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Metric Temporal Logic K TL) and Timed Propositional Temporal Logi€RTL) are prominent ex-
tensions of Linear Temporal Logic to specify propertiesigbdata languages. In this paper, we
consider the class of data languages of non-monotonic datdswover the natural numbers. We
prove that, in this settingT PTL is strictly more expressive thadTL. To this end, we introduce
Ehrenfeucht-Fraissé (EF) games fdirL. Using EF games foMTL, we also prove that theITL
definability decision problem (“Given @PTL-formula, is the language defined by this formula de-
finable iINnMTL?") is undecidable. We also define EF gamesT®&TL, and we show the effect of
various syntactic restrictions on the expressivene$s bf andTPTL.

1 Introduction

Recently, verification and analysis of setsdafta wordshave gained a lot of interest [18,112,] 10/ 4, 5,
[6,[7]. Here we considew-words, i.e., infinite sequences over x D, whereX is a finite set of labels,
and D is a potentially infinite set oflata values One prominent example of data words &reed
words used in the analysis of real-time systems [1]. In this paperconsider data words as behavioral
models of one-counter machines. Therefore, in contrasirted words, the sequence of data values
within the word may be non-monotonic, and we choose the seatfral numbers as data domain. It
is straightforward to adapt our results to the data domaiimtefyers. In timed words, intuitively, the
sequence of data values describes the timestamps at wiagbrdperties from the labels sEthold.
Non-monotonic sequences of natural numbers, instead, calelnthe variation of an observed value
during a time elapse: we can think of the heartbeat rate decoby a cardiac monitor, atmospheric
pressure, humidity or temperature measurements obtaiogdd meteorological station. For example,
let Weather = {sunny,cloudy,rainy} be a set of labels. A data word modeling the changing of the
weather and highest temperature day after day could be:

(rainy, 10)(cloudy, 8)(sunny, 12)(sunny, 13)...

For reasoning about data words, we consider extensiobhmeér Temporal Logi€LTL, for short).
One of these extensionshgeezelL TL, which extendd.TL with afreeze quantifiethat stores the current
data value in a register variable. One can then check whetreetater position in the data word the
data value equals the value stored in the register or not.eMdkecking one-counter machines with this
logic is in general undecidable [12], and so is the satidftglproblem [10]. A good number of recent
publications deal with decidable and undecidable fragmeffreezel TL [10,[11,/12[13].

Originally, the freeze quantifier was introducedTimed Propositional Temporal Log{@PTL, for
short) [3]. Here, in contrast tbreezel TL, a data valual can be compared to a register vakuasing
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linear inequations of the forme.g, d — x < 2. Another widely used logic in the context of real-time
systems iMetric Temporal Logi¢MTL, for short) [16].MTL extendd.TL by constraining the temporal
operators with intervals over the non-negative reals. Weé#l known that everyMTL-formula can be
effectively translated into an equivalent formula®TL. For the other direction, however, it turns
out that the result depends on the data domain. nk@notonic data wordsver the natural numbers,
Alur and Henzinger[[2] proved thafITL and TPTL are equally expressive. For timed words over the
non-negative reals, instead, Bouyer et[al. [8] showedTRaEL is strictly more expressive thafiTL.

Both logics, however, have not gained much attention in gexi§ication of non-monotonic data
words. Recently we studied the decidability and complexdtiI TL, TPTL and some of their fragments
over non-monotonic data words| [9], but still not much is knoabout their relative expressiveness,
albeit they can express many interesting properties. Taragnour example, using thd TL-formula
(sunny U|_3 _4 cloudy) over the labels selVeather, we can express the following property: it is sunny
until it becomes cloudy and the highest temperature hasdsed of 1 to 3 degrees. The following
TPTL-formula expresses the fact that, at least three days fram the highest temperature will be the
same as todayx.FFF(x = 0). Over a data word, this formula expresses that there is @ whiose data
value is the same as that of the present one after at leastgbiets. The main advantage MfT L with
respect toTPTL is its concise syntax. It would be practical if we could shtatt as in the case of
monotonic data words over the natural numb&fg,L equalsTPTL on data words. The goal of this
paper is to investigate the relative expressivenedsPafL andMTL when evaluated over data words.

In this paper, we show as a main result that for data ward$L is strictly more expressive than
MTL. More detailed, we use the formukeF (b A F(cAX < 2)) to separatd PTL andMTL. This is the
same formula used in the paper by Bouyer et al. [8] to sepénase two logics over timed words. We
also show that the simpl@rPTL-formulax.FFF(x = 0) is not definable ilVITL. Note that this formula
is in the unary fragment dfreezelL TL, which is very restrictive. The intuitive reason for thefelience
in expressiveness is that, using register variables, westtar data values at any position of a word
to compare them with a later position, and it is possible teckhthat other properties are verified in
between. This cannot be done using the constrained temppeahtors inVITL. This does not result
in a gap in expressiveness in the monotonic data words getiecause the monotonicity of the data
sequence does not allow arbitrary values between two positf a data word.

