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Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent ex-
tensions of Linear Temporal Logic to specify properties about data languages. In this paper, we
consider the class of data languages of non-monotonic data words over the natural numbers. We
prove that, in this setting,TPTL is strictly more expressive thanMTL. To this end, we introduce
Ehrenfeucht-Fraı̈ssé (EF) games forMTL. Using EF games forMTL, we also prove that theMTL

definability decision problem (“Given aTPTL-formula, is the language defined by this formula de-
finable inMTL?”) is undecidable. We also define EF games forTPTL, and we show the effect of
various syntactic restrictions on the expressiveness ofMTL andTPTL.

1 Introduction

Recently, verification and analysis of sets ofdata wordshave gained a lot of interest [18, 12, 10, 4, 5,
6, 7]. Here we considerω-words, i.e., infinite sequences overΣ×D, whereΣ is a finite set of labels,
and D is a potentially infinite set ofdata values. One prominent example of data words aretimed
words, used in the analysis of real-time systems [1]. In this paper, we consider data words as behavioral
models of one-counter machines. Therefore, in contrast to timed words, the sequence of data values
within the word may be non-monotonic, and we choose the set ofnatural numbers as data domain. It
is straightforward to adapt our results to the data domain ofintegers. In timed words, intuitively, the
sequence of data values describes the timestamps at which the properties from the labels setΣ hold.
Non-monotonic sequences of natural numbers, instead, can model the variation of an observed value
during a time elapse: we can think of the heartbeat rate recorded by a cardiac monitor, atmospheric
pressure, humidity or temperature measurements obtained from a meteorological station. For example,
let Weather = {sunny,cloudy, rainy} be a set of labels. A data word modeling the changing of the
weather and highest temperature day after day could be:

(rainy,10)(cloudy,8)(sunny,12)(sunny,13) . . .

For reasoning about data words, we consider extensions ofLinear Temporal Logic(LTL, for short).
One of these extensions isFreezeLTL, which extendsLTL with a freeze quantifierthat stores the current
data value in a register variable. One can then check whetherin a later position in the data word the
data value equals the value stored in the register or not. Model checking one-counter machines with this
logic is in general undecidable [12], and so is the satisfiability problem [10]. A good number of recent
publications deal with decidable and undecidable fragments ofFreezeLTL [10, 11, 12, 13].

Originally, the freeze quantifier was introduced inTimed Propositional Temporal Logic(TPTL, for
short) [3]. Here, in contrast toFreezeLTL, a data valued can be compared to a register valuex using
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linear inequations of the form,e.g., d− x ≤ 2. Another widely used logic in the context of real-time
systems isMetric Temporal Logic(MTL, for short) [16].MTL extendsLTL by constraining the temporal
operators with intervals over the non-negative reals. It iswell known that everyMTL-formula can be
effectively translated into an equivalent formula inTPTL. For the other direction, however, it turns
out that the result depends on the data domain. Formonotonic data wordsover the natural numbers,
Alur and Henzinger [2] proved thatMTL andTPTL are equally expressive. For timed words over the
non-negative reals, instead, Bouyer et al. [8] showed thatTPTL is strictly more expressive thanMTL.

Both logics, however, have not gained much attention in the specification of non-monotonic data
words. Recently we studied the decidability and complexityof MTL, TPTL and some of their fragments
over non-monotonic data words [9], but still not much is known about their relative expressiveness,
albeit they can express many interesting properties. To continue our example, using theMTL-formula
(sunny U[−3,−1] cloudy) over the labels setWeather, we can express the following property: it is sunny
until it becomes cloudy and the highest temperature has decreased of 1 to 3 degrees. The following
TPTL-formula expresses the fact that, at least three days from now, the highest temperature will be the
same as today:x.FFF(x= 0). Over a data word, this formula expresses that there is a point whose data
value is the same as that of the present one after at least three points. The main advantage ofMTL with
respect toTPTL is its concise syntax. It would be practical if we could show that, as in the case of
monotonic data words over the natural numbers,MTL equalsTPTL on data words. The goal of this
paper is to investigate the relative expressiveness ofTPTL andMTL when evaluated over data words.

In this paper, we show as a main result that for data wordsTPTL is strictly more expressive than
MTL. More detailed, we use the formulax.F(b∧F(c∧x ≤ 2)) to separateTPTL andMTL. This is the
same formula used in the paper by Bouyer et al. [8] to separatethese two logics over timed words. We
also show that the simplerTPTL-formulax.FFF(x= 0) is not definable inMTL. Note that this formula
is in the unary fragment ofFreezeLTL, which is very restrictive. The intuitive reason for the difference
in expressiveness is that, using register variables, we canstore data values at any position of a word
to compare them with a later position, and it is possible to check that other properties are verified in
between. This cannot be done using the constrained temporaloperators inMTL. This does not result
in a gap in expressiveness in the monotonic data words setting, because the monotonicity of the data
sequence does not allow arbitrary values between two positions of a data word.

As a main tool for showing this result, we introducequantitativeversions of Ehrenfeucht-Fraı̈ssé (EF)
games forMTL andTPTL. In model theory, EF games are mainly used to prove inexpressibility results
for first-order logic. Etessami and Wilke [14] introduced the EF game forLTL and used it to show that the
Until Hierarchy forLTL is strict. Using our EF games forMTL andTPTL, we prove a number of results
concerning the relation between the expressive power ofTPTL andMTL, as well as between different
fragments of both logics. We investigate the effects of restricting the syntactic resources. For instance,
we show thatTPTL that permits two register variables is strictly more expressive thanTPTL restricted
to one register variable. We also use EF games to show that thefollowing problem is undecidable: given
aTPTL-formulaϕ , is there anMTL-formula equivalent toϕ?

