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Reversible forms of computations are often interesting from an energy efficiency point of view. When
the computation device in question is an automaton, it is known that the minimal reversible automa-
ton recognizing a given language is not necessarily unique, moreover, there are languages having
arbitrarily large reversible recognizers possessing no nontrivial reversible congruence. However, the
exact characterization of this class of languages was open. In this paper we give a forbidden pattern
capturing the reversible regular languages having only finitely many reduced reversible automata,
allowing an efficient (NL) decision procedure.

1 Introduction

Landauer’s principle [12] states that any logically irreversible manipulation of information – such as
the merging of two computation paths – is accompanied by a corresponding entropy increase of non-
information-bearing degrees of freedom in the processing apparatus. In practice, this can be read as
“merging two computation paths generates heat”, though it has been demonstrated [22] that the entropy
cost can be taken in e.g. angular momentum. Being a principle in physics, there is some debate regarding
its validity, challenged [5, 19, 20] and defended [4, 3, 11] several times recently. In any case, the study of
reversible computations, in which distinct computation paths never merge, looks appealing. In the con-
text of quantum computing, one allows only reversible logic gates [18]. For classical Turing machines,
it is known that each deterministic machine can be simulated by a reversible one, using the same amount
of space [2, 13]. Hence, each regular language is accepted by a reversible two-way deterministic finite
automaton (also shown in [8]).

In the case of classical, i.e. one-way automata, the situation is different: not all regular languages can
be recognized by a reversible automaton, not even if we allow partial automata (that is, trap states can be
removed, thus the transition function being a partial one). Those languages that can be recognized by a
reversible one are called reversible languages. It is clear that one has to allow being partially defined at
least since otherwise exactly the regular group languages (those languages in whose minimal automata
each letter induces a permutation) would be reversible.

Several variants of reversible automata were defined and studied [21, 1, 17]. The variant we work
with (partial deterministic automata with a single initial state and and arbitrary set of final states) have
been treated in [9, 10, 6, 16, 15, 14]. In particular, in [6] the class of reversible languages is characterized
by means of a forbidden pattern in the minimal automaton of the language in question, and an algorithm
is provided to compute a minimal reversible automaton for a reversible language, given its minimal au-
tomaton. Here “minimal” means minimizing the number of states, and the minimal reversible automaton
is shown to be not necessarily unique. In [16], the notion of reduced reversible automata is introduced:

∗Research supported by NKFI Grant no. 108448.

http://dx.doi.org/10.4204/EPTCS.252.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


K. Gelle & Sz. Iván 115

a reversible automaton is reduced if it is trim (all of its states are accessible and coaccessible), and none
of its nontrivial factor automata is reversible. The authors characterize the class of those reversible lan-
guages (again, by developing a forbidden pattern) having a unique reduced reversible automaton (up
to isomorphism), and leave open the problem to find a characterization of the class of those reversible
languages having finitely many reduced reversible automata (up to isomorphism).

In this paper we solve this open problem of [16], by also developing a forbidden pattern characteri-
zation which allows an NL algorithm.

2 Notation

We assume the reader has some knowledge in automata and formal language theory (see e.g. [7]).
In this paper we consider deterministic partial automata with a single initial state and an arbitrary set

of final states. That is, an automaton, or DFA, is a tuple M = (Q,Σ,δ ,q0,F) with Q being the finite set
of states, q0 ∈ Q the initial state, F ⊆ Q the set of final or accepting states, Σ the finite, nonempty input
alphabet of symbols or letters and δ : Q×Σ→Q the partial transition function which is extended in the
usual way to a partial function also denoted by δ : Q×Σ∗→ Q with δ (q,ε) = q for the empty word ε

and δ (q,wa) = δ (δ (q,w),a) if δ (q,w) is defined and undefined otherwise. When δ is understood from
the context, we write q ·w or qw for δ (q,w) in order to ease notation. When M is an automaton and q is
a state of M, then the language recognized by M from q is L(M,q) = {w ∈ Σ∗ : qw ∈ F}. The language
recognized by M is L(M) = L(M,q0). A language is called regular or recognizable if some automaton
recognizes it.