As a main tool for showing this result, we introdupeantitativeversions of Ehrenfeucht-Fraissé (EF)
games foMTL andTPTL. In model theory, EF games are mainly used to prove inexipiysresults
for first-order logic. Etessami and Wilke [14] introducee fBF game fot TL and used it to show that the
Until Hierarchy forLTL is strict. Using our EF games fd&dTL andTPTL, we prove a number of results
concerning the relation between the expressive powdRafL andMTL, as well as between different
fragments of both logics. We investigate the effects ofriesig the syntactic resources. For instance,
we show thafTPTL that permits two register variables is strictly more expresthanTPTL restricted
to one register variable. We also use EF games to show thaliving problem is undecidable: given
aTPTL-formulag, is there arMTL-formula equivalent t@?

We remark that quantitative EF games provide a very genailirguitive mean to prove results
concerning the expressive power of quantitative logics.vWvald also like to point out that recently an
extension of Etessami and Wilke's EF games has been defidgtb[ihvestigate relative expressiveness
of some fragments of the real-time version\dT L overfinite timed words only. The proof of Theorem
1in [17] relies on the fact that there is an integer bound ertithestamps of a finite timed word to deal
with the potentially infinite number of equivalence classeM TL formulas. It is not clear how this can
be extended tinfinite timed words. In contrast to this, the results in our papengi&F games can also
be applied tdinite data words.
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2 Metric Temporal Logic and Timed Propositional Temporal Logic

In this section, we define two quantitative extensiongTdf: MTL andTPTL. The logics are evaluated
overdata words defined in the following.

We useZ andN to denote the set of integers and the set of non-negativgargerespectively. L&
be a finite set of propositional variables. Andata word or simplydata word w is an infinite sequence
(Po,do)(Py,dy) ... of pairs in  x N. Leti € N, we usew/[i] to denote the data wor@P, d;) (P1,di 1) ...
and usg2” x N)® to denote the set of all data words.

2.1 Metric Temporal Logic

The set of formulas oM TL is built up fromP by boolean connectives and a constraining version of the
until operator:

¢ =p| ¢ |dprAP2]| p1Ui62

wherep € P andl C Z is a (half-)open or (half-)closed interval over the integggrossibly unbounded.
We use pseudo-arithmetics expressions to denote inteevgls> 1 to denotdl, +). If | = Z, then we
may omit the annotatiohon U;.

Formulas inMTL are interpreted over data words. et (Py,dy)(Py,d1)... be a data word, and let
i € N. We define thesatisfaction relation foMTL, denoted by=uT., inductively as follows:

(Wi) Emte piff pe R, (Wi) EmT =@ iff (Wi) Eure ¢,

(W,i) FEmTL §1A @2iff (Wi) EmTL ¢ and(w,i) EvTL ¢2,

(W,i) FEmTL ¢1U1 92 iff 3] > i such thatw, j) FEuTL ¢2, dj—di €1,
andvi <k < j,(w,k) EmTL $1.

We say that a data woshtisfiesan M TL-formula ¢, writenw E=pT ¢, if (W,0) EmT ¢. We use
the following syntactic abbreviationgrue := pV —p, False ;= —True, X|¢ := FalseU ¢, F ¢ =
TrueU,¢. Note that the use of th&trict semantics for the until operator is essential to define tix¢ ne
operatorX;.

Example. The following formula expresses the fact that the weathsuimy until it becomes cloudy
and the temperature has decreased from one to three deBretisermore in the future it will rain and
the temperature will increase by at least one degree:

sunny U_3 _y (cloudy A F>q rainy). 1)

2.2 Timed Propositional Temporal Logic

Given an infinite countable s&tof register variablesthe set of formulas of PTL is defined as follows:

¢pu=plxel|[-¢[diAd2]d:1Ud2|x0

wherep € P, x € X and| is an interval over the integers, defined as fbfL. We will use pseudo-
arithmetic expressions to denote intervag, x < 0 denotex € (0, —). Intuitively, x.¢, means that
we areresetting xto the current data value, and:= | means that, compared to the last time that we reset
X, the data value has increased or decreased within the reafihe interval .
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Formulas inTPTL are interpreted over data words.régister valuatiorv is a function fromx to N.
Letw = (Py,do)(P1,d1)... be a data word, let be a register valuation, and le€ N. The satisfaction
relation forTPTL, denoted by=rpT, is inductively defined in a similar way as fdfTL; we only give
the definitions for the new formulas:

(W,i,v) ErprLxeliff di—v(x) e,
(W,i,v) ErprL X iff (Wi, VX di) =reTL @,
(Wi,v) FErere 91U iff 3j>10, (W, ], V) F=rpre ¢2,Vi <K<, (WK, V) [=rpT 2.