We remark that quantitative EF games provide a very general and intuitive mean to prove results
concerning the expressive power of quantitative logics. Wewould also like to point out that recently an
extension of Etessami and Wilke’s EF games has been defined [17] to investigate relative expressiveness
of some fragments of the real-time version ofMTL overfinite timed words only. The proof of Theorem
1 in [17] relies on the fact that there is an integer bound on the timestamps of a finite timed word to deal
with the potentially infinite number of equivalence classesof MTL formulas. It is not clear how this can
be extended toinfinite timed words. In contrast to this, the results in our paper using EF games can also
be applied tofinite data words.
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2 Metric Temporal Logic and Timed Propositional Temporal Logic

In this section, we define two quantitative extensions ofLTL: MTL andTPTL. The logics are evaluated
overdata words, defined in the following.

We useZ andN to denote the set of integers and the set of non-negative integers, respectively. LetP
be a finite set of propositional variables. Anω-data word, or simplydata word, w is an infinite sequence
(P0,d0)(P1,d1) . . . of pairs in 2P×N. Let i ∈N, we usew[i] to denote the data word(Pi,di)(Pi+1,di+1) . . .
and use(2P×N)ω to denote the set of all data words.

2.1 Metric Temporal Logic

The set of formulas ofMTL is built up fromP by boolean connectives and a constraining version of the
until operator:

ϕ ::= p | ¬ϕ | ϕ1∧ϕ2 | ϕ1UI ϕ2

wherep∈ P andI ⊆ Z is a (half-)open or (half-)closed interval over the integers, possibly unbounded.
We use pseudo-arithmetics expressions to denote intervals, e.g., ≥ 1 to denote[1,+∞). If I = Z, then we
may omit the annotationI onUI .

Formulas inMTL are interpreted over data words. Letw= (P0,d0)(P1,d1) . . . be a data word, and let
i ∈N. We define thesatisfaction relation forMTL, denoted by|=MTL, inductively as follows:

(w, i) |=MTL p iff p∈ Pi, (w, i) |=MTL ¬ϕ iff (w, i) 6|=MTL ϕ ,

(w, i) |=MTL ϕ1∧ϕ2 iff (w, i) |=MTL ϕ1 and(w, i) |=MTL ϕ2,

(w, i) |=MTL ϕ1UI ϕ2 iff ∃ j > i such that(w, j) |=MTL ϕ2, d j −di ∈ I ,

and∀i < k< j,(w,k) |=MTL ϕ1.

We say that a data wordsatisfiesanMTL-formulaϕ , written w |=MTL ϕ , if (w,0) |=MTL ϕ . We use
the following syntactic abbreviations:True := p∨¬p, False := ¬True, XI ϕ := FalseUI ϕ , FI ϕ :=
TrueUI ϕ . Note that the use of thestrict semantics for the until operator is essential to define the next
operatorXI .

Example. The following formula expresses the fact that the weather issunny until it becomes cloudy
and the temperature has decreased from one to three degrees.Furthermore in the future it will rain and
the temperature will increase by at least one degree:

sunny U[−3,−1] (cloudy∧F≥1 rainy). (1)

2.2 Timed Propositional Temporal Logic

Given an infinite countable setX of register variables, the set of formulas ofTPTL is defined as follows:

ϕ ::= p | x∈ I | ¬ϕ | ϕ1∧ϕ2 | ϕ1Uϕ2 | x.ϕ

where p ∈ P, x ∈ X and I is an interval over the integers, defined as forMTL. We will use pseudo-
arithmetic expressions to denote intervals,e.g., x< 0 denotesx∈ (0,−∞). Intuitively, x.ϕ , means that
we areresetting xto the current data value, andx∈ I means that, compared to the last time that we reset
x, the data value has increased or decreased within the margins of the intervalI .
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Formulas inTPTL are interpreted over data words. Aregister valuationν is a function fromX toN.
Let w= (P0,d0)(P1,d1) . . . be a data word, letν be a register valuation, and leti ∈ N. The satisfaction
relation forTPTL, denoted by|=TPTL, is inductively defined in a similar way as forMTL; we only give
the definitions for the new formulas:

(w, i,ν) |=TPTL x∈ I iff di −ν(x) ∈ I ,

(w, i,ν) |=TPTL x.ϕ iff (w, i,ν [x 7→ di ]) |=TPTL ϕ ,

(w, i,ν) |=TPTL ϕ1Uϕ2 iff ∃ j> i,(w, j,ν) |=TPTL ϕ2,∀i<k< j,(w,k,ν) |=TPTL ϕ2.