When p and q are states of the automata M and N, respectively, we say that p and q are equivalent,
denoted p≡ q, if L(M, p) = L(N,q). (When M or N is unclear from the context, we may write (M, p)≡
(N,q).) The automata M and N are said to be equivalent if their initial states are equivalent.

A state q of M is useful if it is reachable (q0w = q for some w) and productive (qw ∈ F for some w).
A DFA is trim if it only has useful states. When L(M) is nonempty, one can erase the non-useful states
of M: the resulting automaton will be trim and equivalent to M (and may be partially defined even if M is
totally defined, if M has a trap state q for which L(M,q) = /0). An equivalence relation Θ on the state set
Q is a congruence of M if pΘq implies both p ∈ F ⇔ q ∈ F (that is, F is saturated by Θ) and paΘqa
for each a ∈ Σ (that is, Θ is compatible with the action). In particular, in any Θ-class, pa is defined if and
only if so is qa.

Clearly the identity relation ∆Q on Q is always a congruence, the trivial congruence. A trim automa-
ton is reduced if it has no nontrivial congruence. When Θ is a congruence of M and p Θ q are states
falling into the same Θ-class, then p ≡ q. Given M and a congruence Θ on M, the factor automaton
of M is M/Θ = (Q/Θ,Σ,δ/Θ,q0/Θ,F/Θ) where p/Θ denotes the Θ-class of p, X/Θ denotes the set
{p/Θ : p ∈ X} of Θ-classes for a set X ⊆ Q and δ (q/Θ,a) = δ (q,a)/Θ if δ (q,a) is defined, and is
undefined otherwise.

Then, for each p∈Q the states p and p/Θ are equivalent, thus any automaton is equivalent to each of
its factor automata. It is also known that for any automaton M there is a unique (up to isomorphism, i.e.
modulo renaming states) equivalent reduced automaton, the one we get by trimming M, then factoring
the useful part of M by the language equivalence relation pΘMq ⇔ p≡ q.

Any automaton can be seen as an edge-labeled multigraph and thus its strongly connected compo-
nents, or SCCs, are well-defined classes of its states: the states p and q belong to the same SCC if pu = q
and qv = p for some words u,v ∈ Σ∗. Clearly, this is an equivalence relation. We call an SCC trivial if
it consists of a single state p with pu 6= p for any nonempty word u (that is, if it contains absolutely no
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edges, not even loops), and nontrivial otherwise.

3 Reversible languages

An automaton M = (Q,Σ,δ ,q0,F) is reversible if pa = qa implies p = q for each p,q ∈ Q and a ∈
Σ. A language L ⊆ Σ∗ is reversible if it is recognizable by some reversible automaton. A reversible
congruence of a reversible automaton M is a congruence Θ of M such that the factor automaton M/Θ

is also reversible. The automaton M is a reduced reversible automaton if it has no nontrivial reversible
congruence.

It is known [6] that a language is reversible if and only if its minimal automaton has no distinct
states p 6= q, a letter a and a word w such that pa = qa and paw = w (the forbidden pattern is depicted
on Figure 1). Equivalently, for any state r belonging to a nontrivial component, and letter a, the set
{p ∈ Q : pa = r} has to have at most one element.

p r q
a a

w

Figure 1: The forbidden pattern for reversible languages

Contrary to the general case of regular languages, there can be more than one reduced reversible
automata, up to isomorphism, recognizing the same (reversible) language. For example, see Figure 2
of [16].

q0

q

p
a

a

b b

a

(a) The minimal DFA

q0

q q′

p
a
a

b b

a a

(b) A reduced reversible DFA

q0

q q′

p
a
a

b b

a
a

(c) Another reduced reversible DFA

Figure 2: The case of the language (aa)∗+a∗ba∗

In that example the minimal automaton (depicted on Subfigure (a)) is not reversible and there are two
nonisomorphic reversible reduced automata recognizing the same language (with four states). We note
that in this particular example there are actually an infinite number of reduced reversible automata, rec-
ognizing the same language. In [16] the set of states of a minimal automaton was partitioned into two
classes: the irreversible states are such states which are reachable from some distinct states p 6= q with
the same word w, while the reversible states are those which are not irreversible. For example, in the
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case of Figure 2, q is the only irreversible state. One of the results of [16] is that if there exists an irre-
versible state p which is reachable from a nontrivial SCC of the automaton (allowing the case when p
itself belongs to a nontrivial SCC, as q does in the the example), then there exist an infinite number of
nonisomorphic reduced reversible automata, each recognizing the same (reversible) language. A natural
question is to precisely characterize the class of these reversible languages.

