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We study the complexity of basic regular operations on laggs represented by incomplete deter-
ministic or nondeterministic automata, in which all staées final. Such languages are known to
be prefix-closed. We get tight bounds on both incomplete amdieterministic state complexity of
complement, intersection, union, concatenation, staryewersal on prefix-closed languages.

1 Introduction

A languagel is prefix-closed ifw € L implies that every prefix ofv is in L. It is known that a regular
language is prefix-closed if and only if it is accepted by adeserministic finite automaton (NFA) with
all states final [18]. In the minimal incomplete determiitiginite automaton (DFA) for a prefix-closed
language, all the states are final as well.

The authors of [18] examined several questions concernifgsNvith all states final. They proved
that the inequivalence problem for NFAs with all states fisadP SPACE-complete in the binary case,
but polynomially solvable in the unary case. Next, they skdwhat minimizing a binary NFA with all
states final is PSPACE-hard, and that deciding whether a gV accepts a language that is not prefix-
closed is PSPACE-complete, while the same problem for Diesbe solved in polynomial time. The
NFA-to-DFA conversion and complementation of NFAs with sthites final have been also considered
in [18], and the tight bound™for the first problem, and the lower bount2 for the second one have
been obtained.

The quotient complexity of prefix-closed languages has Istedied in [5]. The quotient of a lan-
guageL by the stringw is the set,, = {x | wx € L}. The quotient complexity of a language « (L),
is the number of distinct quotients bf Quotient complexity is defined for any language, and it is fi-
nite if and only if the language is regular. The quotient endton of a regular languadeis the DFA
({Lw|we x*}, %, - L¢,F), whereLy, - a= Lya, and a quotient,, is final if it contains the empty string.
The quotient automaton &fis a minimal complete DFA fok, so quotient complexity is the same as the
state complexity of. which is defined as the number of states in the minimal DFA_fdn [5], the tight
bounds on the quotient complexity of basic regular opematiave been obtained, and to prove upper
bounds, the properties of quotients have been used ratieratitomata constructions.
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Automata with all states final represent systems, for exapgbduction lines, and their intersection
or parallel composition represents the composition ofdt®stems[[21]. A question that arises here
is, whether the complexity of intersection of automata veilrstates final is the same as in the general
case of arbitrary DFAs or NFAs. At the first glance, it seenat this complexity could be smaller.
Ouir first result shows that this is not the case. We show thitinoomplete and nondeterministic state
complexity of intersection on prefix-closed languagesgigiby the functiormn which is the same as
in the general case of regular languages.

In the deterministic case, to have all the states final, we haconsider incomplete deterministic
automata because otherwise, the complete automaton Wishagds final would accept the language
consisting of all the strings over an input alphabet. Notiw the model of incomplete deterministic
automata has been considered already by Maslav [20]. The samdel has been used in the study of
the complexity of the shuffle operatidn [6]; here, the comipyeon complete DFAs is not known yet.

We next study the complexity of complement, union, concatien, square, star, and reversal on
languages represented by incomplete DFAs or NFAs with alestfinal. We get tight bounds in both
nondeterministic and incomplete deterministic caseshémbndeterministic case, all the bounds are the
same as in the general case of regular languages, excepefbotind for star that isinstead ofn+ 1.
However, to prove the tightness of these bounds, we ususdiyanger alphabets than in the general case
of regular languages where all the upper bounds can be ménagydanguages [10, 12].

To get lower bounds, we use a fooling-set lower-bound melligd, (3,8 11]. In the case of union
and reversal, the method does not work since it provides arlbaund on the size of NFAs with multiple
initial states. Since the nondeterministic state compjexfia regular language is defined using a model
of NFAs with a single initial state [10], we have to use a meadiffooling-set technique to get the tight
boundsm+ n+ 1 andn+ 1 for union and reversal, respectively.

In the case of incomplete deterministic finite automata, titjet bounds for complement, union,
concatenation, star, and reversal arel, mn+m-+nm-2"1 42" 1 21 and 2 — 1, respectively.
To define worst-case examples, we use a binary alphabet fon,ustar, and reversal, and a ternary
alphabet for concatenation.

The paper is organized as follows. In the next section, we giime basic definitions and preliminary
results. In Sections 3 andl 4, we study boolean operationscaenation is discussed in Sectidn 5, and
star and reversal in Sectibh 6. The last section containg amcluding remarks.

2 Preliminaries

In this section, we recall some basic definitions and prelami results. For details and all unexplained
notions, the reader may refer to [24].

A nondeterministic finite automatgiNFA) is a quintupleA = (Q, %, d,1,F), whereQ is a finite set
of states? is a finite alphabet): Qx X~ — 2Q is the transition function which is extended to the domain
29 x 7* in the natural way) C Q is the set of initial states, arfél C Q is the set of final states. The
language accepted ldyis the seL(A) = {we Z* | &(I,w) N F # 0}.