Here,v[x— di] is the valuation that agrees withon ally € X\{x}, and maps to d;. We say that a
data wordw satisfies arPTL-formula@, writtenw |=1p1 ¢, if (W,0,0) =1p1L ¢. Here,0 denotes the
valuation that maps each register variabladjo We use the same syntactic abbreviations asvfoi_
where the interval for the temporal operators is ignored.

In the following, we define some fragmentsPTL. Givenn > 1, we useTPTL" to denote the set
of TPTL-formulas that use at mostdifferent register variables. Thanary fragment off PTL, denoted
by UnaTPTL, is defined by the following grammar:

¢=p|-¢|xcl|[dind2|Fo | X |x¢

We defineFreezelL TL to be the subset of PTL-formulas where the formulax‘c I’ is restricted to
be of the form X € [0,0]". We denote combinations of these fragments in the expeti@adner;e.qg,
UnaFreezeLTL! denotes the unary fragment ®PTL in which only one register variable and equality
checks of the formx € [0,0] are allowed.

Example. TheMTL-formula [@) in the above example is equivalent to TH&T L*-formula

X.[sunny U (X € [-3,—1] Acloudy AX.F (x> 1 Arainy))].

The formulasx.((cloudy A x < 2)U sunny) and x.F (cloudy A F (sunny A X < 2)), over the labels set
Weather express the following properties:
1. The weather will eventually become sunny. Until then itl@udy every day and the temperature
is at most two degrees higher than the temperature at therjireay.

2. It will be cloudy in the future, later it will become sunrgnd the temperature will have increased
by at most 2 degrees.

2.3 Relative Expressiveness

Let £ and £’ be two logics interpreted over elements (2’ x N)®, and¢ € £ and ¢’ € £ be two
formulas. Defind_(¢) = {w € (2" x N)® | w satisfiesp }. We say thatp is equivalentto ¢’ if L(¢) =
L(¢). Given a data languade C (27 x N)®, we say that_ is definable inZ if there is a formulap € £
such thal (¢) = L. We say that a formulg is definable inZ if L(y) is definable inC. We say that’
is at least as expressive & written £ < £/, if each formula of. is definable inl’. It is strictly more
expressivewritten £ < £’ if, additionally, there is a formula i’ that is not definable iC. Further,
L and L' areequally expressivenritten £ = L', if £L < £ andL’ < £. £ and£’ areincomparable if
neither < £' nor ' < L.

In this paper we are interested in the relative expresssgné (fragments ofMTL and TPTL. It
is straightforward to translate &M TL-formula into an equivalent PTL!-formula. So it can easily be
seen thal PTL! is as least as expressiveMJ L. However, we will show that there exist someTL!-
formulas that are not definable MTL. For this we introduce the Ehrenfeucht-Fraissé gamé/fot .
Before, we define the important notion wftil rank of a formula.
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2.4 Until Rank

Theuntil rank of anMTL-formula ¢, denoted byJrk(¢), is defined by induction on the structure of the
formula:

e Urk(p) =0 for everyp € P,
o Urk(—=¢)=Urk(¢), Urk(¢1 A ¢2) = max{Urk(¢1),Urk(¢2)}, and

° Ul’k(¢1U| ¢2) = max{Urk(q)l), Urk(¢2)} +1.

We useCons(Z) to denote the sgtSU {—o,+o} | SC Z} andFCons(Z) for the subset o€ons(Z)
which contains alfinite sets inCons(Z). LetZ € Cons(Z), k € N. Define

MTLE = {¢ € MTL | the endpoints of in each operatot; in ¢ are inZ},
MTLk={¢ € MTL |Urk(¢) <k}, MTLE =MTLMTLE.

It is easy to check thabTL = Ul c,,. 2 MTLE, and MTLE = U7 SEST ) MTLE for eachZ e
Cons(Z).

Lemma 1. For eachZ € FCons(Z) and ke N, there are only finitely many formulas MTL% up to
equivalence.

We define a family of equivalence relations oy@f x N)® x N. Let wp,w; be two data words,
io,i1 > 0 be positions irwp, w1, respectively. Lef € Cons(Z), and letk € N. We say tha{wp,ip) and
(w,i1) areMTLE-equivalenf written (Wo,io) =F (Wi, i1), if for each formulap € MTLE, (Wo,io) EmTL
¢ if and only if (Wl,il) ):MTL 0.

3 The Ehrenfeucht—Fraiss Game for MTL

Next we define the Ehrenfeucht—Fraissé (EF) gamé/fdt. Let Z C FCons(Z), k € N, wp, w; be two
data words antb, i1 be positions invg andws, respectively. Th&-roundMTL EF game or{wy, i) and
(wy,i1) with respect tdZ, denoted by Mé(wo,io,wl,il), is played by two players, called Spoiler and
Duplicator, on the paifwg, w;) of data words starting from the positiorsin wp andiy in w;.

