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The area method is a decision procedure for geometry developed by Chou et al. in the 1990’s. The
method aims to reduce the specified hypothesis to an algebraically verifiable form by applying elim-
ination lemmas. The order in which the lemmas are applied is determined by the stated conjecture
and the underlying geometric construction. In this paper we present our implementation of the area
method for Euclidean geometry as a stand-alone Mathematica package.

1 Introduction

The area method is a semi-algebraic decision procedure for a subset of Euclidean geometry, developed
by Chou, Gao, and Zhang [1]. Its main feature, cited by its authors as an advantage over other decision
procedures for geometry, is that it generates shorter, more human-readable proofs of many theorems
when compared to other methods. This is achieved by carefully keeping track of the construction steps
used when setting up a particular geometric construction and by only allowing conjectures of the form
E1 = E2 where E1 and E2 are arithmetic expressions in geometric quantities. Points occurring in the
conjecture are then “eliminated” in the reverse order of their construction using appropriate Elimination
Lemmas.

The method has been successfully implemented before, and we list the implementations we are aware
of below:

• the first implementation was by Chou, Gao, and Zhang;

• by Ye in Java [2];

• by Julien Narboux in Coq [3];

• by Predrag Janičić and Pedro Quaresma in GCLC [4];

• by Judit Robu in Theorema [5].

These implementations differ in efficiency and various details, especially in the methods they use to deal
with non-degeneracy conditions. Nonetheless, they are all capable of proving many non-trivial geometry
theorems.

2 The Area Method

In this section we give an overview of the main ideas and definitions required by the area method. For
more detailed treatments see [1, 6].
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2.1 Geometric Quantities

In the context of the area method a conjecture is a polynomial equation1 in geometric quantities of points
defined within a construction, or a logical combination of such equations or inequalities. To explain
exactly what this means we must first introduce some primitive notions and definitions. First, there is
the set of points P, which can intuitively be identified with points of the Euclidean plane. Next, there
is a primitive binary function •• : P2→ R, called the signed distance, and a primitive ternary function
S••• : P3 :→ R, called the signed area. Additionally, we introduce the very important Pythagorean dif-
ference function, P••• : P3→ R, defined by the formula Pxyz := xy2 + yz2− xz2. The signed area and
Pythagorean difference functions allow us to reinterpret the usual notions of “parallel” and “perpendic-
ular” lines as follows: AB ‖CD ⇐⇒ SACD = SBCD and AB ⊥CD ⇐⇒ PACD = PBCD. Finally, for
notational convenience, we also define the quaternary signed area Swxyz :=Swxy+Swyz and quaternary
Pythagorean difference Pwxyz := Pwxz−Pyxz. We will talk more about these functions and various
propositions governing their behaviour in Sections 2.3 and 2.4; for now we simply state the following
definition:

Definition 1 A geometric quantity is any one of the following: a ratio of signed distances ab
cd

, subject to
the constraints that cd 6= 0 and the lines through ab and cd are parallel; a signed area Sabc or Sabcd; a
Pythagorean difference Pabc or Pabcd .

The most obvious shortcoming of this definition is that it renders the area method incapable of dealing
with ratios of non-parallel line segments. This turns out not to be much of a problem in practice though.
Given three distinct, non-collinear points a,b,c instead of considering the ill-defined geometric quantity
ab
bc

it is often possible to restate the problem to instead consider the quantity Paba
Pbcb

= ab
2

bc
2 , which is a valid

arithmetic expression in geometric quantities.
With Definition 1 in hand it becomes possible to express many standard predicates of Euclidean

geometry in the language of the area method. See Table 1 for some commonly used examples.