4 Result

In this section we give a forbidden pattern characterization for those reversible languages having a finite
number of reduced reversible automata, up to isomorphism.

For this part, let us fix a reversible language L. Let M = (Q∗,Σ,δ ∗,q∗0,F
∗) be the minimal automaton

of L. We partition the states of M into classes as follows: a state q is a. . .

• 1-state if there exists exactly one word u with q∗0u = q;

• ∞-state if there exist infinitely many words u with q∗0u = q;

• ⊕-state if it is neither a 1-state nor an ∞-state

and orthogonally, q is an. . .

• irreversible state if there are distinct states p∗1 6= p∗2 ∈ Q∗ and a word u such that p∗1u = p∗2u = q;

• reversible if it is not irreversible.

As an example, consider Figure 3.

q0start

q2 q3q1

q4 q5

a b,d c

a b
a
a

b

Figure 3: The minimal automaton of our running example language

Here, states q0, q1 and q3 are 1-states, reachable by the words ε , a and c, respectively; q2 and q4 are
⊕-states as they are reachable by {b,d} and {aa,bb,db,ca}, respectively and q5 is a ∞-state, reachable
by words of the form (b+d)ab∗. Moreover, q4 is the only irreversible state (as q1a = q3a).

We note that our notion of irreversible states is not exactly the same as in [16]: what we call ir-
reversible states are those states which belong to the “irreversible part” of the automaton in the terms
of [16]. There, a state q is called irreversible only if p1a = p2a = q for some distinct pair p1 6= p2 of
states and letter a.
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Clearly, a state is an ∞-state iff it can be reached from some nontrivial SCC of M. Now we define the
set Z ⊆ Q∗ of zig-zag states1 as follows: Z is the least set X satisfying the following conditions:

1. All the ∞-states belong to X .

2. If q ∈ X and a ∈ Σ is a letter with q ·a being defined, then q ·a ∈ X .

3. If q is a ⊕-state and a ∈ Σ is a letter with q ·a ∈ X , then q ∈ X .

The main result of the paper is the following:

Theorem 1. There are only finitely many reduced reversible automata recognizing L if and only if every
zig-zag state of M is reversible.

We break the proof up into several parts.

4.1 When all the zig-zag states are reversible

In this part we show that whenever all the zig-zag states are reversible, and N is a trim reversible automa-
ton recognizing L, then there is a reversible congruence Θ on N such that N/Θ has a bounded number of
states (the bound in question is computable from the minimal automaton M). So let us assume that there
is no irreversible zig-zag state in M and let N = (Q,Σ,δ ,q0,F) be a trim reversible automaton recogniz-
ing L. Then, for each q ∈ Q there exists a unique state q∗ ∈ Q∗ with q≡ q∗, and the function q 7→ q∗ is a
homomorphism.

Now let us define the relation Θ on Q as follows:

pΘq ⇔ (p = q) or (p∗ = q∗ ∈ Z).

Lemma 1. The relation Θ is a reversible congruence on N.

Proof. It is clear that Θ is an equivalence relation: reflexivity and symmetry are trivial, and p Θ q Θ r
either entails p = q or q = r (in which case p Θ r is obvious) or that p∗ = q∗ = r∗ ∈ Z (and then, p Θ r
also holds).

Now if p Θ q and p ·a is defined, then we have to show that q ·a is also defined and p ·a Θ q ·a. This
is clear if p = q. Otherwise we have p∗ = q∗ is a zig-zag state, thus (p · a)∗ = (q · a)∗ as starring is a
homomorphism from N to M (thus in particular, q ·a is defined). As p∗ ∈ Z and Z is closed under action,
we have that p∗ ·a = (p ·a)∗ is also a zig-zag state, thus p ·a Θ q ·a indeed holds and Θ is a congruence
on N.