In each round of the game, Spoiler chooses a word and a pyséi@ Duplicator tries to find a
position in the respective other word satisfying condgi@oncerning the propositional variables and the
data values imp andw;. We say thaty andi; agree in the propositional variabld$ (wo,io) EmTL P
iff (w1,i1) EmTL p for eachp € P. We say thatm,n € Z are in the same regiomwith respect taZ
if (a,b) or [a,a] is the smallest interval such thata,b € Z andm e |, thenn € |. For example, let
7 ={-,1,38,+x}, 1 and 2 are not in the same region with respect t@d and 5 are in the same
region with respect td.

MG%(wo,io,wl,il) is defined inductively as follows. Ik = 0, there are no rounds to be played,
Spoiler wins ifig andi, do not agree in the propositional variables. Otherwise lidator wins. Ifk > 0,
in the first round,

1. Spoiler wins this round ify andi; do not agree in the propositional variables. Otherwise, he
chooses a word (I € {0,1}), and a position| > ij in w.

2. Then Duplicator tries to choose a positii(()pfl) > i (1-1y IN W1y such thati, andi’ agree in the
propositional variables, amﬁ6 —d, anddi/l —d;, are in the same region with respectZiolf one
of the conditions is violated, then Spoiler wins the round.
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3. Then, Spoiler has two options: either he chooses to stawagame MG, (Wo,if,Ws,i}); or

4. Spoiler chooses a position_) < i’(’lfl) < i’(H) in w(;_). In this case Duplicator tries to respond
by choosing a position < i’ < ij in w; such thaig andi agree in the propositional variables. If
this condition is violated, Spoiler wins the round.

5. If Spoiler cannot win in Step 1, 2 or 4, then Duplicator wihis round. Then Spoiler chooses to
start a new game Mg ; (wo, i§, wy, i).

We say that Duplicator hasvaeinning strategyfor the game ng(wo,io,wl, i1) if she can win every
round of the game regardless of the choices of Spoiler. Wetdehis by(wo,io) ~£ (W1,i1). Otherwise
we say that Spoiler has a winning strategy. It follows eatiit if (Wo,io) ~ (Wa,i1), then for allm <k,

(Wo, i0) ~m (Wi, i1).
Theorem 1. For eachZ € FCons(Z) and ke N, (Wo,io) =L (W1, i1) if and only if (Wo,i0) ~Z (Wy,i1).
Theorem 2. LetL be a data language. The following are equivalent:

1. L is not definable irtMTL.

2. For eachZ € FCons(Z) and ke N there exist we L and wi ¢ L such that(wo, 0) ~i (w,0).

4 Application of the EF Game for MTL

4.1 Relative Expressiveness of TPTL and MTL

In this section, we present one of the main results in thigpapver data wordsI PTL is strictly more
expressive thaMTL. Before we come to this result, we show in the following lenthwet in a data word
the difference between data values is what matters, as egposhe specific numerical value.

Lemma 2. Let wy = (Py,dp)(P1,d1) ... and w = (Py,do+¢)(P1,d;1 +c¢) ... for some = N be two data
words. Then for every & N andZ € FCons(Z), (Wo,0) ~£ (wy,0).

Proof. The proof is straightforward. If Spoiler chooses a posifiom (I € {0,1}), then the duplicator
can respond with the same positionap_. O

From now on, we usew; :i,w(;_: j)(l € {0,1}) to denote that Spoiler chooses a wavdand a
positioni in w; and Duplicator responds with a positipm w(;_j,.

Proposition 1. TheUnaFreezel TL-formula xFFF(x = 0) and theTPTL-formula xF(bAF(cAX < 2))
are not definable iMTL.

Proof. To show that the formulg = x.FFF(x = 0) is not definable ifMTL, for eachZ € FCons(Z) and
k € N, we will define two data worday andw; such thatwg = ¢ andw; [~ ¢, and(wo, 0) ~F (wy,0).
Then, by Theoreril2) is not definable iMTL. So letr,se€ N be such that all numbers #hare contained
in (—r,4r) ands > 2r. Intuitively, we choose in such a way that a jump of magnitude in data value
cannot be detected tMTLI , as all constants i are smaller than. Definewy andw; as follows:

Wo
S S—2r s—r S S+r S+2r s+3r...

Wy
S S—r s S+r S+2r s+3r st4r...
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There are no propositional variablesvig,w;. We show that Duplicator has a winning strategy for
the game M%(wo,o,wl,O). The cas& = 0 is trivial. Supposé > 0. Note that after the first round, they
start a new(k — 1)-round game M@& ; (W, ig,Ws,i1), Whereip,i; > 1. By Lemmd2, Duplicator has a
winning strategy for this game. So it is sufficient to showt thaplicator can win the first round. In the
following we give the winning strategy for Duplicator in tfiest round.