The nondeterministic state complexiof a regular language, nsdl), is the smallest number of
states in any NFA with gingle initial staterecognizingL.

An NFA A is incomplete deterministi€OFA) if ||| = 1 and|d(q,a)| < 1 for eachq in Q and each
ain Z. In such a case, we writ®(g,a) = d instead ofd(q,a) = {d'}. A non-final stateg of a DFA is
called adeadstate ifé(qg,a) = q for each symbo& in Z.
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Theincomplete state complexidf a regular languagk, isc(L), is the smallest number of states in
any incomplete DFA recognizing. Anincomplete DFA is minimal (with respect to the numbertatss)
if it does not have any dead state, all its states are reashafndl no two distinct states are equivalent.

Every NFAA = (Q,Z,0,1,F) can be converted to an equivalent DRA= (22,3, 1,F’), where
R-a=§(R,a) andF’ = {Rec 29 | RNF # 0}. The DFAA' is called thesubset automatoaf the NFAA.
The subset automaton need not be minimal since some of iessteay be unreachable or equivalent.
However, if for each statg of an NFAA, there exists a stringj, that is accepted b only from the
stateq, then the subset automaton of the NRAloes not have equivalent states since if two subsets of
the subset automaton differ in a statehen they are distinguishable ly.

To prove the minimality of NFAs, we use a fooling set lowershd technique, seel[dl}2,(3,/8, 11].

Definition A set of pairs of stringg(x1,¥1), (X2,¥2), ..., (Xa,Yn) } is called aooling setfor a languagé
if forall i,jin {1,2,...,n}, the following two conditions hold:

(F1) xy; € L, and

(F2) if i # j, thenxy; ¢ L or x;y; ¢ L.

It is well known that the size of a fooling set for a regulardaage provides a lower bound on the
number of states in any NFA (with multiple initial states) fbe language. The argument is simple. Fix
the accepting computations of any NFA on strixgs andx;y;. Then, the states on these computations
reached after reading andx; must be distinct, otherwise the NFA accepts bath andx;y; for two
distinct pairs. Hence we get the following observation.

Lemma 1 ([3],[8,[11]) Let.# be a fooling set for a language L. Then every NFA (with mutipitial
states) for the language L has at le@st| states. O

The next lemma shows that sometimes, if we insist on haviriggiesinitial state in an NFA, one
more state is necessary. It can be used in the case of uniemsag cyclic shift[[15], and AFA-to-NFA
conversion[[13]. In each of these cases, NFAs with a singfialistate require one more state than NFAs
with multiple initial states. For the sake of completenessrecall the proof of the lemma here.

Lemma 2([14]). Let.” and % be sets of pairs of strings and let u and v be two strings suathdh 4,
</ U{(g,u)}, andBU{(g,v)} are fooling sets for a language L. Then every NFA with a singjtel
state for the language L has at least| + | 4| + 1 states.

Proof. Consider an NFA for a languadig and lete = {(x;,yi) |i =1,2,...,m} and# = { (Xm+j,Ym+j) |
j=1,2,...,n}. Since the stringgyk are inL, we fix an accepting computation of the NFA on each string
XYk- Let pk be the state on this computation that is reached after rgaglilsinces” U 4 is a fooling set
for L, the stategs, p2, - . ., Pmin @re pairwise distinct. Since’ U{(&,u)} is a fooling set, the initial state

is distinct from all the stateps, p, ..., pm- SinceZU{(¢,v)} is a fooling set, the (single) initial state
is also distinct from all the statg®n.1, Pms2, - - ., Pmen- Thus the NFA has at least+ n+ 1 states. [

Example Let K = (a%)* andL = (b%)*. Then ns¢K) = 3 and ns¢L) = 3, and the languagi UL is
accepted by a 6-state NFA with two initial states. Therefare cannot expect that we will be able to
find a fooling set forK UL of size 7. However, every NFA with singleinitial state for the language
K UL requires at least 7 states since Leniha 2 is satisfied for igeidayek U L with

g = {(a7a2)7(a27a)7(a37a3)}’
% = {(b,b?), (0%b), (b>,b%)},
u=hbd and

v=a’.
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If w= uvfor stringsu andv, thenu is aprefix of w. A languagel is prefix-closedf w € L implies
that every prefix ofvis in L. The following observations are easy to prove.

Proposition 3 ([18]). A regular language is prefix-closed if and only if it is acaghby some NFA with
all states final. O

Proposition 4. Let A be a minimal incomplete DFA for a language L. Then thgueage L is prefix-
closed if and only if all the states of the DFA A are final. O

3 Complementation

If L is a language over an alphatistthen the complement df is the languagé® =Z*\ L. If L is
accepted by a minimal complete DA then we can get a minimal DFA fdr® from the DFAA by
interchanging the final and non-final states. In the caseoofiplete DFAS, we first have to add a dead
state, that is, a non-final state which goes to itself on eaghtj and let all the undefined transitions go
to the dead state. After that, we can interchange the finahanefinal states to get a (complete) DFA
for the complement. This gives the following result.