To see that Θ is a reversible congruence, assume p · a Θ q · a. We have to show that p Θ q. If
p · a = q · a, then p = q (thus p Θ q), since N is a reversible automaton. Otherwise, let p · a 6= q · a
(hence p 6= q) and (p ·a)∗ = (q ·a)∗ ∈ Z. By assumption on M, this state (p ·a)∗ is reversible. Thus, as
p∗ · a = q∗ · a = (p · a)∗, we get that p∗ = q∗. Hence to show p∗ Θ q∗ it suffices to show that it is also
a zig-zag state. If p∗ is a ∞-state, then it is a zig-zag state by definition of Z. Also, if p∗ is a ⊕-state,
then it is still a zig-zag state (as p∗ · a is a zig-zag state, we can apply Condition 3 in the definition of
Z). Finally, observe that p∗ cannot be a 1-state since p and q are different (reachable) states of N, hence
there are words u 6= v with q0u = p and q0v = q. For these words, by starring being a homomorphism we
get that q∗0u = q∗0v = p∗(= q∗), thus p∗ is reachable by at least two distinct words.

Hence, Θ is indeed a reversible congruence.

1The coined term “zig-zag” originates from an earlier version of Figure 5 on which forward edges had a “northeast” direction
while backward edges had a “southeast” direction.
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To conclude this case observe the following facts:

• For each non-∞-state p∗ there exist a finite number u1, . . . ,un(p∗) of words leading into p∗ in M,
thus there can be at most n(p∗) states in N which are equivalent to p∗ (since N is trim). This bound
n(p∗) is computable from M.

• If p∗ is a ∞-state of M, then p∗ is a zig-zag state, thus all the states of N equivalent to p∗ are
collapsed into a single class of Θ. For these states, let us define the value n(p∗) to be 1.

Hence, n = ∑
p∗∈Q∗

n(p∗) is a (finite, computable) upper bound on the number of states in the factor au-

tomaton N/Θ (hence it is an upper bound for the number of states in any reduced reversible automaton
recognizing L as in that case Θ has to be the trivial congruence). Thus we have proved the first part of
Theorem 1:

Theorem 2. If all the zig-zag states of M are reversible, then there is a finite upper bound for the number
of states of any reduced reversible automata recognizing L. Hence, in that case there exists only a finite
number of nonisomorphic reduced reversible automata recognizing L.

4.2 When there is an irreversible zig-zag state in M

In this part let us assume that M has an irreversible zig-zag state. We will start from an arbitrary reduced
reversible automaton N recognizing L, and then “blow it up” to some arbitrarily large equivalent reduced
reversible automaton. Before giving the construction, we illustrate the process in the case of Figure 3
(there, q4 is an irreversible zig-zag state).

q0start

q2 q3q1

q4 q′4q5

a b,d c

a b aa

b

(a) Reversible automaton N equivalent to M

q0start

q2 q′2 q3q1

q4 q′4
q51 q52

q53

q54

q55

a b d c

a b
b

a
a

a

b

b

bb

b

(b) The state q5 is blown up by 5, yielding N′

Figure 4: Blowing up a reversible automaton

On Figure 4 (a), we have a reversible automaton N. On (b), we replace the state q5 having a loop by a
cycle of length 5 (and we also duplicate the state q2 – we can do that since q2 is not a 1-state). Then, the
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automaton N′ is a reduced reversible automaton, whenever the length of the cycle (which is now chosen
to be 5) is a prime number [16].

Indeed, any reversible congruence Θ on N′ collapses equivalent states only. Suppose e.g. Θ collapses
q51 and q53. Applying b we get that q52 and q54 also get collapsed, and so q53 and q55, and q54 and q51 –
thus, all the q5x states fall into a single Θ-class then. As Θ is assumed to be reversible, it has to collapse
q2 and q′2 as well; applying b also the states q4 and q′4 have to be collapsed and finally, applying again
reversibility we get that q1 and q3 should be collapsed but this cannot happen as they are not equivalent
states. This reasoning works for any choice of different copies of q5 (as far as the number chosen is a
prime), thus N′ has only the trivial reversible congruence and is a reduced reversible automaton.

The careful reader might realize that we actually followed in this reasoning a zig-zag path from the
∞-state q5 to the irreversible state q4 during the above reasoning. In this part we show that this approach
can always be generalized whenever there exists an irreversible zig-zag state in M.