Case
Move 1 2 3 4
(Wi i1,wg) 1), ] ] (Wo:i,wy:i—1), (wq i ,Wp:i+1),
1st (efo1y) | Wor2wail) (i>2) (i>2)
P (Wp:1,wq:1),0r
Wi, Wo:|+1), L -
2nd - - ( (10]< j0<Ji—:E) (WO'J7W1'J_1)7
(2<j<i+])

By the choice of number, d® — dy°(= —2r) is in the same region ad/* — dy*(= —r). It is
easy to check that Duplicator’'s responses satisfy the wineondition about the data value. Hence
(WO’O) N% (W170)'

The proof for the formulax.F(bA F(cAX < 2)) is similar, we defin&, k, r ands > 3r as above. We
leave it to the reader to verify that Duplicator has a winrstigitegy for the game Mﬁwo,o,wl,O) on
the following two data words.

c b c b c b ...
S S—3r s—2r s—r S+r s+2r S+3r

c b c b c b ...
S S—2r S—r S+r Ss+2r S+3r s+

O

As a corollary, together with the fact that evéwT L-formula is equivalent to &P TL!-formula we
obtain the following.

Corollary 1. TPTL! is strictly more expressive thaviTL.

4.2 The MTL Definability Decision Problem

For many logics whose expressiveness has been shown to kit énclusion relation, the definability
decision problem has been considered. For example, it iskwelvn that Monadic second-order logic
(MSO) defines exactly regular languages. lts first-ordggrrant (FO) defines the star-free languages
which is a proper subset of regular languages. The problemhether a MSO formula is equivalent to an
FO formula over words is decidable. In our case the problestaied as follows: Given &P TL-formula

¢, is ¢ definable iINMTL? We show in the following, using the EF game method, thatghiblem is
undecidable. First, we prove a Lemma.

Lemma 3. Given an arbitraryZ € FCons(Z), let r,s € N be such that all numbers ih are contained in
(—r,+r). For each ke N, if the data word w is of the following form:



Carapelle, Feng, Fernandez Gil, Quaas 181

k+2
W R Po Po .. R Py P
° 3 Str st2r s+(k+1)r do d;

where PC P,d; > s+ (k+2)r, (i > 0), and w is defined by w= wp[1], then Duplicator has a winning
strategy on the gamMGf (Wo, 0,w1,0).

Proof. The proof is by induction ok. Itis trivial whenk = 0. Suppose the statement holdsKpwe must
show that it also holds fdt+ 1, i.e., Duplicator has a winning strategy for the game Mgwo, 0,wy,0).
We give the winning strategy for Duplicator as follows:

e (Wi:Lwg py:1),(I €{0,1}). Then, by induction hypothesis, Duplicator has a winnirrgtey
for the game M@ (wo, 1,ws,1).

e (Wp:i,wi:i—1),(i >2). Then by Lemma]2, Duplicator has a winning strategy for thega
MG%(WO, i,wy,i—1). Moreover, for the second move of Spoiler in this roundwif: j,wp: j+ 1),
(0< j<i—1), by Lemmd2, Duplicator has a winning strategy for the game- G, j +1,wy, j).

e (wp:i,wp:i+1),(i >2). Then by Lemm&l2, Duplicator has a winning strategy for theme@a
MG (Wo,i + 1,wi,i). Moreover, for the second move, (ifig: 1,w; : 1), by induction hypothesis,
Duplicator has a winning strategy for the game f@o, 1, w1, 1). Otherwise, if(wo: j,wy:j —
1),(1< j <i+1), by LemmdR, Duplicator has a winning strategy for the game; i, j, wy, j —
1).

This completes the proof.

Theorem 3. The problem, whether a givefPTL-formula is definable iMTL, is undecidable.

Proof. The recurrent state problem for two-counter machines iséeéfas follows: given a two-counter
machine M, does there exist a computation of M that visitsitit@l instruction infinitely often? Alur
and Henzinger showed that this problemzishard [3]. We reduce the recurrent state problem to the
MTL definability decision problem in the following way: For eaao-counter machine M, we construct
a TPTL-formulayy such thatpy is definable ilMTL iff M is a negative instance of the recurrent state
problem.

We use the fact that for each two-counter machine M therd B BL-formula ¢y which is satisfiable
iff M is a positive instance of the recurrent state probléeth Befine Yy = (X.FFF(x = 0)) A F@p. If
¢wm is unsatisfiable, thegy, is definable by thé/TL-formulaFalse. Otherwise, ifgy is satisfiable, we
will prove thatysy is not definable il TL. We show that for eachi € FCons(Z) andk € N, there is no
formulain MTL% that is equivalent t@y.