Theorem 5. Let n> 1. Let L be a prefix-closed regular language over an alphabetith isc(L) = n.
Thenisc(L®) < n+ 1, and the bound is tight i| > 1.

Proof. For tightness, we can consider the unary prefix-closed Egga |0<i<n—1}. O

If a languagel is represented by amstate NFA, then we first construct the corresponding subset
automaton, and then interchange the final and non-finalsstatget a DFA for the languade® of at
most 2 states. This upper bound on the nondeterministic state leshpof complement on regular
languages is know to be tight in the binary case [12].

For prefix-closed languages, we get the same bound, howevemve tightness, we use a ternary
alphabet. Whether or not the bountican be met by a binary language remains open.

Theorem 6. Let n> 2. Let L be a prefix-closed regular language over an alphabetith nsqL) = n.
ThennsL®) < 2", and the bound is tight i&| > 3.

Proof. The upper bound is the same as in the general case of reguipiaiges [10]. To prove tightness,
consider the languade accepted by the NFAl shown in Figuré 1, in which stat@goes to the empty
set on botha andb, and to{1} onc. Each other stategoes to{i + 1} on botha andc, and to{1,i + 1}
onb. Our aim is to describe a fooling sét = {(xs,ys) | SC {1,2,...,n}} of size 2' for LC.

First, let us show that each subsef&f2,...,n} is reachable in the subset automaton of the MFA
The initial state is{1}, and each singleton séit} is reached fron{1} by a 1. The empty set is reached
from {n} by a. The set{iy,i,,...,ix} of sizek, where 2< k<nand 1<i; <iy < --- <ix <n, isreached
from the set{i, —is,...,ix—i1} of sizek— 1 by the stringod* 1. This proves reachability by induction.
Now, definexs as the string, by which the initial state 1 of the NNAgoes to the seb.

Figure 1: The NFAN of a prefix-closed languadewith nsqL®) = 2".
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Next, for a subseB of {1,2,...,n}, define the strings as the string/s = yoy1 - - - yn—1 Of lengthn,
where
~Ja ifn-ie§
" lc, ifn—i¢s

We claim that the strings is rejected by the NFA from each state i and accepted from each state
that is not inS. Indeed, ifi is a state inS theny,_;j = a andys = uav with U= ypy1---Yn_i_1 and
V=V¥n-it1Yn-i+2- - Y¥n-1. Hencelu| = n—i, which means that the statgoes to{n} by u since botha
andc move each statq to stateq+ 1. However, in state the NFAN cannot read, and therefore the
stringys = uavis rejected fromi. On the other hand, if¢ S, theny,_; = ¢, and the stringys = ucvwith

lu =n—iand|v| = i—1is accepted fromthrough the computation— n < 1 - i.

Now, we are ready to prove that the set of pairs of striggs= {(Xs,ys) | SC {1,2,...,n}} is a
fooling set for the language®.

(F1) By xs, the initial state 1 goes to the s&tThe stringys is rejected byN from each state i®. It
follows that the NFAN rejects the stringsys. Thus the stringys is in LC.

(F2) LetS+# T. Then without loss of generality, there is a stieseich thai € Sandi ¢ T. By xs, the
initial state 1 goes t&, so it also goes to the stateSincei ¢ T, the stringxr is accepted by from i.
Therefore, the NFAN accepts the stringsyr, and so this string is not ib°.

Hence.Z is a fooling set folL® of size 2. By Lemmd1, we have ngc®) > 2". O

4 Intersection and Union

In this section, we study the incomplete and nondeterniinisate complexity of intersection and union
of prefix-closed languages. If regular languaglesnd L are accepted byn-state andh-state NFAs,
respectively, then the languagfen L is accepted by an NFA of at mosin states, and this bound is
known to be tight in the binary case [10]. Our first result shdwat the bounann can be met by
binary prefix-closed languages. Then, using this resultggtghe same bound on the incomplete state
complexity of intersection on prefix-closed languages.

Theorem 7. Let K and L be prefix-closed languages over an alphaheith nsqK) = m andnsqL) = n.
ThennsqKNL) < mn, and the bound is tight jE| > 2.

Proof. The upper bound is the same as for regular languagés [10jightmess, consider prefix-closed
binary language& = {w € {a,b}* | #a(w) < m—1} andL = {w € {a,b}* | #,(w) < n— 1} that are
accepted by am-state and an-state incomplete DFA& andB, respectively, shown in Figute 2.

Consider the set of pairs of stringd = {(a'b/,a™1'b"1-1) |0<i <m—1,0< j <n—1} of size
mn Let us show tha#” is a fooling set for the languadénL.

b b b
A aa___a
a a

Figure 2: The incomplete DFA& andB of prefix-closed languagés andL with nsgK NL) = mn

a

)
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(F1) The stringglb! - a™1-1b"1-1 has exactlyn— 1 a's andn— 1 b's. It follows that it is inK N L.