Here,ν [x 7→ di ] is the valuation that agrees withν on all y ∈ X\{x}, and mapsx to di . We say that a
data wordw satisfies aTPTL-formulaϕ , written w |=TPTL ϕ , if (w,0, 0̄) |=TPTL ϕ . Here,0̄ denotes the
valuation that maps each register variable tod0. We use the same syntactic abbreviations as forMTL

where the intervalI for the temporal operators is ignored.
In the following, we define some fragments ofTPTL. Givenn≥ 1, we useTPTLn to denote the set

of TPTL-formulas that use at mostn different register variables. Theunary fragment ofTPTL, denoted
by UnaTPTL, is defined by the following grammar:

ϕ ::= p | ¬ϕ | x∈ I | ϕ1∧ϕ2 | Fϕ | Xϕ | x.ϕ

We defineFreezeLTL to be the subset ofTPTL-formulas where the formula ‘x ∈ I ’ is restricted to
be of the form ‘x ∈ [0,0]’. We denote combinations of these fragments in the expectedmanner;e.g.,
UnaFreezeLTL1 denotes the unary fragment ofTPTL in which only one register variable and equality
checks of the form ‘x∈ [0,0]’ are allowed.
Example. TheMTL-formula (1) in the above example is equivalent to theTPTL1-formula

x.[sunny U (x∈ [−3,−1]∧ cloudy∧x.F (x≥ 1∧ rainy))].

The formulasx.((cloudy ∧ x ≤ 2)U sunny) and x.F (cloudy ∧ F (sunny ∧ x ≤ 2)), over the labels set
Weather express the following properties:

1. The weather will eventually become sunny. Until then it iscloudy every day and the temperature
is at most two degrees higher than the temperature at the present day.

2. It will be cloudy in the future, later it will become sunny,and the temperature will have increased
by at most 2 degrees.

2.3 Relative Expressiveness

Let L andL′ be two logics interpreted over elements in(2P ×N)ω , andϕ ∈ L and ϕ ′ ∈ L′ be two
formulas. DefineL(ϕ) = {w∈ (2P×N)ω | w satisfiesϕ}. We say thatϕ is equivalentto ϕ ′ if L(ϕ) =
L(ϕ ′). Given a data languageL ⊆ (2P×N)ω , we say thatL is definable inL if there is a formulaϕ ∈ L
such thatL(ϕ) = L . We say that a formulaψ is definable inL if L(ψ) is definable inL. We say thatL′

is at least as expressive asL, writtenL 4 L′, if each formula ofL is definable inL′. It is strictly more
expressive, writtenL ≺ L′ if, additionally, there is a formula inL′ that is not definable inL. Further,
L andL′ areequally expressive, writtenL ≡ L′, if L 4 L′ andL′ 4 L. L andL′ are incomparable, if
neitherL4 L′ norL′ 4 L.

In this paper we are interested in the relative expressiveness of (fragments of)MTL andTPTL. It
is straightforward to translate anMTL-formula into an equivalentTPTL1-formula. So it can easily be
seen thatTPTL1 is as least as expressive asMTL. However, we will show that there exist someTPTL1-
formulas that are not definable inMTL. For this we introduce the Ehrenfeucht-Fraı̈ssé game forMTL.
Before, we define the important notion ofuntil rank of a formula.
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2.4 Until Rank

Theuntil rank of anMTL-formulaϕ , denoted byUrk(ϕ), is defined by induction on the structure of the
formula:

• Urk(p) = 0 for everyp∈ P,

• Urk(¬ϕ) = Urk(ϕ), Urk(ϕ1∧ϕ2) = max{Urk(ϕ1),Urk(ϕ2)}, and

• Urk(ϕ1UI ϕ2) = max{Urk(ϕ1),Urk(ϕ2)}+1.

We useCons(Z) to denote the set{S∪{−∞,+∞} | S⊆ Z} andFCons(Z) for the subset ofCons(Z)
which contains allfinite sets inCons(Z). Let I ∈ Cons(Z), k∈ N. Define

MTLI = {ϕ ∈MTL | the endpoints ofI in each operatorUI in ϕ are inI},

MTLk = {ϕ ∈MTL | Urk(ϕ)≤ k}, MTLIk =MTLk∩MTLI .

It is easy to check thatMTL =
⋃k∈N

I∈FCons(Z)MTLIk , andMTLI =
⋃I

′⊆I,k∈N
I ′∈FCons(Z)MTLI

′

k for eachI ∈

Cons(Z).

Lemma 1. For eachI ∈ FCons(Z) and k∈ N, there are only finitely many formulas inMTLIk up to
equivalence.

We define a family of equivalence relations over(2P ×N)ω ×N. Let w0,w1 be two data words,
i0, i1 ≥ 0 be positions inw0,w1, respectively. LetI ∈ Cons(Z), and letk ∈ N. We say that(w0, i0) and
(w1, i1) areMTLIk -equivalent, written(w0, i0)≡I

k (w1, i1), if for each formulaϕ ∈MTLIk , (w0, i0) |=MTL

ϕ if and only if (w1, i1) |=MTL ϕ .

3 The Ehrenfeucht–Fräısśe Game for MTL

Next we define the Ehrenfeucht–Fraı̈ssé (EF) game forMTL. Let I ⊆ FCons(Z), k ∈ N, w0,w1 be two
data words andi0, i1 be positions inw0 andw1, respectively. Thek-roundMTL EF game on(w0, i0) and
(w1, i1) with respect toI, denoted by MGIk (w0, i0,w1, i1), is played by two players, called Spoiler and
Duplicator, on the pair(w0,w1) of data words starting from the positionsi0 in w0 andi1 in w1.