By the definition of the zig-zag states, if there exists some irreversible zig-zag state, then there is a
sequence

r0, (a1,e1), r1, (a2,e2), . . . , (a`,e`), r`

such that ai ∈ Σ and ei ∈ {+,−} for each 1 ≤ i ≤ `, and ri ∈ Q∗ are states of M for each 0 ≤ i ≤ `,
moreover,

(i) if ei =+ then ri−1 ·ai = ri (denoted by ri−1
ai−→ri in the examples and patterns),

(ii) if ei =− then ri ·ai = ri−1 and ri is a ⊕-state (denoted by ri−1
ai←−ri),

(iii) r` is an irreversible state,

(iv) r0 is an ∞-state.

Let us choose such a sequence of minimal length. Then, by minimality,

• the states ri are pairwise different,

• all the states ri, 1≤ i < ` are reversible ⊕-states.

To see that all the states are ⊕-states (them being pairwise different reversible states is obvious), observe
that if ri is an ∞-state for 0 < i, then ri, . . . ,r` is a shorter such sequence. Hence all the states ri, 0 < i
are either 1-states or ⊕-states. We show by induction that all of them are ⊕-states. The claim holds for
i = 1 as e1 =+ would imply that r1 should be an ∞-state which cannot happen thus e1 =−, hence r1 is
an ⊕-state. Now if ri is an ⊕-state, then either ri+1 = riai+1 (if ei+1 =+) which implies that ri+1 cannot
be a 1-state (thus it is an ⊕-state), or ri+1 is an ⊕-state (if ei+1 =−, applying ii)).

Now we extend the above sequence in both directions as follows.
First, r0 being an ∞-state implies that there exists a state p0 belonging to a nontrivial SCC of M (that

is, p0w = p0 for some nonempty word w) from which r0 is reachable. That is, there is a word b1b2 . . .bm

and states p1, . . . , pm with pm = r0 and pibi+1 = pi+1 for each 0≤ i < m.
Second, r` being an irreversible state implies that there exist different states s and s′ of M from which

r` is reachable by the same (nonempty) word. That is, there is a word c1c2 . . .cn and states s1,s2, . . . ,sn =
r` such that sc1 = s′c1 = s1 and sici+1 = si+1 for each 1≤ i < n. See Figure 5.

Note that all the states s1, . . . ,sn are ⊕-states and p0, . . . , pm are ∞-states.
In order to reduce the clutter in the notation, we treat the whole sequence p0, . . . , pm−1,r0, . . . ,s1,s

and s′ as a single indexed sequence p0, . . . , pt−1, pt,1 and pt,2 (see Figure 6). Observe that each pi (but
possibly pt,1 and pt,2) is either an ∞- or a⊕-state, and each of them is a zig-zag state. Moreover, all these
states are pairwise different (thus inequivalent).
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p0 p1 . . . pm−1 r0 r1 r2 r3 . . . r` sn−1 sn−2 . . . s1

s

s′

w

b1 b2 bm−1 bm a1 a2 a3 a4 a`

c1

c1

c2cn−2cn−1cn

Figure 5: The sequences pi, ri and si.

p0 p1 . . . pm−1 pm pm+1 pm+2 pm+3 . . . pm+` pm+`+1 pm+`+2 . . . pt−1

pt,1

pt,2

w

b1 b2 bm−1 bm bm+1 bm+2 bm+3 bm+4 bm+`

bt

bt

bt−1bm+`+3bm+`+2bm+`+1

Figure 6: The sequence appearing in M, in an uniform notation

In the first step we show that if there is a specific pattern (which is a bit more general than a cycle of
prime length) appears in a reversible automaton N′, then every factor automaton of N′ is “large”.