(F2) Let(i, ) # (k. £). If i <k, then the stringb’ - a™~'b"~1~1 containsm— 1+ (k—i) a’s, and
therefore it is not irK. The case of < £ is symmetric.

Hence.% is a fooling set folK N L, and the theorem follows. O

Theorem 8. Let K and L be prefix-closed languages over an alphabeith isc(K) = m andisc(L) = n.
Thenisc(KNL) < mn, and the bound is tight [E| > 2.

Proof. Let A= (Qa, X, da,Sa, Qa) andB = (Qg, Z, ds, S8, Qg) be incomplete DFAs foK andL, respec-
tively. Define an incomplete product automatdn= (Qa x Qg, Z, J, (Sa,Ss8), Qa X Qg), Where

(oa(p,a),08(q,a)), if both da(p,a) andds(q,a) are defined,
undefined otherwise

3((p,a),a) = {
The DFAM accepts the languaden L. This gives the upper boumdn For tightness, consider the same
languageK andL as in the proof of the previous theorem. Notice tiaandL are accepted bgn-state
and n-state incomplete DFAS, respectively. We have shown thatet@rministic state complexity of
their intersection isnn It follows that the incomplete state complexity is alsoegtdtmn O

Our next result on the incomplete state complexity of uninpefix-closed languages can be derived
from the result on the quotient complexity of unionlin [5].rEoe sake of completeness, we restate it in
terms of incomplete complexities, and recall the proof.

Theorem 9. Let K and L be prefix-closed languages over an alphabeith isc(K) = m andisc(L) = n.
Thenisc(KUL) < mn+m+n, and the bound is tight [&| > 2.

Proof. LetA=({0,1,...,m—1},%,0a,0,Fa) andB= ({0,1,...,n—1},%, &, 0,Fg) be incomplete DFAs

for the language& andL, respectively. To construct a DFA for the langudge/L, we first add the
dead statesn andn to the DFAsSA andB, and let go all the undefined transitions to the dead states.
Now we construct the classic product-automaton from thaltiag complete DFAs with the state set
{0,1,...,m} x {0,1,...,n}. Allits states are final, except for the state,n) that is dead, and we do not
count it. Hence we get the upper boumd-+ m+ n on the incomplete state complexity of union.

Figure 3: The product automaton for incomplete DBdandB from Figure 2;m = 3 andn = 4.
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A
: =)
W

Figure 4: The NFA® andB of prefix-closed languagédé andL with nsqKUL) = m+n+ 1.

For tightness, we again consider the languages descrilibd proof of Theoren]7. We add the dead
statesm andn and construct the product automaton. The product automatthe case ofn= 3 and
n=4is shown in Figurél3.

Each stat€i, j) of the product automaton is reached from the initial st@1) by the stringa'b!. Let
(i, j) and(k,#) be two distinct states of the product automatori.<fk, then the string™ b" is rejected
from (k,¢) and accepted frorfi, j). If j < ¢, then the strind"‘a™ is rejected from(k, #) and accepted
from (i, j). Thus all the states in the product-automaton are reaclaaolgairwise distinguishable, and
the lower bounann+ m+ nfollows. O

In the nondeterministic case, the upper bound for union guolae language isn+n+1, and it is
tight in the binary case [10]. We get the same bound for unioprefix-closed languages, however, to
define witness languages, we use a four-letter alphabet.

Theorem 10. Let K and L be prefix-closed languages over an alph&beith nsqK) = m andnsdL) = n.
ThennsdKUL) < m+n+ 1, and the bound is tight i > 4.

Proof. The upper bound is the same as for regular languagés [10}.ove fightness, leK andL be the
prefix-closed languages accepted by the NB&asdB, respectively, shown in Figufé 4. Let

o ={(@,a™'b) [i=1,2,....m=—1}U{(@ h,a)},
B={(c),"d)|j=1,2,...,n—1}U{(c"d,c)}.

Let us show thaty' U Z is a fooling set for the languadéU L.

(F1) We haved - a™1-'b = a™ b andcl - ¢ 1-id = ¢"1d. Both these strings are KUL. The
stringsa™ 'b-aandc"1d-care inK UL as well.

(F2) If 1<i < i’ <m—1, then the stringi -a™ 1 "bis not inK sincem—1— (i’ —i) < m—1. Next,
if 1 <i<m-1, thena™b-a™1-pis notinK. The argumentation for two pairs fro@# is similar.
If we concatenate the first part of a pair.i4 with the second part of a pair i, then we get a string
that either contains all three symbals, d, or contains both symboblandd. No such string is il UL.

