)
(NFA). If moreover all qi ·a are of the form q j, then A is deterministic (DFA).

3 Simulations of BFAs and AFAs by MNFAs, NFAs, and DFAs

In this section we recall the trade-offs between different models of finite automata. Let us start with the
simulation of BFAs by MNFAs.

Proposition 2 ([3, Theorem 4.1], [7, Lemma 1]). Let L be a language accepted by an n-state BFA.
Then L is accepted by a 2n-state MNFA whose reverse is a DFA.

Proof Idea. Let A = (Q,Σ, ·,gs,F) be a BFA with Q = {q1,q2, . . . ,qn}. Let f = (f1, f2, . . . , fn) be the
Boolean finality vector with fi = 1 iff qi ∈ F . Construct a MNFA A′ = (Q′,Σ,◦, I,{ f}) where

• Q′ = {0,1}n,

• I = {u ∈ Q′ | gs(u) = 1},

• for each u ∈ Q′ and each a ∈ Σ, we set u◦a = {u′ ∈ Q′ | (q1 ·a,q2 ·a, . . . ,qn ·a)(u′) = u}.

Then L(A) = L(A′).

Since the reverse of the MNFA in the proof above is a DFA, we get the next result.

Corollary 3. If L is accepted by an n-state BFA, then LR is accepted by a 2n-state DFA.

Notice that if A is an AFA, then the MNFA A′ constructed in the proof of Proposition 2 has 2n−1

initial states, and we get the following observation.

Corollary 4. If L is accepted by an n-state AFA, then LR is accepted by a 2n-state DFA of which 2n−1

are final.

Our next aim is to get the converses of the above corollaries.

Proposition 5 ([7, Lemma 2]). Let L be accepted by a 2n-state MNFA whose reverse is a DFA. Then L
is accepted by an n-state BFA.

Proof Idea. Let A = (Q,Σ, ·, I,F) be a MNFA with Q = {0,1}n. Since AR is a DFA, the MNFA A has
a unique final state f ∈ Q, and moreover, for each u ∈ Q and each a ∈ Σ there is a unique state u′

with u′ ·a = u; denote this state by au. Construct a BFA A′ = (Q′,Σ,◦,gs,F ′) where

• Q′ = {q1,q2, . . . ,qn},

• gs(u) = 1 iff u ∈ I,

• F ′ = {qi | fi = 1},

• (q1 ◦a,q2 ◦a, . . . ,qn ◦a)(u) = au.

Then L(A) = L(A′).

Corollary 6. If L is accepted by a 2n-state DFA, then LR is accepted by an n-state BFA.

Corollary 7. If L is accepted by a 2n-state DFA which has 2n−1 final states, then LR is accepted by
an n-state AFA.

6 Operations on Boolean and Alternating Finite Automata

We continue with the simulation of BFAs by DFAs.

Proposition 8 ([10, Theorem 7], [1, Theorem 2], [2, Theorem 5.2], [12, Corollary 3]). Let L be a
language over an alphabet Σ accepted by an n-state BFA. Then L is accepted by a DFA of at most 22n

states, and this upper bound is tight if |Σ| ≥ 2.

Proof Idea. If L is accepted by an n-state BFA, then by Proposition 2, it is accepted by a 2n-state MNFA,
and, consequently, by a 22n

-state DFA. For tightness, let K be the binary 2n-state DFA from [12, Proposi-
tion 2] whose reversal KR requires 22n

deterministic states. By Corollary 6, the language KR is accepted
by an n-state BFA.

Finally, we consider the simulation of BFAs by NFAs, and provide an answer to an open problem
from [3].

Theorem 9 ([7, Theorem 1]). Let L be accepted by an n-state BFA. Then L is accepted by an NFA of at
most 2n +1 states. This upper bound is tight, and it can be met by a binary n-state AFA.

Proof Idea. By Proposition 2, the language L is accepted by a 2n-state MNFA, and, consequently, by
a (2n + 1)-state NFA. For tightness, let n ≥ 2. Let L be the language accepted by the 2n-state MNFA
A = (Q,{a,b}, ·, I,F) where

• Q = {0,1, . . . ,2n −1},

• I = {0,1, . . . ,2n−1 −1},

• F = {2n −1},

• i ·a = {(i+1) mod 2n} for each i ∈ Q,

• 0 ·b = {0}, (2n −1) ·b = Q\{0}, and i ·b = /0 is i ∈ Q\{0,2n −1};

see Figure 1 for an illustration 1. The reverse AR is a 2n-state DFA which has 2n−1 final states. By
Corollary 7, the language L is accepted by an n-state AFA. On the other hand, each singleton set is
reachable and co-reachable in the MNFA A which means that every NFA accepting L has at least 2n +1
states by [4, Lemma 9].