Table 1: Example Euclidean predicates and their area method equivalents
Euclidean property Restated with geometric quantities

Points A and B are identical PABA=0
Points A, B, and C are collinear SABC=0

Line segments AB and CD are parallel PABA 6= 0∧PCDC 6= 0∧SACD=SBCD

Line segments AB and CD are perpendicular PABA 6= 0∧PCDC 6= 0∧PACD=PBCD

2.2 Constructions

In total, there are five Elementary Construction Steps (ECS’s), denoted ECS1, ECS2, ECS3, ECS4, and
ECS5, utilized by the area method. We give a brief description of each of them below. In what follows,
we let (LINE U V ) denote the unique line through the points U and V :

1. construct an unconstrained point Y , denoted ECS1(Y ). This is the only ECS which can be invoked
without first defining any other points, and as such is used to initialize any and all geometric con-
structions. Points introduced by this step are called free points. In practice it is often convenient to
introduce many free points at a time — for this purpose we introduce the notation ECS1(Y1, ...,Yn)
which is to be understood as n consecutive applications of ECS1;

1Our implementation is also capable of dealing with inequalities.
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2. constructs a point Y such that it is the intersection of (LINE U V ) and (LINE P Q), denoted by
ECS2(Y,U,V,P,Q);

3. constructs a point Y such that it is the foot from a given point P to (LINE U V ), denoted ECS3(Y,P,
U,V );

4. constructs a point Y on the line passing through the point W and parallel to (LINE U V ) such that
WY
UV = r, denoted ECS4(Y,W,U,V,r). Note that r can be a real number, a geometric quantity, or a
variable;

5. constructs a point Y on the line passing through the point U and perpendicular to (LINE U V ) such
that 4SUVY = rPUVU , denoted ECS5(Y,U,V,r). Note that r can be a real number, a geometric
quantity, or a variable.

Each ECS introduces exactly one new point to the construction per application. For each 1 ≤ i ≤ l
the points used by the step Ci must already be introduced by some construction steps appearing earlier in
the construction C . The point introduced by step Ci is said to be of order i in C , or simply to have order
i if there is no confusion about which construction is being considered.

For a construction step to be well-defined certain conditions, called non-degeneracy conditions
(ndg’s), may be required2. Some ECS’s also require a parameter to be provided as an argument —
this may be a real number or an unevaluated parameter r. Combined, these steps can be used to repro-
duce a large subset of classical straightedge and compass constructions. In practice we found that the
classical constructions which cannot be recreated are the ones which involve arbitrary intersections of
circles. On the flip side, some non-classical constructions are also possible thanks to the fact that the
parameter r can be any real number. This makes it possible to, for instance, square the circle.

We can now meaningfully state the following definition.

Definition 2 A geometric construction is a finite list C = (C1,C2, ...,Cl) where, for each 1≤ i≤ l, Ci is
an ECS.

2.3 Axioms

The area method implicitly assumes the existence of a base field F, where char (F) 6= 2, together with all
the usual field axioms. In general, this field serves as the domain for the signed distance and signed area
functions. For the purposes of our implementation, and throughout the remainder of this paper, we set
F= R.

The axiomatization we chose is the one described in [6], which itself is a modification of the original
axiomatization proposed by Chou, Gao, and Zhang. It consists of the following universally quantified
axioms:

1. AB = 0 ⇐⇒ A = B

2. SABC = SCAB

3. SABC = -SACB

4. SABC = 0 =⇒ AB + BC = AC

5. ∃A,B,C ∈ Ps.t.SABC 6= 0 (not all points are collinear)

6. SABC = SABD +SADC +SDBC (all points lie in the same plane)

2For a list of all necessary ndg’s see [6].
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7. ∀r ∈ R∃P ∈ Ps.t.SABP = 0 and AP= rAB (there exists a line though any two points)

8. if A 6= B, SABP = 0, AP = rAB, SABP′ = 0andAP′ = rAB then P = P′ (any two points define a
unique line)

9. if PQ ‖CD and PQ
CD

= 1 then DQ ‖ PC

10. if SPAC 6= 0 and SABC = 0 then AB
AC

= SPAB
SPAC

11. if C 6= D and AB⊥CD and EF ⊥CD then AB ‖ EF

12. if A 6= B and AB⊥CD and AB ‖ EF then EF ⊥CD

13. if FA⊥ BC and SFBC = 0 then 4S 2
ABC = AF2BC2 (area of a triangle)

2.4 Lemmas

The various lemmas used by the area method can broadly be divided into three categories: basic propo-
sitions, Elimination Lemmas, and Area Coordinate Lemmas. We give a brief overview of each category
below.