Thus.e7 U Z is a fooling set for the languadgéU L. Moreover, the sets” U{(¢g,c)} andBU{(¢,a)}
are fooling sets foK UL as well. By Lemmal2, we have ngcUL) > m+n+ 1. O

5 Concatenation

In this section, we deal with the concatenation operatiorpiaiix-closed languages. We start with
incomplete state complexity. We use a slightly differembéey witness language than in [5], and prove
the upper bound using automata constructions.
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Figure 5: The incomplete DFA& andB of languagex andL with isc(KL) = m-2"=1 4271,

Theorem 11. Letmn > 3. Let K and L be prefix-closed languages over an alphabetth isc(K) = m
andisc(L) = n. Thenisc(KL) < m-2"14+2"— 1, and the bound is tight i£| > 3.

Proof. Let A= (Qa,Z, 0,5, Qa) andB = (Qg, Z, ds, S8, Q) be incomplete DFAs with all states final
accepting the languagé&sandL, respectively. Construct an NAX for the languagd L from the DFAs
A andB by adding the transition on a symtmfrom a statey in Qa to the initial statesg of B whenever
the transition ora in stateq is defined inA. The initial states of the NFAl aresy andsg, and the set of
final states i€)g. Each reachable subset of the subset automaton of theNNfetains at most one state
of Qa, and several states Qfs. Moreover, if a state o4 is in a reachable subs8tthenSmust contain
the statesg. This gives the upper bourd-2"-1 + 2" — 1 on is¢KL) since the empty set is not counted.

For tightness, consider the prefix-closed langudgesmdL accepted by incomplete DFAsandB,
respectively, shown in Figufé 5, in which the transitions as follows:

on a, stateqp goes to itself, and each statgoes to(j +1) modn;

onb, each state; goes to statep, state 0 goes to itself, and stgtevith 1 < | < n— 2 goes toj + 1;

onc, each statg; with 0 <i < m-— 2 goes tayi. 1, and each statggoes to itself;
and all the remaining transitions are undefined.

Construct an NFAN for the languag& L as described above. Let us show that the subset automaton
of the NFAN hasm-2"-1 + 2" — 1 reachable and pairwise distinguishable non-empty ssibset

(1) First, let us show that each Sej} USis reachable, wher8C {0,1,...,n—1} and 0c S. The
proof is by induction on the size of subsets. The{gpt0} is the initial subset. The s€tp,0, j1, j2,. .-, Jk}
with1< j; < jo < --- < jk < n—1is reached from the sétp,0, j2— j1...., jk— j1} by the stringabi—1,
and the latter set is reachable by induction.

(2) Now, let us show that each s} US, is reachable, where4i <m-1,SC {0,1,....,n—1}
and Oc S. The set{q; } USis reached fron{go} UShby c', and the latter set is reachable as shown in (1).

(3) Next, we show that each sBtwith SC {0,1,...,n— 1} and Oc Sis reachable. The s&is
reached from{qm-1} U Shy c, and the latter set is reachable as shown in case (2).

(4) Finally, we show that each non-empty Sawith SC {0,1,...,n— 1} and 0¢ Sis reachable. If
S={j1,j2,..., jk} with j; > 1, thenSis reached from the s€0, j» — j1,..., jx — j1} by al?, and the
latter set is reachable as shown in case (3).

This proves the reachability ofi- 2"~ + 2" — 1 non-empty subsets.

To prove distinguishability, notice that the stribgis accepted by the DFB only from the state 0,
and the stringa™1-'ab’ is accepted only from the staid1 <i < n—1). If SandT are two distinct
subsets 0f0,1,...,n—1}, thenSandT differ in a statd. If i = 0, thenb" distinguishesSandT, and if
i > 1, thena™'b" distinguishesSandT.
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b c

A»_., aa

Figure 6: The incomplete DFAs of prefix-closed langual§emndL with nsqKL) = m+n.

(os]

Next, the set{g}uSand{q}UT, whereSandT are distinct subsets di0,1,...,n—1}, go to
SandT, respectively, byc™. SinceSandT are distinguishable, the sefs;} USand{q}UT are
distinguishable as well.

Finally, notice that the string"ab” is accepted by the NFA from each state;, but rejected from
each statein {0,1,...,n—1}. Hence the setfg; } USandT, whereSandT are subsets df0,...,n—1},
are distinguishable. Now let@i < j <m—1. Then{qg}USand{q;}UT go to{gitm-;}USandT,
respectively, byc™ . Since{q;+m-j} USandT are distinguishable, the sefg } USand{q;}UT are
distinguishable as well. This proves the distinguishgboi all the reachable subsets, and completes the
proof. O

In the next theorem, we consider the nondeterministic daseregular languages, the upper bound
on the nondeterministic state complexity of concatenaisom+ n, and it is tight in the binary case
[10]. For prefix-closed languages, we get the same boundfaratenation. However, we define witness
languages over a ternary alphabet.

Theorem 12. Letmn > 3. Let K and L be prefix-closed languages over an alphabsith nsqK) =m
andnsgL) = n. ThennsqKL) < m+n, and the bound is tight {&| > 3.