In each round of the game, Spoiler chooses a word and a position, and Duplicator tries to find a
position in the respective other word satisfying conditions concerning the propositional variables and the
data values inw0 andw1. We say thati0 and i1 agree in the propositional variablesif (w0, i0) |=MTL p
iff (w1, i1) |=MTL p for eachp ∈ P. We say thatm,n ∈ Z are in the same regionwith respect toI
if (a,b) or [a,a] is the smallest intervalI such thata,b ∈ I and m∈ I , thenn ∈ I . For example, let
I = {−∞,1,3,8,+∞}, 1 and 2 are not in the same region with respect toI, 4 and 5 are in the same
region with respect toI.

MGI

k (w0, i0,w1, i1) is defined inductively as follows. Ifk = 0, there are no rounds to be played,
Spoiler wins ifi0 andi1 do not agree in the propositional variables. Otherwise, Duplicator wins. Ifk> 0,
in the first round,

1. Spoiler wins this round ifi0 and i1 do not agree in the propositional variables. Otherwise, he
chooses a wordwl (l ∈ {0,1}), and a positioni′l > i l in wl .

2. Then Duplicator tries to choose a positioni′(1−l) > i(1−l) in w(1−l) such thati′0 and i′1 agree in the
propositional variables, anddi′0

−di0 anddi′1
−di1 are in the same region with respect toI. If one

of the conditions is violated, then Spoiler wins the round.
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3. Then, Spoiler has two options: either he chooses to start anew game MGIk−1(w0, i′0,w1, i′1); or

4. Spoiler chooses a positioni(1−l) < i′′(1−l) < i′(1−l) in w(1−l). In this case Duplicator tries to respond
by choosing a positioni l < i′′l < i′l in wl such thati′′0 andi′′1 agree in the propositional variables. If
this condition is violated, Spoiler wins the round.

5. If Spoiler cannot win in Step 1, 2 or 4, then Duplicator winsthis round. Then Spoiler chooses to
start a new game MGIk−1(w0, i′′0,w1, i′′1).

We say that Duplicator has awinning strategyfor the game MGIk (w0, i0,w1, i1) if she can win every
round of the game regardless of the choices of Spoiler. We denote this by(w0, i0)∼I

k (w1, i1). Otherwise
we say that Spoiler has a winning strategy. It follows easilythat if (w0, i0)∼I

k (w1, i1), then for allm< k,
(w0, i0)∼I

m (w1, i1).

Theorem 1. For eachI ∈ FCons(Z) and k∈ N, (w0, i0)≡I

k (w1, i1) if and only if(w0, i0)∼I

k (w1, i1).

Theorem 2. LetL be a data language. The following are equivalent:

1. L is not definable inMTL.

2. For eachI ∈ FCons(Z) and k∈ N there exist w0 ∈ L and w1 6∈ L such that(w0,0)∼I

k (w1,0).

4 Application of the EF Game for MTL

4.1 Relative Expressiveness of TPTL and MTL

In this section, we present one of the main results in this paper: Over data words,TPTL is strictly more
expressive thanMTL. Before we come to this result, we show in the following lemmathat in a data word
the difference between data values is what matters, as opposed to the specific numerical value.

Lemma 2. Let w0 = (P0,d0)(P1,d1) . . . and w1 = (P0,d0+c)(P1,d1+c) . . . for some c∈ N be two data
words. Then for every k∈N andI ∈ FCons(Z), (w0,0)∼I

k (w1,0).

Proof. The proof is straightforward. If Spoiler chooses a positionin wl (l ∈ {0,1}), then the duplicator
can respond with the same position inw(1−l).

From now on, we use(wl : i,w(1−l) : j)(l ∈ {0,1}) to denote that Spoiler chooses a wordwl and a
positioni in wl and Duplicator responds with a positionj in w(1−l).

Proposition 1. TheUnaFreezeLTL1-formula x.FFF(x= 0) and theTPTL-formula x.F(b∧F(c∧x≤ 2))
are not definable inMTL.

Proof. To show that the formulaϕ = x.FFF(x= 0) is not definable inMTL, for eachI ∈ FCons(Z) and
k ∈ N, we will define two data wordsw0 andw1 such thatw0 |= ϕ andw1 6|= ϕ , and(w0,0) ∼I

k (w1,0).
Then, by Theorem 2,ϕ is not definable inMTL. So letr,s∈N be such that all numbers inI are contained
in (−r,+r) ands≥ 2r. Intuitively, we chooser in such a way that a jump of magnitude±r in data value
cannot be detected byMTLI , as all constants inI are smaller thanr. Definew0 andw1 as follows:

w0
s s−2r s−r s s+r s+2r s+3r. . .

w1
s s−r s s+r s+2r s+3r s+4r. . .
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There are no propositional variables inw0,w1. We show that Duplicator has a winning strategy for
the game MGIk (w0,0,w1,0). The casek= 0 is trivial. Supposek> 0. Note that after the first round, they
start a new(k− 1)-round game MGIk−1(w0, i0,w1, i1), wherei0, i1 ≥ 1. By Lemma 2, Duplicator has a
winning strategy for this game. So it is sufficient to show that Duplicator can win the first round. In the
following we give the winning strategy for Duplicator in thefirst round.