Lemma 2. Assume N′ is a reversible automaton, k ≥ 1 is a prime number, t ≥ 0 and i < k are integers,
q0, . . . ,qk−1, p′1, . . . , p′t , p′′1, . . . , p′′t are states, a1, . . . ,at ∈ Σ are letters, e1, . . . ,et ∈ {+,−} are directions
and w ∈ Σ+ is a word satisfying the following conditions:

• p′t is not equivalent to p′′t ,

• q jw = q j+1 for each 0≤ j < k with the convention that qk = q0, that is, indices of the qs are taken
modulo k,

• for each 1≤ j ≤ t with e j =+ we have p′j−1a j = p′j and p′′j−1a j = p′′j ,

• and for each 1≤ j ≤ t with e j =− we have p′ja j = p′j−1 and p′′j a j = p′′j−1

with setting p′0 := q0 and p′′0 := qi (See Figure 7).
Then whenever Θ is a reversible congruence on N′, the states q j belong to pairwise different Θ-

classes. (In particular, N′/Θ has at least k states.)

q0

. . .

qi

qi+1

qi+2

. . .

qk−2

qk−1

p′1 p′2 p′3 p′4 p′5 . . . p′t

p′′1 p′′2 p′′3 p′′4 p′′5 . . . p′′t

w

w

ww

w

w

w w
a1

a1

a2

a2

a3

a3

a4

a4

a5

a5

a6

a6

at

at

Figure 7: The zig-zag pattern
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Before proceeding with the proof, the reader is encouraged to check that the above described pattern
appears in the automaton N′ of Figure 4 with the choice of k = 5, q0 = q51, q1 = q52,. . . ,q4 = q55, i = 1,
w = b, t = 3, p′1 = q2, p′′1 = q′2, p′2 = q4, p′′2 = q′4, p′3 = q1, p′′3 = q3, a1 = a, a2 = b, a3 = a, e1 = −,
e2 =+ and e3 =−, with states appearing on the left-hand side of these equations are the states from the
pattern of Lemma 2 while states on the right-hand side are states of N′.

Proof. Assume for the sake of contradiction that Θ is a reversible congruence on N′ collapsing the states
q` and q j for some 1≤ ` < j ≤ k, that is, q` Θ q j.

We claim that q`+d Θ q j+d for each d ≥ 0. This holds by assumption for d = 0. Using induction
on d, assuming q`+d Θ q j+d we get by applying w that q`+d+1 = q`+dw Θ q j+dw = q j+d+1 as Θ is a
congruence. Hence, writing j = `+ δ we get that q`+d Θ q`+δ+d for each d ≥ 0, thus in particular for
multiples of δ : q`+d·δ Θ q`+(d+1)·δ .

Hence we have that q` Θ q`+δ Θ q`+2δ Θ . . .. As k is assumed to be a prime number, there are integers
d1 and d2 with `+d1δ ≡ 0 mod k and `+d2δ ≡ i mod k, thus q0 Θ qi. As p′0 is defined as q0 and p′′0 is
defined as qi, we have p′0 Θ p′′0 .

Now for any integer d ≥ 0, the relation p′d Θ p′′d implies p′d+1 Θ p′′d+1: if ed+1 = +, then by apply-
ing ad+1 (since Θ is a congruence), while if ed+1 = −, then be reversibly applying ad+1 (since Θ is a
reversible congruence). Hence, it has to be the case p′t Θ p′′t which is nonsense since these two states are
assumed to be inequivalent and Θ is a congruence.

Observe that if some reversible automaton N′ recognizing L admits the pattern of Lemma 2 for some
prime number k, then there exists a reduced reversible automaton of the form N′/Θ (also recognizing L)
which then has at least k states.

In the rest of this part we show that if there exists an irreversible zig-zag state in M, then we can
construct such an automaton N′ for arbitrarily large primes k, given a reversible automaton N recognizing
L. Thus in that case it is clear that there exists an infinite number of reduced reversible automata (up to
isomorphism) recognizing L.

First we show that even a weaker condition suffices.

Lemma 3. Suppose N is a reversible automaton recognizing L such that for each zig-zag state p of M
there exist at least two states p′ and p′′ of N with p ≡ p′ ≡ p′′ and to the ∞-state p0 of M (of Figure 5),
there exist at least k different states q0, . . . ,qk−1 in N, each being equivalent to p0, with q jw = q j+1 for
each 0≤ j < k (again, with qk = q0).

Then there exists a reversible automaton N′ also recognizing L which admits the zig-zag pattern.

For an example reversible automaton N recognizing L but not admitting the zig-zag pattern the reader
is referred to Figure 8. We not prove that in these cases the transitions can be “rewired”.