Proof. The upper bound is the same as for regular languages [10]tighdness, consider the ternary
prefix-closed languagéds andL accepted by incomplete DFAsandB, respectively, shown in Figuié 6.
Notice that if a stringwv is in KL, thenw is in the languag®*a*c*b*a*c*, and the number ad's in wis

at most(n+m-—2).

Fori=0,1,...,m+n—1, define the paifx;,y;) as follows:
(x,yi) = (a,a™cbd™ 1), fori=0,1,...m—1,
(Xt j>Ymsj) = (@™ tcbd,a™ ) for j=0,1,...n—1.

Let us show that the set of paitg = {(x,yi) | =0,1,...,m+n—1} is afooling set for the languadél.
(F1) For each, we havexy, = a™ 1cbd 1. Thusxy; is in KL sincea™ 'cis in K andba™ tisinL.
(F2) Leti < j and(i,]) # (m—1,m). Then the number ofi's in the stringx;y; is greater than

m-+n— 2, and therefore the stringy; is notinKL. If (i, j) = (m— 1, m), thenxmym-1 = a™ ‘cbchd 1.

Thusxmym-1 IS hot inb*a*c*b*a*c*, and therefore it is not iKL.
Hence the se# is a fooling set for the languadéL, so ns¢KL) > m+n. O

6 Star and Reversal

We conclude our paper with the star and reversal operatioprefmx-closed languages. The star of a
language. is the languagé* = (J;-oL', whereL® = {e} andL'** = L' L.
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Figure 7: The incomplete DFA of a prefix-closed languadewith isc(L*) = 2"~%; n = 6.

If a regular language is accepted by a completestate DFA, then the languagé is accepted by a
DFA of at most 34- 2" states, and the bound is tight in the binary casel[20, 25].

For prefix-closed languages, the upper bound on the quat@nplexity for star is 22+ 1, and it
has been shown to be tight in the ternary case [5]. In the daseamplete state complexity, we get the
bound 21, For the sake of completeness, we give a simple proof of tiperpound using automata
constructions. Moreover, we are able to define a witnessugg over a binary alphabet.

Theorem 13. Let n> 4. Let L be a prefix-closed regular language over an alphabeifith isc(L) = n.
Thenisc(L*) < 2"-1, and the bound is tight | > 2.

Proof. Let A= (Q,Z%,-,s,Q) be an incomplete DFA fot. Construct an NFAA* for L* from the DFA
A by adding the transition on a symbefrom a statej to the initial states whenever the transitioq- a
is defined. In the subset automaton of the N&FA each reachable set is either empty, or it contains the
initial states. It follows that is¢L*) < 2"-1.

For tightness, consider the binary incomplete DFA with ttegesset{1,2,...,n}, the initial state
1 and with all states final. The transitions are as follows. aByhe transitions in states 1 and 2 are
undefined, each odd stadteith 3 <i < n-—1 goes td + 1, and each even stataith 3 <i <n-—1 goes
toi —1. Byb, there is a cyclé1,2,3), each odd statewith 4 <i <n—1 goes td — 1, and each even
statei with 4 <i <n-—1goes td+ 1. If nis odd, them goes to itself bya, otherwise it goes to itself
by b. The DFA forn = 6 is shown in Figurél7.

Notice that each stafewith 3 < i < n has exactly one in-transition @nand onb. Denote bya~(i)
the state that goes t@mn a, and byb—(i) the state that goes tmn b.

Construct an NFAA* as described above. Let us show that in the subset automitoa NFA A,
all subsets of1,2,...,n} containing state 1 are reachable and pairwise distingbiisha

We prove reachability by induction on the size of subsetse Basis i§§ = 1, and the sefl} is
reachable since it is the initial state of the subset automaissume that every s8tcontaining 1 with
|S| = k, where 1< k < n—1, is reachable. LeB= {1,i1,i,is,...,ik}, where 2<i; <ix <--- <ig < n,
be a set of siz&+ 1. Consider three cases:

(i) iy =2 TakeS = {1,b 1(ip),b(i3),...,b (ix)}. Then|S| = k, and thereforé is reachable by
the induction hypothesis. Since we hee {1,2,iy,...,ix} = S the setSis reachable.

(i) i1 =3. TakeS = {1,2,b71(i),b~(i3),...,b~1(ix)}. Then|S| =k+ 1 andS contains states 1 and
2. Therefore, the s& is reachable as shown in cgsg Since we have 2 {1,2,3,i,i3,...,ik} 24
{1,3,iz,i3,...,ik} = S the setSis reachable.