P
P
P
P
P
P
P
PP

Move
Case

1 2 3 4

1st
(wl :1,w(1−l) :1),

(l ∈ {0,1})
(w0 :2,w1 :1)

(w0 : i,w1 : i−1),
(i > 2)

(w1 : i,w0 : i+1),
(i ≥ 2)

2nd - -
(w1 : j,w0 : j+1),
(0< j < i−1)

(w0 :1,w1 :1),or
(w0 : j, w1 : j−1),

(2≤ j < i+1)

By the choice of numberr, dw0
1 − dw0

0 (= −2r) is in the same region asdw1
1 − dw1

0 (= −r). It is
easy to check that Duplicator’s responses satisfy the winning condition about the data value. Hence
(w0,0)∼I

k (w1,0).
The proof for the formulax.F(b∧F(c∧x≤ 2)) is similar, we defineI, k, r ands≥ 3r as above. We

leave it to the reader to verify that Duplicator has a winningstrategy for the game MGIk (w0,0,w1,0) on
the following two data words.

w0
s

c

s−3r

b

s−2r

c

s−r

b

s+r

c

s+2r

b

s+3r

. . .

w1
s

c

s−2r

b

s−r

c

s+r

b

s+2r

c

s+3r

b

s+4r

. . .

As a corollary, together with the fact that everyMTL-formula is equivalent to aTPTL1-formula we
obtain the following.

Corollary 1. TPTL1 is strictly more expressive thanMTL.

4.2 The MTL Definability Decision Problem

For many logics whose expressiveness has been shown to be in astrict inclusion relation, the definability
decision problem has been considered. For example, it is well known that Monadic second-order logic
(MSO) defines exactly regular languages. Its first-order fragment (FO) defines the star-free languages
which is a proper subset of regular languages. The problem ofwhether a MSO formula is equivalent to an
FO formula over words is decidable. In our case the problem isstated as follows: Given aTPTL-formula
ϕ , is ϕ definable inMTL? We show in the following, using the EF game method, that thisproblem is
undecidable. First, we prove a Lemma.

Lemma 3. Given an arbitraryI ∈ FCons(Z), let r,s∈ N be such that all numbers inI are contained in
(−r,+r). For each k∈N, if the data word w0 is of the following form:
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w0
P0

s

P0

s+r

P0

s+2r

. . . P0

s+(k+1)r

P1

d0

P2

d1

. . .

k+2
︷ ︸︸ ︷

where Pi ⊆ P,di ≥ s+(k+2)r,(i ≥ 0), and w1 is defined by w1 = w0[1], then Duplicator has a winning
strategy on the gameMGI

k (w0,0,w1,0).

Proof. The proof is by induction onk. It is trivial whenk= 0. Suppose the statement holds fork, we must
show that it also holds fork+1, i.e., Duplicator has a winning strategy for the game MGI

k+1(w0,0,w1,0).
We give the winning strategy for Duplicator as follows:

• (wl : 1,w(1−l) : 1),(l ∈ {0,1}). Then, by induction hypothesis, Duplicator has a winning strategy
for the game MGIk (w0,1,w1,1).

• (w0 : i,w1 : i − 1),(i ≥ 2). Then by Lemma 2, Duplicator has a winning strategy for the game
MGI

k (w0, i,w1, i−1). Moreover, for the second move of Spoiler in this round, if(w1 : j,w0 : j +1),
(0< j < i−1), by Lemma 2, Duplicator has a winning strategy for the game MGI

k (w0, j+1,w1, j).

• (w1 : i,w0 : i + 1),(i ≥ 2). Then by Lemma 2, Duplicator has a winning strategy for the game
MGI

k (w0, i +1,w1, i). Moreover, for the second move, if(w0 : 1,w1 : 1), by induction hypothesis,
Duplicator has a winning strategy for the game MGI

k (w0,1,w1,1). Otherwise, if(w0 : j,w1 : j −
1),(1< j < i+1), by Lemma 2, Duplicator has a winning strategy for the game MGI

k (w0, j,w1, j−
1).

This completes the proof.

Theorem 3. The problem, whether a givenTPTL-formula is definable inMTL, is undecidable.

Proof. The recurrent state problem for two-counter machines is defined as follows: given a two-counter
machine M, does there exist a computation of M that visits theinitial instruction infinitely often? Alur
and Henzinger showed that this problem isΣ1

1-hard [3]. We reduce the recurrent state problem to the
MTL definability decision problem in the following way: For eachtwo-counter machine M, we construct
aTPTL-formulaψM such thatψM is definable inMTL iff M is a negative instance of the recurrent state
problem.

We use the fact that for each two-counter machine M there is aTPTL-formulaϕM which is satisfiable
iff M is a positive instance of the recurrent state problem [3]. DefineψM = (x.FFF(x = 0))∧FϕM. If
ϕM is unsatisfiable, thenψM is definable by theMTL-formulaFalse. Otherwise, ifϕM is satisfiable, we
will prove thatψM is not definable inMTL. We show that for eachI ∈ FCons(Z) andk∈ N, there is no
formula inMTLIk that is equivalent toψM.

For an arbitraryI ∈ FCons(Z), let r,s∈ N be such that all numbers inI are contained in(−r,+r)
ands≥ 2r. Supposek≥ 1. By an exploration of the proof in [3] we can find that there isno propositional
variable occurring inϕM, and by Lemma 2, if a data word satisfiesϕM, then the new data word obtained
by adding the same arbitrary value to every data value in the original word still satisfiesϕM. Hence we
can assume that the data wordw satisfyingϕM is of the form:

w
d0 d1 d2 d3 d4 . . .

wheredi ≥ s+(k+1)r for eachi ≥ 0. We define the following two data wordsw0 andw1:
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w0
s s−2r s−r s s+r . . . s+(k−1)r s+kr d0 d1 . . .

w1
s s−r s s+r . . . s+(k−1)r s+kr d0 d1 d2 . . .