0 1 2 3 4 5 6 7a a a a a a a

a

b

b

b
b

b
b

b
b

Figure 1: The MNFA A; n = 3.

G. Jirásková 7

4 Operational Complexity on Boolean and Alternating Finite Automata

In this section we use the four corollaries from the previous section to get the complexity of basic regular
operations on languages represented by Boolean and alternating finite automata. The idea is as follows.
Consider a binary operation and take languages K and L recognized by a 2m-state and 2n-state DFA,
respectively, that are witnesses for the considered operation on DFAs. Then the languages KR and LR

are accepted by an m-state and n-state BFA, respectively. Now it is enough to show that the language
resulting from the operation applied to the languages KR and LR requires large enough BFA. In the case
of AFAs, we start with DFAs with half of their states final that are hard for the considered operation on
DFAs. We illustrate this idea for the concatenation operation.
Theorem 10 (Concatenation on BFAs). Let K and L be languages over an alphabet Σ accepted by
an m-state and n-state BFA, respectively. Then the language KL is accepted by a BFA of at most 2m +n
states, and this upper bound is tight if |Σ| ≥ 2.

Proof. To get an upper bound, let A = (QA,Σ, ·A,gA,FA) and B = (QB,Σ, ·B,gB,FB) be BFAs accept-
ing the languages K and L, respectively. We first convert the BFA A to the 2m-state MNFA M =
(QM,Σ, ·M,gM,FM). Now we construct a BFA C = (QM ∪QB,Σ, ·,gM,FB) with

q ·a =

q ·M a, if q ∈ QM \FM;
q ·M a∨gB ·B a, if q ∈ FM;
q ·B a, if q ∈ QB;

cf. [3, Theorem 9.2]. Then the BFA C has 2m +n states and recognizes the language KL.
To get tightness, let K and L be Maslov’s binary witnesses for concatenation on DFAs from [13],

see Figure 2, accepted by a 2n-state and 2m-state DFA, respectively. Then every DFA accepting the
language KL has at least 2n22m − 22m−1 states. By Corollary 6, the languages LR and KR are accepted
by m-state and n-state BFA, respectively. Next, we have (LRKR)R = KL, so every DFA accepting the
reverse of the concatenation LRKR has at least 2n22m −22m−1 states. By Corollary 3, it follows that every
BFA accepting KRLR has at least ⌈log(2n22m −22m−1)⌉= 2m +n states.

A 1 2 . . . m−1 ma a a a

a

b b b b

B 1 2 . . . n−2 n−2 nb b b b a,b

ba a a

a

Figure 2: Maslov’s witness DFAs for concatenation meeting the upper bound m2n −2n−1.

Theorem 11 (Concatenation on AFAs). Let K and L be languages over an alphabet Σ accepted by an m-
state and n-state AFA, respectively. Then the language KL is accepted by a AFA of at most 2m + n+ 1
states, and this upper bound is tight if |Σ| ≥ 2.

8 Operations on Boolean and Alternating Finite Automata

A 1 2 . . . m
2

m
2 +1 m

2 +2 . . . ma

b

a a a a a a

a

b b b b b b b

B 1 2 3 . . . n
2

n
2 +1 . . . nb a,b

b b b ba

a a a a a

a

Figure 3: Witness DFAs for concatenation with half of states final meeting the upper bound m2n− m
2 2n−1.

Proof. The upper bound follows from the previous theorem since one more state is enough to get an AFA
equivalent to a given BFA. To get tightness, we use languages K and L accepted by 2n-state and 2m-state
witness DFAs for concatenation with half of their states final from [5, Theorem 4.7], see Figure 3. Then
the minimal DFA for KL has 2n22m − 2n−122m−1 states, of which more that 22m+n−1 states are final [5,
Lemma 6.4]. Then the languages LR and KR are accepted by an m-state and n-state AFA, respectively.
Next, we have (LRKR)R = KL, so every AFA for LRKR has at least ⌈log(2n22m − 2n−122m−1)⌉ = 2m + n
states. If an AFA of 2m + n states would accept LRKR, then the reverse of this language, that is, the
language KL would be accepted by a DFA of 22m+n states with 22m+n−1 final states. However, the
minimal DFA for KL has more than 22m+n−1 final states, a contradiction.

Hence, the upper bound 2m +n+1 for concatenation on AFAs from [3, Theorem 9.3] is tight. This
provides an answer to the second open problem from [3]. A similar idea as for concatenation also works
for square, and left and right quotients. Our results for the star operation are covered by the next theorem.
Theorem 12 (Star on BFAs and AFAs). If L is accepted by an n-state BFA, then L∗ is accepted by
a 2n-state AFA. Moreover, there exists a binary language L accepted by an n-state AFA such that every
BFA for L∗ has at least 2n states.