(i) Leti; = j > 3, and assume that each $&tj,i»,...,ix} is reachable. Let us show that then also
each se{1,j + 1,ip,...,ix} is reachable. Ifj is odd, then the sefl, ] + 1,i,...,ik} is reached
from the set{1, j,a 1(i2),a*(i3),...,a (ix)} by a. If j is even, then the sdtl, j +1,i»,...,ix}
is reached from the sétl, j,b~1(i»),b=1(i3),...,b~%(ix)} by baa
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This proves reachability. To prove distinguishabilityfine that the stringab)"~2 is accepted by the
NFA A* from state 3 since state 3 goes to the initial state 1aiy"~2 through the computation

ab ab

ab
—4 =

3= 1

572 A N1y 32
if nis odd, and through a similar computatiomifs even. On the other hand, the strifap)"~2 cannot
be read from any other state®ith 2 <i < n/2 since we have

2 (2i-212} B2i-412 B Ba12y 331212} Do,
thus 2 goes to the empty set kfab)', so also by(ab)"2. If nis odd, then we have

2i+128 (21+31,2t B (214512} 2 ... R n12} 2 (n1} S {n-112 2

(n—31,2) & ... 28 15 1 2y @ g

thus 2 + 1 goes to the empty set fpb)"', i > 2, and so also byab)"~2. Forn even, the argument

is similar. The stringab)"~2 is not accepted from states 1 and 2. Hence the WFAccepts the string
(ab)"2 only from the state 3. Since there is exactly one in-tramsitinb in state 3, and it goes from state
2, the stringo(ab)"? is accepted by* only from state 2. Similarly, the strinigb(ab)"? is accepted by

A* only from state 1. Next, for similar reasons, the strafgb)"~2 is accepted only from 4, the string
ba(ab)"~2 is accepted only from 5, and in the general case, the stabja(ab)"? is accepted only
from 44 2i (i > 0), and the stringba)' (ab)"2 is accepted only from 3 2i (i > 1). Hence for each state

g of the NFAA*, there exists a stringy, that is accepted b only from the state. It follows that alll

the subsets of the subset automaton of the KRFAre pairwise distinguishable since two distinct subsets
differ in a stateg, and the stringv, distinguishes the two subsets. This completes the proof. O

We did some computations in the binary case. Having the filasstate minimal binary pairwise
non-isomorphic complete DFAs with a dead state and all theamging states final, we computed the
state complexity of the star of languages accepted by DFAsheists; here the state complexity of
a regular language, sql), is defined as the smallest number of states in @mpleteDFA for the
languagd.. We computed the frequencies of the resulting complexities the average complexity of
star. Our results are summarized in Tddle 2. Notice thanfer3, 4,5, there is just one language with
sL) =nand s¢L*) = 2. Let us show that this holds for evemywith n > 3.

n\sg(L*) 1 2 3 4 5 6 7 8 9 | average
2 - 2 - - - - - - - 2
3 8 1 6 - - - - - - 1.866
4 161 | 1 48 30 6 - - - - 1.857
5 4177 1 771 | 275 | 350 | 84 84 - 26 1.849

Table 1: The frequencies of the complexities and the avecag®lexity of star on prefix-closed lan-
guages in the binary case= 2,3,4,5.
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Figure 8: The only binary-state complete DFA of a prefix-closed languageith sqL*) = 2.

Proposition 14. Let n> 3. There exists exactly one (up to renaming of alphabet syshbolary prefix-
closed regular language L withg(L) = n ands(L*) = 2.

Proof. LetA= ({0,1},{a,b},d,0,F ) be a minimal two-state DFA for the langualge SinceL is prefix-
closed, the languagde® is prefix-closed as well. It follows that state O is final, atate 1 is dead, thus
F ={0} andd(1,a) = 4(1,b) = 1.

Without loss of generality, state 1 is reached from theahgtate O bya, thusd(0,a) = 1.

Sincen > 3, the languagé contains a non-empty string. This means that the languagentains a
non-empty string as well. Therefore, we must h&ye,b) = 0, and sd_* = b*.

Now let B be the minimah-state DFA forL. Then all the states @ are final, except for the dead
state. Sincd.* = b*, noa may occur in any string of. Hence each non-dead stateBymust go to
the dead state oa Since all states must be reachable, we must have a patiedalyeb" 2 and going
through all the final states. The last final state must go taléael state ob because otherwise all final
states would be equivalent. The resultmgtate DFAB is shown in Figuré&]8. O

The reverse® of a stringw is defined byeR = ¢, and(wa)R = awR for ain = andw in =*. The
reverse of a language is the language.R = {wR | w € L}. If a regular languagé is accepted by a
completen-state DFA, then the languad)® is accepted by a complete DFA of at moSistates[[22, 25],
and the bound is tight in the binary casel[16], 19].

For prefix-closed languages, the quotient complexity oérsal is 2~ [5], and it follows from the
results on ideal languages [4] since reversal commutesamitiplementation, and the complement of a
prefix-closed language is a right ideal; here a languaigea right ideal ifL = L - >*.

We restate the result for reversal in terms of incomplete stamplexity, and prove tightness using
a slightly different witness language.