Basic propositions are simple consequences of the axioms described in the previous section. Com-
bined, they guarantee the existence of a canonical form for each possible geometric quantity. This makes
it possible to apply the appropriate Elimination Lemmas to a given conjecture. They are Lemmas 2.1-2.8
of [6].

The Elimination Lemmas are the main workhorses of the area method. Each of the lemmas expresses
a geometric quantity involving a constructed point Y as a rational expression of geometric quantities
not involving Y . See Appendix A for the full statements of these lemmas. By applying them in the
appropriate, i.e. determined by the construction, order they make it possible to eliminate all occurrences
of constructed points from the conjecture. This transforms the conjecture E1 = E2 into an equality of
polynomials E ′1 = E ′2, involving only free points, which in most cases can be algebraically verified. For
a full description of the properties and structure of these lemmas see Section 2.4 of [6].

In some cases the transformed conjecture E ′1 = E ′2 may still contain dependant variables. By artifi-
cially introducing an orthonormal basis into the construction it is possible to further reduce the conjec-
ture by applying the so called Area Coordinate Lemmas. See Appendix A for the full statements of these
lemmas and the Free Points and Area Coordinates Section of [7] for a detailed explanation of how they
work.

2.5 An Example Proof

We finish this section by giving a proof-sketch of the intercept theorem using the area method. We will
also revisit this example in Section 3, after we discuss our implementation in more detail.

Theorem 1 (intercept theorem) Consider 4 distinct lines l,m,n,o such that the lines l,m coincide at a
point S, the lines n,o are parallel, and S /∈ n,o. Let A be intersection of lines l,n, B the intersection of
l,o, C the intersection of m,n, and D the intersection of m,o. Then the following identity holds:

SA
AB

=
SC
CD

. (1)

One possible way to set up this construction proceeds as follows:

• use ECS1 three times to introduce the free points A, B, and C;
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• use ECS4 to construct an arbitrary point D on the line through B and parallel to the line through A
and C;

• use ECS2 to construct the point S as the intersection of the line through A and B with the line
through C and D.

We can write this more formally as:

C1 = (ECS1(A,B,C),ECS4(D,B,A,C,r),ECS2(S,A,B,C,D)) , (2)

where r is an unconstrained, real parameter.
[ Proof sketch.] The point S was the last point added to C1, so it must be the first point eliminated

from Equation 1. Using the appropriate Elimination Lemmas we find that:

SA
AB

=
SACD

SABC−SABD

SC
CD

=
SABC

SACD−SBCD
.

(3)

Substituting this into Equation 1 we find that:

SACD

SABC−SABD
=

SABC

SACD−SBCD
. (4)

Equation 4 is an equality of two rational expressions in the points A,B,C,D — crucially, it no longer
contains the point S. Next, we wish to eliminate all occurrences of the point D. Invoking the appropriate
Elimination Lemmas once more we find the following relations:

SACD =−SABC

SBCD =−rSABC

SABD = rSABC,

(5)

where r is the parameter introduced by ECS4 in 2. Making the substitutions gives:

−SABC

SABC− rSABC
=

SABC

−SABC + rSABC
(6)

and simplifying reduces to the obvious equality 1 = 1, which completes the proof. �
Note that this proof fails if r = 1. In that case the denominators on both sides of Equality 6 are

equal to 0. However, if this were the case, the line through the point A and B would be parallel to the
line through the points C and D, meaning that point S of C1 would be ill-defined, and hence Equation 1
would be ill-posed. The proof fails for a similar reason if SABC = 0, as this would result in a failure of
the geometric construction.

3 The Area Method in Mathematica

Broadly speaking, our implementation consists of two parts:
• the geometric framework, by which we mean both geometric constructions and geometric quanti-

ties;

• the area method algorithm, which includes both the elimination algorithm as well as the area
coordinates algorithm;

Note that in this section we make use of Wolfram Language specific terminology. To avoid ambiguity,
we will capitalize and italicize these terms.
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3.1 The Geometric Framework

3.1.1 Geometric Quantities

The signed distance, signed area, and Pythagorean difference functions are implemented simply as Sym-
bols with no rules for evaluation for general arguments. We found that not evaluating the Pythagorean
difference immediately according to its definition as given in Section 2.1 made it easier to apply certain
Elimination Lemmas. In our experience this had no affect on the method’s ability to prove a theorem.
We only apply the definition of the Pythagorean difference after all possible Elimination Lemmas have
already been applied (but before an optional transition to area coordinates occurs).