Proof. If L is accepted by an n-state BFA, then LR is accepted by a 2n-state DFA by Corollary 3.
Then (LR)∗ is accepted by a 22n

-state DFA with half of its state final [6, Proposition 8]. Next, we
have (L∗)R = (LR)∗. Hence L∗ is accepted by an n-state AFA by Corollary 7.

To get tightness, let L be the Palmovský’s witness DFA for star with 2n states half of which are
final [14, Theorem 4.4], see Figure 4. Then LR is accepted by an n-state AFA by Corollary 7. Next, we
have ((LR)∗)R = ((L∗)R)R = L∗, and every DFA for L∗ has at least 22n−1 + 22n−1+2n−1

states. It follows
that every BFA for (LR)∗ has at least ⌈log(22n−1 +22n−1+2n−1

)⌉= 2n states by Corollary 3.

Similar arguments work for reversal. If L is accepted by an n-state BFA, that LR is accepted by a 2n-
state DFA, a special case of AFA. For tightness, we take the language L accepted by a 2n-state Šebej’s
DFA from [9, Fig. 6] with half of its states final. Then LR ia accepted by an n-state AFA, while every
DFA for LR has at least 22n

states. Hence, every BFA for L = (LR)R has at least 2n states by Corollary 6.
We conclude this section with Boolean operations. Denote by bsc(L) the number of states in a

minimal, with respect to the number of states, BFA accepting L. Define asc(L) in an analogous way.

G. Jirásková 9

A 1 2 . . . n
2

n
2 +1 . . . n−1 na a,b a,b a,b a,b a,b a

a

b b

b

Figure 4: Witness DFA for star with half of states final meeting the upper bound 2n−1 +2n−1− n
2 .

Proposition 13. Let L be a regular language. Then bsc(L) =bsc(Lc) and asc(L) =asc(Lc).

Proof. If L is accepted by a minimal n-state BFA, then LR is accepted by a 2n-state DFA by Corollary 3.
It follows that (LR)c = (Lc)R is accepted by a 2n state DFA, and therefore Lc is accepted by an n-state
BFA by Corollary 6. Moreover, the language Lc cannot be accepted by a smaller BFA because otherwise
the language L = (Lc)c would be accepted by a smaller BFA as well. In the case of AFAs, the DFAs
for LR and (LR)c have 2n states and 2n−1 final states, and we use Corollaries 4 and 7 to get the result.

Theorem 14. Let K and L be languages over Σ accepted by an m-state and n-state AFA, respectively.
Then K ∪L is accepted by an AFA of at most m+n+1 states, and this upper bound is tight if |Σ| ≥ 1.

Proof. The language K ∪ L can be accepted by a (m+ n)-state BFA constructed from the two AFAs
by setting the initial function to the disjunction of the corresponding initial states. The upper bound
for AFAs follows. For tightness, let K be the language accepted by the unary 2m-state DFA with state
set {0,1, . . . ,2m−1}, the initial state 0, the set of final states {2m−1,2m−1+1, . . . ,2m−1}, and transitions
given by i ·a = (i+1) mod 2m. Then KR = K is accepted by an m-state AFA. Next, let L be a language
accepted by a (2n −1)-state unary DFA with state set {0,1, . . . ,2n −2}, the initial state 0, the set of final
states {2n−1,2m−1 + 1, . . . ,2m − 2}, and transitions given by i · a = (i+ 1) mod 2m − 1. Then we can
add an unreachable final state to this DFA to get an equivalent 2n-state DFA with half of its states final.
Hence LR = L is accepted by an n-state AFA. As shown in [11, Lemma 4.2, Theorem 4.4], the minimal
DFA for K ∪L has 2m(2n − 1) states, of which more than 2m+n+1 are final. It follows that every AFA
for K ∪L has at least m+n+1 states.

By Proposition 13 and De Morgan’s laws, the complement of the languages described in the previous
proof are witnesses for intersection. The case of difference is analogous. The same languages give a
lower bound m+ n for symmetric difference on AFAs [11, Lemma 4.2] which is also an upper bound;
notice that the symmetric difference of two DFAs with half of their states final is accepted by a DFA with
half of its states final. Finally, exactly the same languages serve as witnesses for Boolean operations on
BFAs [11, Theorem 4.3].

In the unary case, the reverse of any language is the same language, and the right quotient is the same
as the left quotient of the corresponding languages. Moreover, we can show that the complexity of star,
concatenation, and square on unary BFAs is 2n,m+n, and n+1, respectively. It follows that whenever
we used a binary alphabet to describe witnesses for the corresponding operations on BFAs and AFAs, it
was always optimal.

The exact complexity of star, concatenation, and square on unary AFAs remains open since the
complexity of these operations on unary DFAs with half of their states final is not known. The complexity
of less common regular operations like shuffle, cyclic shift, or square root, would be of interest as well.