Clearly,w0 |=TPTL ψM andw1 6|=TPTL ψM. To show that there is no formula inMTLIk that is equiva-
lent toψM , we prove that Duplicator has a winning strategy for the gameMGI

k (w0,0,w1,0). The winning
strategy for Duplicator in the first round is the same as the one that we give in the proof of Lemma 3. By
Lemma 2 and 3, Duplicator can win the remaining rounds.

SinceMTL=
⋃k∈N

I∈FCons(Z)MTLIk , we know by the argument given above that there is no formula in
MTL that is equivalent toψM if ϕM is satisfiable.

4.3 Effects on the Expressiveness of MTL by Restriction of syntactic Resources

We use the EF game forMTL to show the effects of restricting syntactic resources ofMTL-formulas. We
start with restrictions on the class of constraints occurring in anMTL-formula. For eachn ∈ Z, define
ϕn = F[n,n]True.

Lemma 4. LetI1,I2 ∈ Cons(Z), for each n∈ Z, if n ∈ I1 and n−1,n or n,n+1 are not inI2, thenϕn

is definable inMTLI1 but not inMTLI2.

Let I[n] = {m∈ Z | m≤ n}∪{−∞,+∞}. The expressive power relation4 defines a linear order on
the set{MTLI[n] | n∈ Z} such that ifn1 ≤ n2, thenMTLI[n1] 4MTLI[n2]. We haveMTL=

⋃
{MTLI[n] |

n∈ Z}.

Proposition 2. (Linear Constraint Hierarchy ofMTL)
For each n1,n2 ∈ Z, if n1 < n2, thenMTLI[n1] ≺MTLI[n2].

In Proposition 2 we show thatMTLI[n+1] is strictly more expressive thanMTLI[n]. Intuitively, if I2

is a proper subset ofI1, one should expect thatMTLI1 is more powerful thanMTLI2. But in general this
is not true. For example,MTLI1 with I1 = {−∞,0,1,2,+∞} has the same expressive power asMTLI2

whereI2 = I1\{1}, since we can use 0 and 2 to express constraints that use the constant 1. It is natural
to ask, forI ∈ Cons(Z), what is the minimal subsetI ′ of I such thatMTLI

′
≡MTLI . In the following

we give another constraint hierarchy.
LetEVEN be the subset ofCons(Z) where only even numbers are in consideration. Leteven∈ EVEN

be the set that contains all even numbers. It is easily seen thatMTLeven≡MTL. GivenI1,I2 ∈ EVEN,
if I1 ( I2, by Lemma 4, we haveMTLI1 ≺MTLI2. The expressive power relation4 defines a partial
order on the set{MTLI | I ∈ EVEN}.

Proposition 3. (Lattice Constraint Hierarchy ofMTL)
〈
{MTLI | I ∈ EVEN},4

〉
constitutes a complete lattice in which

(i) the greatest element isMTLeven,

(ii) the least element isMTL{−∞,+∞},

and for each nonempty subset S⊆ EVEN,

(iii)
∧

I∈SMTLI =MTL
⋂

I∈SI ,

(iv)
∨

I∈SMTLI =MTL
⋃

I∈SI .
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Note that
〈
{MTLI | I ∈ EVEN},4

〉
is isomorphic to the complete lattice〈P(X),⊆〉, whereX is a

countable infinite set,P(X) is the powerset ofX and⊆ is the containment relation.
Next we show that, as forLTL [14], there is a strict until hierarchy forMTL.

Proposition 4. For all k ∈ N, MTLk+1 is strictly more expressive thanMTLk.

Proof. Defineϕ [1] = (p∧Xp) andϕ [k+ 1] = (p∧Xϕ [k]) for everyk ≥ 1. Note that for eachk ≥ 1,
ϕ [k] ∈MTLk. We show that for eachI ∈ FCons(Z),k≥ 0, ϕ [k+1] is not definable inMTLIk . Let r ∈N

be such that all numbers inI are contained in(−r,+r). Define two data wordsw0 andw1 as follows:

w0
p

0

p

r

p

2r

. . . p

(k+1)r

q

(k+2)r

q

(k+3)r

. . .

k+2
︷ ︸︸ ︷

w1
p

r

p

2r

. . . p

(k+1)r

q

(k+2)r

q

(k+3)r

q

(k+4)r

. . .

k+1
︷ ︸︸ ︷

We see thatw0 |=MTL ϕ [k+ 1] andw1 6|=MTL ϕ [k+ 1]. By Lemma 3 and Theorem 2, there is no
formula in MTLIk that is equivalent toϕ [k+ 1]. SinceMTLk =

⋃

I∈FCons(Z)MTLIk , ϕ [k+ 1] is not
definable inMTLk.

As for theMTL definability decision problem, we can show that theMTLk definability decision
problem which asks whether the data language defined by anMTLk+1-formula is definable inMTLk is
undecidable. As a corollary, we know that whether anMTL-formula is equivalent to anMTLk-formula
is undecidable.

Proposition 5. There exists m∈N such that for every k≥m, the problem whether a formulaϕ ∈MTLk+1

is definable inMTLk is undecidable.