Proof. We will construct a sequence N = N0, N1,. . . , Nt = N′ of reversible automata, each recognizing L
(having the same set of states, and even (Ni, p)≡ (N j, p) for each i, j and p, that is, we do not change the
languages recognized by any of the states of N) and sequences p′0, . . . , p′t and p′′0, . . . , p′′t of states such
that for each 0≤ j ≤ t the following all hold:

• p′0 = q0, p′′0 = q1,

• if e j =+, then p′j−1b j = p′j and p′′j−1b j = p′′j for each automaton N` with `≤ j,

• if e j =−, then p′jb j = p′j−1 and p′′j b j = p′′j−1 for each automaton N` with `≤ j,
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Figure 8: The automaton N does not admit the zig-zag pattern

• if j < t and `≤ j, then p j is equivalent to both p′j and p′′j in N`,

• p′t ≡ pt,1 and p′′t ≡ pt,2 in Nt .

If we manage to achieve this, then the automaton N′ := Nt indeed admits the zig-zag pattern and still
recognizes L.

We construct the above sequence N j by induction on j. For j = 0, choosing N0 = N and p′0 := q0,
p′′0 := q1 suffices. Having constructed N j, we construct N j+1 based on whether the direction e j+1 is + or
−, the latter one having several subcases.

1. If e j+1 = +, then let us set N j+1 := N j, p′j+1 := p′jb j+1 (in N j) and p′′j+1 := p′′j b j+1 (also in N j).
This choice satisfies the conditions.

2. If e j+1 = −, then we have three subcases, based on whether there exist states in N j equivalent to
p j+1 from which b j+1 leads to either p′j or p′′j .

(a) If there exist such states r1 and r2 with r1b j+1 = p′j and r2b j+1 = p′′j , then again, setting
N j+1 := N j, p′j+1 := r1 and p′′j+1 := r2 suffices.

(b) Assume there is no such r1 nor r2. Then, as p j+1 is a zig-zag state, there exist, by the
assumption on N, two different states r1 and r2, each being equivalent to p j+1. Moreover,
as p j+1b j+1 = p j holds, we have that r1b j+1 and r2b j+1 (in N j) are equivalent to p j. So let
us define N j+1 as follows: r1b j+1 := p′j, r2b j+1 := p′′j and for all the other pairs (r,b) let us
leave the transitions of N j unchanged. Then, setting p′j+1 := r1 and p′′j+2 := r2 suffices.

(c) Finally, assume that exactly one of these predecessor states exists. By symmetry, we can
assume that it is r1, that is, r1b j+1 = p′j in N j but there is no state r equivalent to p j+1 with
rb j+1 = p′′j . Since p j+1 is a zig-zag state, there exists some r2 6= r1 in N j, still equivalent
to p j+1. In this case we set the transitions in N j+1 as r2b j+1 p′′j , leaving the other transitions
unchanged suffices with p′j+1 := r1 and p′′j+1 := r2.
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Hence, given N, it suffices to construct a reversible automaton satisfying the conditions of Lemma 3.
First we construct a reversible automaton N′ in which for each ⊕-state p of M there exist at least two
different equivalent states. Let U ⊆ Σ∗ be the set of words u such that u = ε or q0u is not a ∞-state. Note
that U is a nonempty finite set. Now let us define the state set of N′ as the finite set Q′ = Q×U , equipped
with the following transition function

(q,u) ·a =

{
(qa,ua) if qa is not an ∞-state,
(qa,u) otherwise.

For an illustration of the construction starting from N of Figure 4 (a), consult Figure 9.

q0,εstart

q2,b q2,d q3,cq1,a

q4,bbq4,aa q5,b q5,d q4,db q′4,ca

a b d c

a b aa a b

b b

Figure 9: All the ⊕-states (namely, q2 and q4) have several copies. (Only the trim part of the automaton
is shown here.)

It is clear that (q0,ε)u = (q0u,v) for some prefix v of u, moreover, if q0u is a ⊕-state, then v = u.
Also, states of the form (q,u) in N′ are equivalent to q (if we set F ×U as the accepting set). Hence,
whenever q is a ⊕-state which can be reached by the words u1, . . . ,un, n ≥ 2, then (q,u1), . . . ,(q,un)
are pairwise different states in N′, reachable from (q0,ε) and thus to each ⊕-state p of M there exist at
least two equivalent states in N′. Now starting from N′ we will construct an automaton N′′ satisfying the
conditions of the Lemma.