For an arbitraryZ € FCons(Z), letr,s € N be such that all numbers ih are contained if—r,+r)
ands> 2r. Supposé > 1. By an exploration of the proof i3] we can find that theradspropositional
variable occurring inpy, and by Lemmal2, if a data word satisfiggg, then the new data word obtained
by adding the same arbitrary value to every data value in tiginal word still satisfiespy;. Hence we
can assume that the data wavaatisfying¢y is of the form:

w

d di do d3 dg ...

whered; > s+ (k+ 1)r for eachi > 0. We define the following two data woreg andw;:



182 Expressiveness of TPTL and MTL overData Words

W,
°S s2r s.r s sir... S+(k=1)r s+kr do dp ...

Wi e - - - - - . -
's s s Str ... st(k=1)r s+kr do di dy ...

Clearly,wp =1pTL Wm andwy FE1p1L Y. To show that there is no formula MTL% that is equiva-
lent to i, we prove that Duplicator has a winning strategy for the gMﬁ%(wo, 0,wy,0). The winning
strategy for Duplicator in the first round is the same as theethat we give in the proof of Lemnia 3. By
Lemmd2 andl3, Duplicator can win the remaining rounds.

SinceMTL = Uﬁ,ﬁCons(Z) MTLE, we know by the argument given above that there is no formmula i
MTL that is equivalent tahy if ¢ is satisfiable.

O

4.3 Effects on the Expressiveness of MTL by Restriction of syactic Resources

We use the EF game fdM TL to show the effects of restricting syntactic resourcelldf-formulas. We
start with restrictions on the class of constraints ocogrin anMTL-formula. For eactm € Z, define
¢" = FpyTrue.

Lemma 4. LetZ;,7; € Cons(Z), for each ne Z, if n € Z; and n— 1,n or n,n+ 1 are not inZ,, then¢"
is definable infMTL™ but not inMTLZ2.

LetZ[n] = {meZ | m<n}uU{—w,+0o}. The expressive power relatien defines a linear order on
the set{ MTLZ" | n e Z} such that ifny < ny, thenMTLZM < MTLEM), We haveM TL = J{MTLZ" |
nezj}.

Proposition 2. (Linear Constraint Hierarchy d¥l1TL)
For each n,n, € Z, if n; < np, thenMTLZM < MTLZM,

In Propositior 2 we show thaf TLZ™ Y s strictly more expressive thai TLZ™. Intuitively, if Z,
is a proper subset df;, one should expect thad TL”* is more powerful thaMTL?2. But in general this
is not true. For exampléyI TLZ with 7, = {—®,0,1,2, 4} has the same expressive poweMiEL 72
whereZ, = 7;\{1}, since we can use 0 and 2 to express constraints that usertstaicbl. It is natural
to ask, forZ € Cons(Z), what is the minimal subsét’ of Z such thaMTLZ = MTLZ. In the following
we give another constraint hierarchy.

Let EVEN be the subset dfons(Z) where only even numbers are in consideration.dveine EVEN
be the set that contains all even numbers. It is easily seghhL®®"= MTL. GivenZ;,Z, € EVEN,
if Zy C 7o, by Lemmd%, we havTLZt < MTL?2. The expressive power relaticq defines a partial
order on the sefMTLZ | Z € EVEN}.

Proposition 3. (Lattice Constraint Hierarchy a¥ITL)
{({MTL” | T € EVEN}, <) constitutes a complete lattice in which

(i) the greatest element MTL®VE",
(i) the least element iMTLI=®+},
and for each nonempty subseCEVEN,
(i) AzesMTLE = MTL zesT,
(iv) VzesMTLE = MTLUzesT,



Carapelle, Feng, Fernandez Gil, Quaas 183

Note that({MTL* | Z € EVEN}, <) is isomorphic to the complete lattic@®(X), C), whereX is a
countable infinite sef?(X) is the powerset oK andC is the containment relation.
Next we show that, as fdiTL [14], there is a strict until hierarchy fovi TL.

Proposition 4. For all k € N, MTLy, 1 is strictly more expressive thaviTLy.
Proof. Define¢[1] = (pAXp) andg[k+ 1] = (pA X¢[k]) for everyk > 1. Note that for eaclk > 1,

¢[K € MTLk. We show that for eaclt € FCons(Z),k > 0, ¢ K+ 1] is not definable itMMTLE. Letr € N
be such that all numbers ihare contained ifi—r, +r). Define two data worde/, andw; as follows:

k+2
o P p p p q q ...
0 r 2r (k+21)r (k+2)r (k+3)r
k+1
w, P p p q q q ...
r 2r (k+2)r (k+2)r (k+3)r (k+4)r

We see thatv =mti ¢ K+ 1] andwy vt ¢[k+1]. By LemmalB and Theorefd 2, there is no
formula in MTLy that is equivalent tap[k+ 1. SinceMTLk = Uzcrcons(z) MTLi, ¢[K+ 1] is not
definable inM T L.

]

As for the MTL definability decision problem, we can show that td Ly definability decision
problem which asks whether the data language defined B Eln . 1-formula is definable iMTLy is
undecidable. As a corollary, we know that whetheMnL-formula is equivalent to aMTLg-formula
is undecidable.