10 Operations on Boolean and Alternating Finite Automata

References
[1] J.A. Brzozowski & E.L. Leiss (1980): On equations for regular languages, finite automata, and sequential

networks. Theor. Comput. Sci. 10, pp. 19–35, doi:10.1016/0304-3975(80)90069-9.
[2] A.K. Chandra, D. Kozen & L.J. Stockmeyer (1981): Alternation. J. ACM 28(1), pp. 114–133,

doi:10.1145/322234.322243.
[3] Abdelaziz Fellah, Helmut Jürgensen & Sheng Yu (1990): Constructions for alternating finite automata. Int.

J. Comput. Math. 35(1-4), pp. 117–132, doi:10.1080/00207169008803893.
[4] M. Hospodár (2021): Power, positive closure, and quotients on convex languages. Theor. Comput. Sci. 870,

pp. 53–74, doi:10.1016/j.tcs.2021.02.002.
[5] M. Hospodár & G. Jirásková (2018): The complexity of concatenation on deterministic and alternating finite

automata. RAIRO Theor. Informatics Appl. 52(2-3-4), pp. 153–168, doi:10.1051/ita/2018011.
[6] M. Hospodár, G. Jirásková & I. Krajňáková (2018): Operations on Boolean and alternating finite au-

tomata. In F.V. Fomin & V.V. Podolskii, editors: CSR 2018, LNCS, vol. 10846, Springer, pp. 181–193,
doi:10.1007/978-3-319-90530-3_16.

[7] G. Jirásková (2012): Descriptional complexity of operations on alternating and Boolean automata. In E.A.
Hirsch, J. Karhumäki, A. Lepistö & M. Prilutskii, editors: CSR 2012, LNCS, vol. 7353, Springer, pp. 196–
204, doi:10.1007/978-3-642-30642-6_19.

[8] G. Jirásková & I. Krajňáková (2019): Square on deterministic, alternating, and Boolean finite automata. Int.
J. Found. Comput. Sci. 30(6-7), pp. 1117–1134, doi:10.1142/S0129054119400318.

[9] G. Jirásková & J. Šebej (2012): Reversal of binary regular languages. Theor. Comput. Sci. 449, pp. 85–92,
doi:10.1016/j.tcs.2012.05.008.

[10] D. Kozen (1976): On parallelism in Turing machines. In: 17th Annual Symposium on Foundations
of Computer Science, Houston, Texas, USA, 25-27 October 1976, IEEE Computer Society, pp. 89–97,
doi:10.1109/SFCS.1976.20.

[11] I. Krajňáková (2020): Finite Automata and Operational Complexity. Ph.D. thesis, Comenius University in
Bratislava, Faculty of Mathematics, Physics and Informatics. Available at https://www.mat.savba.sk/
musav/autoreferaty/Krajnakova-dizertacna_praca.pdf.

[12] E.L. Leiss (1981): Succint representation of regular languages by Boolean automata. Theor. Comput. Sci.
13, pp. 323–330, doi:10.1016/S0304-3975(81)80005-9.

[13] A. N. Maslov (1970): Estimates of the number of states of finite automata. Soviet Math. Doklady 11(5), pp.
1373–1375. Available at https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&
paperid=35742&option_lang=eng.

[14] M. Palmovský (2016): Kleene closure and state complexity. RAIRO Theor. Informatics Appl. 50(3), pp.
251–261, doi:10.1051/ita/2016024.

[15] S. Yu (1997): Regular Languages. In G. Rozenberg & A. Salomaa, editors: Handbook of Formal Languages,
Volume 1: Word, Language, Grammar, Springer, pp. 41–110, doi:10.1007/978-3-642-59136-5_2.

https://doi.org/10.1016/0304-3975(80)90069-9
https://doi.org/10.1145/322234.322243
https://doi.org/10.1080/00207169008803893
https://doi.org/10.1016/j.tcs.2021.02.002
https://doi.org/10.1051/ita/2018011
https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-642-30642-6_19
https://doi.org/10.1142/S0129054119400318
https://doi.org/10.1016/j.tcs.2012.05.008
https://doi.org/10.1109/SFCS.1976.20
https://www.mat.savba.sk/musav/autoreferaty/Krajnakova-dizertacna_praca.pdf
https://www.mat.savba.sk/musav/autoreferaty/Krajnakova-dizertacna_praca.pdf
https://doi.org/10.1016/S0304-3975(81)80005-9
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=35742&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=35742&option_lang=eng
https://doi.org/10.1051/ita/2016024
https://doi.org/10.1007/978-3-642-59136-5_2

	Introduction
	Preliminaries
	Simulations of BFAs and AFAs by MNFAs, NFAs, and DFAs
	Operational Complexity on Boolean and Alternating Finite Automata