Let q be a state of N′, equivalent to p0. Since p0w = p0 in M for the nonempty word w, the sequence
q, qw, qw2,. . . contains some repetition. Let i be the least integer with qwi = qw j for some j > i. Then if
i > 0, then we have qwi−1 ·w = qwi = qw j = qw j−1w, thus qwi−1 = qw j−1 since N′ is reversible. Hence
q = qw j for some integer j. In particular, q belongs to a nontrivial SCC of N′. Let av be a shortest
nonempty word with qav = q (such a word exists since q is in a nontrivial SCC). For the fixed integer
k ≥ 1, let us define N′′ as the automaton over the state set Q′×{0, . . . ,k−1}, with transition function

(q′, i)b =

{
(q′b,(i+1) mod k) if q′ = q and b = a
(q′b, i) otherwise.

That is, we increase the index i (modulo k) if we get the input a in the state q, and in all the other cases
the index remains untouched. For an example with k = 5, see Figure 10.

As av is a shortest word with qav = q, it is clear that q does not occur on the v-path from qa to
qav = q. Hence, in N′′ we have (q, i)av = (q,(i+ 1) mod k). Moreover, if u is a shortest word in N′
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Figure 10: State (q5,b) is blown up by a factor of k = 5. (The states inequivalent to q5 have the index
equal to 0 which is not shown here.)

leading into q, then it leads into (q,0) in N′′. Thus, in N′′ we have the reachable states q0 = (q,0),
q1 = (q,1), . . . , qk−1 = (q,k− 1) with qiav = q(i+1) mod k for each i, and still, for each ⊕-state p there
are at least two different states in N′′ equivalent to p. Hence, applying Lemma 3 we get that there exists
some reversible automaton N′′′ (note that the automaton N′′ we constructed is also reversible) admitting
the zig-zag pattern.

Figure 11 shows the result of this last step: first, since (q5,b,0) has an incoming a-edge from (q2,b)
but (q5,b,1) has no such edge, we search for another state equivalent to q2, that’s (q2,d). Then we set
(q2,d)a to (q5,b,1). Then, we can follow the b-transitions into (q4,bb) and (q4,db) respectively. After
that, we should follow a-edges backwards into q1 and q3. Hence we rewire the outgoing transitions as
(q1,a)a = (q4,bb) and (q3,c)a = (q4,db) and all is set.

Thus, by Lemma 2 we get the main result of the subsection:

Theorem 3. If there is an irreversible zig-zag state in M, then for an arbitrarily large k one can effectively
construct a reduced reversible automaton equivalent to M, having at least k states.

Now Theorem 1 is the conjunction of Theorems 2 and 3.

5 Conclusion and acknowledgements

We extended the current knowledge on the reversible regular languages by further analyzing the structure
of the minimal automaton of the language in question. In particular, we gave a forbidden pattern charac-
terization of those reversible languages having only a finite number of reduced reversible automata. As
the characterization relies on the existence of a forbidden pattern (that of Figure 6), it gives an efficient
decision procedure, namely an NL (nondeterministic logspace) algorithm: one has to guess a state p0,
then guess some loop from p0 to itself, then following some back-and-forth walk in the graph of the
automaton to two distinct states pt,1 and pt,2. In the process we also have to check that no 1-state is



126 Reversible Languages Having Finitely Many Reduced Automata

q0,εstart

q2,b q2,d q3,cq1,a

q4,bbq4,aa q5,d q4,db q′4,caq5,b,0

q5,b,1

q5,b,2

q5,b,4

q5,b,3

a b d c

a b aa

a

b

b

b

b

b

b

b

Figure 11: The rewired automaton, admitting the zig-zag pattern. (States (q4,aa), (q5,d) and (q′4,ca)
are not part of the resulting trim automaton.)

encountered during this walk (which can clearly also be done in NL). It can be an interesting question to
study the notion of reduced reversible automata in other reversibility settings, as e.g. in the case of [17].
The authors wish to thank Giovanni Pighizzini, Giovanna Lavado and Luca Prigioniero for their useful
comments on a much earlier version of this paper.
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