Proposition 5. There exists & N such that for every k m, the problem whether a formufac MTLy 1
is definable ilMTL is undecidable.

5 The Ehrenfeucht-Fraisee Game for TPTL

In PropositiorJL we have proved that there istaraFreezel TL!-formula that is not definable iWTL,
and we concluded thatPTL! is strictly more expressive thaviTL. A natural question is to ask for the
relation betweeTL, UnaTPTL andFreezelLTL. For this, we define the EF game foPTL.

The until rank of a TPTL-formula ¢, denoted byUrk(¢), is defined analogously to that MTL-
formulas in Sec{_2]4; we additionally defibek(x € 1) = 0andUrk(x.¢) = Urk(¢). LetZ € Cons(Z),k >
0,n> 1, we define

TPTLZ = {¢ € TPTL | for each subformula € | of ¢, the endpoints of belong taZ},
TPTL" = {¢ € TPTL | the register variables i are from{xy,...,x,}},

TPTLc={¢ € TPTL|Urk(¢) <k}, TPTLYF =TPTL"NTPTLENTPTL.

Lemma 5. For eachZ € FCons(Z), n > 1 and k> 0, there are only finitely many formulas ‘|fPTLE‘Z
up to equivalence.
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Letwo, w; be two data words, and,i; > 0 be positions invg, w1, respectively, andg, v, be two reg-
ister valuations. We say tha, i, Vo) and(wy, i1, V1) areTPTLE’I—equivalen,t written (Wo, io, Vo) EE’I
(Wl, i1, Vl), if for each formulag € TPTLE'Z, (Wo,io, Vo) ):TPTL ¢ iff (W]_, i1, Vl) ’:TPTL 0.

The k-round TPTL EF game on(wp,io, Vo) and (wy, iy, v1) with respect ton andZ, denoted by
TGE’I(WO, io, Vo, Wx,i1, V1), is played by Spoiler and Duplicator ey andw; starting fromig in wp with
valuationvg andi; in wy with valuationv;.

We say thatig, vo) and (i1, v1) agree in the atomic formulas iPTL™, if (Wo,ig, Vo) E=TprL P iff
(Wy,i1,v1) E=7pTL P for for eachp € P, and(wo, io, Vo) E=rp1L X € | iff (Wy,i1,V1) E1pTL X € | fOr €ACh
formulax €| in TPTL"Z,

Analogously to the EF game foviTL, TGE’I(Wo,io,vo,wl,il,vl) is defined inductively. Ik = 0,
then Spoiler wins if(ig, vo) and (i1, v1) do not agree in the atomic formulas TPTL"Z. Otherwise,
Duplicator wins. Supposke> 0, in the first round,

1. Spoiler wins this round ifig, vo) and (i1,v1) do not agree in the atomic formulas TPTL".
Otherwise, Spoiler chooses a subgdmaybe empty) ofxi,..., %} and sety/ = vj[x:=dj (x €
Y)] for all | € {0,1}. Then Spoiler chooses a wong for somel € {0,1} and a positiori; > i; in
W.

2. Then Duplicator tries to choose a positi'r?p_|> > i(1-1) IN W(1_yy such thati, vg) and (i, vq)
agree in the atomic formulas IRPTL"Z. If Duplicator fails, then Spoiler wins this round.

3. Then, Spoiler has two options: either he chooses to stetvagame T@fl(wo,ig, Vg, Wa,i7,V1);
or

4. Spoiler chooses a positiop_|) < i’(’l_|> < i’(l_|> in w1_1). Then Duplicator tries to respond by
choosing a position < i’ <ij in w; such that(ig, vy) and(i7, vi) agree in the atomic formulas in
TPTL™Z. If Duplicator fails to do so, Spoiler wins this round.

5. If Spoiler cannot win in Step 1, 2 or 4, then Duplicator wihis round. Then Spoiler chooses to
start a new game TG, (Wo, if, v, Wi, i, v}).
If Duplicator has a winning strategy for the game k’ﬁJCQWO,iO, Vo, W1,i1, V1), then we denote it by
(Wo,io, Vo) ~g™ (Wa,i1,V1).
Theorem 4. For eachZ € FCons(Z), n> 1,k > 0, (wo, o, Vo) EE’I (wy,i1, V1) if and only if (wo, io, Vo) NE’
(W17 il> Vl)-

Theorem 5. Let L be a data language. For each € FCons(Z), n> 1 and k> 0, the following are
equivalent:

1. L is not definable inf PTL}™ .

VA

2. There exist we L and w; ¢ L such that(wo,0,0) ~p (wy,0,0).

5.1 More on the Relative Expressiveness of MTL and TPTL

We are going to compane TL with two fragments offPTL, namely the unary fragmebinaTPTL and
the fragmenfreezelL TL. Using the EF game fof PTL we can prove the following results:

Proposition 6. TheMTL-formulaF_;True is not definable irFreezel TL.
Proposition 7. TheMTL-formula (—a)Ub is not definable ifJnaTPTL.
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We remark that for these results, we have to slightly chahgeléfinition of the games to suit to the
fragmentsFreezeL TL andUnaTPTL such that an analogous version of Theokém 4 holds. The preced
propositions yield another interesting result ko L and these two fragments P TL.