Theorem 15. Let n> 2. Let L be a prefix-closed regular language over an alphabefith isc(L) = n.
Thenisc(LR) < 2" — 1, and the bound is tight iZ| > 2.

Proof. Let A be an incomplete DFA fdr. Construct an NFAAR for the languagé.R from the DFAA by
swapping the role of the initial and final states, and by rEwegrall the transitions. The subset automaton
of the NFAAR has at most™— 1 non-empty reachable states, and the upper bound follows.

For tightness, consider the incomplete DRAvith all states final, shown in Figufeé 9. Construct an
NFA AR as described above. In the subset automaton of the Aif-Ahe initial state ig(1,2,...,n}. If S
is a subset and ifc S, then the subsed)\ {i} is reached fronB by a'ba™'. This proves the reachability
of all non-empty subset by odd induction. Since the statekeofubset automaton of any reversed DFA
are pairwise distinguishablel[7,116,122], the theorem fadio

O

Now, let us turn to the nondeterministic case. For regulaguages, the tight bound for both star and
reversal im+ 1. Itis met by a unary language for star [10], and by a binanglege for reversal [12].
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Figure 9: The incomplete DFA of a language. with isc(LR) = 2" — 1, and the NFAAR,

For prefix-closed languages, we get the same bound for edvétewever, for star, the upper bound
is n since every prefix-closed language contains the emptygstimd there is no need to add a new initial
state in the construction of an NFA for star. In the followitngorem, we show that both these bounds
are tight in the binary case.

Theorem 16. Let n> 2. Let L be a prefix-closed language over an alphabetith nsqL) =n. Then
(1) nsqL*) <n,
(2)nsdLR) <n+1,

and both bounds are tight JE| > 2.

Proof. (1) LetN = (Q,Z,9,s,F) be ann-state NFA forL. SincelL is prefix-closed, the empty string is
in L. Therefore, we can get amstate NFA for the language™ from the NFAN as follows: for each
stateq and each symbal such thatd(g,a) NF # 0, we add a transition oafrom g to the initial states.
Thus the upper bound is

For tightness, consider the prefix-closed languhgeccepted by the NFA shown in Figuré_TI0.
Consider the set of pair of stringg = {(a',a"1"'b) |i =0,1,...,n— 1} of sizen. Let us show that?
is a fooling set for the languadse'.

(F1) We haved @™ 1-'b = a™ 1b. Since the string™ 1bis inL, it also is inL*.

(F2) Leti < j. Thenaa™ 1 ip=a"1-(i-)p. Since no string’b with ¢ < n— 1 is inL, the string
a1-(-pis not inL*.

Hence the set” is a fooling set for the languade’, and the lower bound follows.

(2) The upper bound is the same as for regular languages Ifi8]shown in [12, Theorem 2] that
this bound is met by the binary prefix-closed languagaccepted by the NFA shown in Figure] 10.
The proof in [12] is by a counting argument. Notice that Lenhis satisfied for the language®
with o7 = {(bd,a" ") |i=0,1,...,n—2},% = {(ba 1, ba" 1)}, u=ba"!, andv=a. This gives

nsqLR) > n+ 1 immediately. O
MO OROEaC s
b

Figure 10: The NFA of a prefix-closed languagevith nsqL*) = nand ns¢LR) = n+ 1.
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complement |Z| intersection || union |Z]
isc  on prefix-closed n+1 1 mn 2 | mn+m+n 2
sc  on prefix-closed [5] n 1 | mn—m-n+2 2 mn 2
sc  onregulan[20, 25] n 1 mn 2 mn 2
nsc on prefix-closed 2" 3 mn 2 | m+n+1 4
nsc on regularf[10, 12] 2" 2 mn 2 | m+n+1 2

Table 2: The complexity of boolean operations on prefix-@iband regular languages.

concatenation |Z| star |Z| | reversal |Z]
isc onprefix-closed | m2"1+2"—1 3 2n-1 2 | 22-1 2
sc  on prefix-closed [5] (m+ 1)2"2 3 2241 3 2n-1 2
sc onregularf[20, 25]] m2"—2"T 2 | 21422 2 2" 2
nsc on prefix-closed m-+n 3 n 2 n+1 2
nsc on regular[10, 12] m-+n 2 n+1 2 n+1 2

Table 3: The complexity of concatenation, star, and revVers@refix-closed and regular languages.

v

Conclusions

In this paper we considered operations on languages remaiy incomplete deterministic or non-
deterministic finite automata with all states final. Our Hssare summarized in Tablé$ 2 3. The
results on quotient (state) complexity on prefix-closedjlames are from [5], and the results for regular
languages are from [10, 12,120,/ 25]. Notice that in the n@rdahistic case, our results are the same
as in the general case of regular languages, except forahestration. However, to prove tightness,
we usually used larger alphabets than in the general casethéfor not these bounds are tight also for
smaller alphabets remains open.
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