5 The Ehrenfeucht-Fräısśe Game for TPTL

In Proposition 1 we have proved that there is anUnaFreezeLTL1-formula that is not definable inMTL,
and we concluded thatTPTL1 is strictly more expressive thanMTL. A natural question is to ask for the
relation betweenMTL, UnaTPTL andFreezeLTL. For this, we define the EF game forTPTL.

The until rank of a TPTL-formula ϕ , denoted byUrk(ϕ), is defined analogously to that ofMTL-
formulas in Sect. 2.4; we additionally defineUrk(x∈ I)= 0 andUrk(x.ϕ)=Urk(ϕ). LetI ∈Cons(Z),k≥
0,n≥ 1, we define

TPTLI = {ϕ ∈ TPTL | for each subformulax∈ I of ϕ , the endpoints ofI belong toI},

TPTLn = {ϕ ∈ TPTL | the register variables inϕ are from{x1, . . . ,xn}},

TPTLk = {ϕ ∈ TPTL | Urk(ϕ)≤ k}, TPTL
n,I
k = TPTLn∩TPTLI ∩TPTLk.

Lemma 5. For eachI ∈ FCons(Z), n≥ 1 and k≥ 0, there are only finitely many formulas inTPTLn,I
k

up to equivalence.
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Let w0,w1 be two data words, andi0, i1 ≥ 0 be positions inw0,w1, respectively, andν0,ν1 be two reg-
ister valuations. We say that(w0, i0,ν0) and(w1, i1,ν1) areTPTLn,I

k -equivalent, written(w0, i0,ν0)≡
n,I
k

(w1, i1,ν1), if for each formulaϕ ∈ TPTL
n,I
k , (w0, i0,ν0) |=TPTL ϕ iff (w1, i1,ν1) |=TPTL ϕ .

The k-roundTPTL EF game on(w0, i0,ν0) and (w1, i1,ν1) with respect ton and I, denoted by
TGn,I

k (w0, i0,ν0,w1, i1,ν1), is played by Spoiler and Duplicator onw0 andw1 starting fromi0 in w0 with
valuationν0 andi1 in w1 with valuationν1.

We say that(i0,ν0) and(i1,ν1) agree in the atomic formulas inTPTLn,I , if (w0, i0,ν0) |=TPTL p iff
(w1, i1,ν1) |=TPTL p for for eachp∈ P, and(w0, i0,ν0) |=TPTL x∈ I iff (w1, i1,ν1) |=TPTL x∈ I for each
formulax∈ I in TPTLn,I .

Analogously to the EF game forMTL, TGn,I
k (w0, i0,ν0,w1, i1,ν1) is defined inductively. Ifk = 0,

then Spoiler wins if(i0,ν0) and (i1,ν1) do not agree in the atomic formulas inTPTLn,I . Otherwise,
Duplicator wins. Supposek> 0, in the first round,

1. Spoiler wins this round if(i0,ν0) and (i1,ν1) do not agree in the atomic formulas inTPTLn,I .
Otherwise, Spoiler chooses a subsetY (maybe empty) of{x1, . . . ,xn} and setsν ′

l = νl [x := dil (x∈
Y)] for all l ∈ {0,1}. Then Spoiler chooses a wordwl for somel ∈ {0,1} and a positioni′l > i l in
wl .

2. Then Duplicator tries to choose a positioni′(1−l) > i(1−l) in w(1−l) such that(i′0,ν ′
0) and (i′1,ν ′

1)

agree in the atomic formulas inTPTLn,I . If Duplicator fails, then Spoiler wins this round.

3. Then, Spoiler has two options: either he chooses to start anew game TGn,Ik−1(w0, i′0,ν ′
0,w1, i′1,ν ′

1);
or

4. Spoiler chooses a positioni(1−l) < i′′(1−l) < i′(1−l) in w(1−l). Then Duplicator tries to respond by
choosing a positioni l < i′′l < i′l in wl such that(i′′0,ν ′

0) and(i′′1,ν ′
1) agree in the atomic formulas in

TPTLn,I . If Duplicator fails to do so, Spoiler wins this round.

5. If Spoiler cannot win in Step 1, 2 or 4, then Duplicator winsthis round. Then Spoiler chooses to
start a new game TGn,Ik−1(w0, i′′0,ν ′

0,w1, i′′1,ν ′
1).

If Duplicator has a winning strategy for the game TGn,I
k (w0, i0,ν0,w1, i1,ν1), then we denote it by

(w0, i0,ν0)∼
n,I
k (w1, i1,ν1).

Theorem 4. For eachI ∈FCons(Z), n≥ 1,k≥ 0, (w0, i0,ν0)≡
n,I
k (w1, i1,ν1) if and only if(w0, i0,ν0)∼

n,I
k

(w1, i1,ν1).

Theorem 5. Let L be a data language. For eachI ∈ FCons(Z), n≥ 1 and k≥ 0, the following are
equivalent:

1. L is not definable inTPTLn,I
k .

2. There exist w0 ∈ L and w1 6∈ L such that(w0,0, 0̄)∼
n,I
k (w1,0, 0̄).

5.1 More on the Relative Expressiveness of MTL and TPTL

We are going to compareMTL with two fragments ofTPTL, namely the unary fragmentUnaTPTL and
the fragmentFreezeLTL. Using the EF game forTPTL we can prove the following results:

Proposition 6. TheMTL-formulaF=1True is not definable inFreezeLTL.