Corollary 2. 1. MTL andFreezelL TL are incomparable.
2. MTL andUnaTPTL are incomparable.
3. UnaTPTL andFreezelL TL are incomparable.

Analogously to Theoreim 3, we can prove that fineezelL TL (resp.,UnaTPTL) definability problem
is undecidable.

Proposition 8. The problem, whether a givaPTL-formula is definable ifrreezeL TL (resp.,UnaTPTL),
is undecidable.

5.2 Restricting Resources in TPTL
In the following we prove results on the effects of restrigtisyntactic resources dfPTL-formulas
similar to those foMTL. For eac € Z, we redefingd" = x.F(x = n).

Lemma 6. LetZ;,7, € Cons(Z), for each ne Z, if n € Z; and n— 1,n or n,.n+ 1 are not inZ, then¢"
is definable inTPTL™ but not inTPTLZ2,

Using this lemma we can prove the following two propositions

Proposition 9. (Linear Constraint Hierarchy of PTL)
The expressive power relatiendefines a linear order on the seTPTLZ" | ne Z} such that if B < ny,
thenTPTLEM < TPTLEM | Moreover, if n < ny, thenTPTLEN < TPTLZIN,

Proposition 10. (Lattice Constraint Hierarchy ofPTL)
({TPTL® | T € EVEN}, <) constitutes a complete lattice in which

(i) the greatest element IBPTL®®"(= TPTL),
(ii) the least element iFPTLI=>+*} (= LTL),
and for each nonempty subseCEVEN,
(i) AzesTPTLY = TPTL zesT,
(iv) VzesTPTLE = TPTLUzes?,
In the next proposition we show that the until hierarchy T&TL is strict.
Proposition 11. TPTLy,; is strictly more expressive tharP T Ly.

Proof. Let ¢ [k] (k > 1) be as defined in Propositidn 4 k] is a formula inTPTL,. For everyk > 0.
We can show thatwp,0,0) NE’I (wy,0,0) on the following two data wordsy =rp1. ¢[k+ 1] and

w1 FErpr ¢ [k+1].

k+2
p p p P g g
Wo e . . . . .
0 0 0 0 0
k+1
W, e———o—————————¢——¢——¢—— ¢ ———
0 0 0 0 0 0
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Corollary 3. MTLy1 and TPTLg are incomparable in expressive power.

Proposition 12. There exists n& N such that for every k= m, the problem whether a formulp €
TPTLk.1 is definable inTPTLy is undecidable.

We have seen in the previous chapters TRaT L is strictly more expressive thaviTL. The register
variables play a crucial role in reaching this greater esgiveness. In the following we want to explore
more deeply whether the number of register variables atfowe TPTL formula has an impact on the
expressive power of the logic. We are able to show that thseaesirict increase in expressiveness when
allowing two register variables instead of just one. Théofeing results concern the number of register
variables allowed in @PTL-formula.

Proposition 13. For theUnaTPTL2-formula¢ = x1.F(X1 > 0AX2.F(xg > 0A X2 < 0)) there is no equiv-
alent formula inTPTL™.

Proof. LetZ € FCons(Z) andk > 1. Lets,r € N be such that all elements ihare contained if—r, +r)
ands— kr > 0. One can show thdt, 0,0) ~* (ws,0,0) on the following two data wordsp =rpr. ¢

andwy FErprL ¢.

k+1

W
05 st2r skr S—(K=Dr ... s—r s+r s+3r s+4r s+5r ...

k

Wi's st2r s—kr S—(K=Dr ...s—r s+3r s+4r st+5r s+6r ...

Corollary 4. TPTL? is strictly more expressive tharPTL .

It remains open whether we can generalize this restlit®@L"** and TPTL", wheren > 2, to get a
complete hierarchy for the number of register variables.héfe the following conjecture.

Conijecture 1. For each n> 1, TPTL™1 is strictly more expressive tharPTL".

6 Conclusion and Future Work

In this paper, we consider the expressive poweMdiL and TPTL on non-monotoniav-data words
and introduce EF games for these two logics. We show THAEL is strictly more expressive than
MTL and some other expressiveness results of various syntastitctions. FoiTPTL, we examine the
effects of allowing only a bounded number of register vdeabWe prove thalT PTL? is strictly more
expressive thafPTL?, but it is still open if TPTL™ is strictly more expressive thaRPTL" for all
n> 1 (Conjecture 1). In future work we want to figure out whethare is a decidable characterization
for the set of data domains for whi@PTL andMTL are equally expressive.
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