Proposition 7. TheMTL-formula(¬a)Ub is not definable inUnaTPTL.
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We remark that for these results, we have to slightly change the definition of the games to suit to the
fragmentsFreezeLTL andUnaTPTL such that an analogous version of Theorem 4 holds. The preceding
propositions yield another interesting result forMTL and these two fragments ofTPTL.

Corollary 2. 1. MTL andFreezeLTL are incomparable.

2. MTL andUnaTPTL are incomparable.

3. UnaTPTL andFreezeLTL are incomparable.

Analogously to Theorem 3, we can prove that theFreezeLTL (resp.,UnaTPTL) definability problem
is undecidable.

Proposition 8. The problem, whether a givenTPTL-formula is definable inFreezeLTL (resp.,UnaTPTL),
is undecidable.

5.2 Restricting Resources in TPTL

In the following we prove results on the effects of restricting syntactic resources ofTPTL-formulas
similar to those forMTL. For eachn∈ Z, we redefineϕn = x.F(x= n).

Lemma 6. LetI1,I2 ∈ Cons(Z), for each n∈ Z, if n ∈ I1 and n−1,n or n,n+1 are not inI2, thenϕn

is definable inTPTLI1 but not inTPTLI2.

Using this lemma we can prove the following two propositions.

Proposition 9. (Linear Constraint Hierarchy ofTPTL)
The expressive power relation4 defines a linear order on the set{TPTLI[n] | n∈Z} such that if n1 ≤ n2,
thenTPTLI[n1] 4 TPTLI[n2] . Moreover, if n1 < n2, thenTPTLI[n1] ≺ TPTLI[n2].

Proposition 10. (Lattice Constraint Hierarchy ofTPTL)
〈
{TPTLI | I ∈ EVEN},4

〉
constitutes a complete lattice in which

(i) the greatest element isTPTLeven(≡ TPTL),

(ii) the least element isTPTL{−∞,+∞}(≡ LTL),

and for each nonempty subset S⊆ EVEN,

(iii)
∧

I∈STPTL
I = TPTL

⋂

I∈SI ,

(iv)
∨

I∈STPTL
I = TPTL

⋃

I∈SI .

In the next proposition we show that the until hierarchy forTPTL is strict.

Proposition 11. TPTLk+1 is strictly more expressive thanTPTLk.

Proof. Let ϕ [k] (k ≥ 1) be as defined in Proposition 4.ϕ [k] is a formula inTPTLk. For everyk ≥ 0.
We can show that(w0,0, 0̄) ∼

n,I
k (w1,0, 0̄) on the following two data wordsw0 |=TPTL ϕ [k+ 1] and

w1 6|=TPTL ϕ [k+1].

w0
p

0

p

0

p

0

. . . p

0

q

0

q

0

. . .

k+2
︷ ︸︸ ︷

w1
p

0

p

0

. . . p

0

q

0

q

0

q

0

. . .

k+1
︷ ︸︸ ︷
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Corollary 3. MTLk+1 andTPTLk are incomparable in expressive power.

Proposition 12. There exists m∈ N such that for every k≥ m, the problem whether a formulaϕ ∈
TPTLk+1 is definable inTPTLk is undecidable.

We have seen in the previous chapters thatTPTL is strictly more expressive thanMTL. The register
variables play a crucial role in reaching this greater expressiveness. In the following we want to explore
more deeply whether the number of register variables allowed in aTPTL formula has an impact on the
expressive power of the logic. We are able to show that there is a strict increase in expressiveness when
allowing two register variables instead of just one. The following results concern the number of register
variables allowed in aTPTL-formula.

Proposition 13. For theUnaTPTL2-formulaϕ = x1.F(x1 > 0∧x2.F(x1 > 0∧x2 < 0)) there is no equiv-
alent formula inTPTL1.

Proof. Let I ∈ FCons(Z) andk≥ 1. Lets, r ∈N be such that all elements inI are contained in(−r,+r)
ands−kr ≥ 0. One can show that(w0,0, 0̄)∼

1,I
k (w1,0, 0̄) on the following two data wordsw0 |=TPTL ϕ

andw1 6|=TPTL ϕ .

w0
s s+2r s−kr s−(k−1)r . . . s−r s+r s+3r s+4r s+5r . . .

k+1
︷ ︸︸ ︷

w1 s s+2r s−kr s−(k−1)r . . . s−r s+3r s+4r s+5r s+6r . . .

k
︷ ︸︸ ︷

Corollary 4. TPTL2 is strictly more expressive thanTPTL1.

It remains open whether we can generalize this result toTPTLn+1 andTPTLn, wheren≥ 2, to get a
complete hierarchy for the number of register variables. Wehave the following conjecture.

Conjecture 1. For each n≥ 1, TPTLn+1 is strictly more expressive thanTPTLn.

6 Conclusion and Future Work

In this paper, we consider the expressive power ofMTL andTPTL on non-monotonicω-data words
and introduce EF games for these two logics. We show thatTPTL is strictly more expressive than
MTL and some other expressiveness results of various syntacticrestrictions. ForTPTL, we examine the
effects of allowing only a bounded number of register variables: We prove thatTPTL2 is strictly more
expressive thanTPTL1, but it is still open ifTPTLn+1 is strictly more expressive thanTPTLn for all
n≥ 1 (Conjecture 1). In future work we want to figure out whether there is a decidable characterization
for the set of data domains for whichTPTL andMTL are equally expressive.
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