3.1.2 Defining Constructions

Our implementation of geometric constructions is very simple — each construction is an Association3,
whose Keys are points introduced by ECS’s and whose Values are Associations storing all the information
about a specific point. For instance, one possible way to specify the construction in Theorem 1 is as
follows:

Input:

ECS2[s,a,b,c,d]@ECS4[d,b,a,c,r]@ECS1[a,b,c]

Output:

<|

a-> <|"ECS"->1,"points"->{},"parameters"->{},"order"->1|>,

b-> <|"ECS"->1,"points"->{},"parameters"->{},"order"->2|>,

c-> <|"ECS"->1,"points"->{},"parameters"->{},"order"->3|>,

d-> <|"ECS"->4,"points"->{b,a,c},"parameters"->{r},"order"->4|>

s-> <|"ECS"->2,"points"->{a,b,c,d},"parameters"->{},"order"->5|>

|>

We have also implemented the construction stating predicates listed at [8].

3.1.3 Stating Conjectures

There are two ways to state a conjecture in our package. One way is to explicitly write down a polynomial
equation in geometric quantities and use it as the input for our prover. A conjecture might look as follows:

SignedArea[x,y,z]-PythagoreanDifference[x,y,z]==0.

Note that prior to specifying a construction there is no way to resolve this conjecture. However, this
input method is not very practical or intuitive to someone not familiar with the area method. To make
it easier to ask geometrically meaningful questions we have implemented some goal-stating predicates,
e.g. collinear, perpendicular, etc.

Our prover also accepts inequalities as input.

3.1.4 Verifying ndg’s

Recall that each ECS (with the exception of ECS1) has some associated ndg’s which must be verified.
Every time a construction is evaluated, we check whether the negation of the specific ndg is a provable

3Associations are symbolically indexed lists.
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theorem (by means of the area method itself) within the appropriate construction. If the negation of
the ndg is not provable we assume the construction to be consistent. This means that, from the point
of view of our prover, provable statements and consistent constructions are only generally provable
statements and generally consistent constructions. Henceforth, whenever we call a statement provable
or a construction consistent we will mean that in the general sense. For a detailed discussion of the
completeness of the method see Section 2.5.8 of [6].

Thus in the provided example we first check whether the statement Paca = 0 is provable in the
construction ECS1[a,b,c]. The points a,b,c are free points and as such they are assumed to be generally
distinct, meaning the statement Paca = 0 is not generally true, and hence the appropriate ndg is satisfied.
Similarly we check if Scab = Sdab is provable in the construction ECS4[d,b,a,c,r]@ECS1[a,b,c]. This
statement is also in general not provable, and so the ndg is assumed to be satisfied. However, care must
be taken: setting the previously unevaluated parameter r in ECS4 to be equal to 1 and evaluating the
construction again would lead to the first contradiction discussed in Section 2.5 and the construction
would not evaluate properly.

In the original formulation of Chou, Gao, and Zhang, ratios of signed distances were only defined
for parallel line segments. In our implementation we make no such restrictions, and a conjecture of the
form:

AB
CD

=
AB
CD

(7)

would be a valid theorem, assuming CD 6= 0 and the points A,B,C,D are all defined, even if the line
segments AB and CD are not parallel. This is because Equation 7 is algebraically verifiable. Instead,
our implementation of the Elimination Lemmas for ratios of signed distances only applies to ratios of
provably parallel line segments.

Typically, the area method also requires one to check additional ndg’s to ensure that the denominators
of ratios of signed distances are non-zero. However, thanks to the symbolic computation capabilities
of the Wolfram Language, any occurrence of a zero in the denominator of any expression results in a
“division by zero” error message and prevents the correct evaluation of our program.

3.1.5 Uniformization and Simplification.

Uniformization and simplification rules are consequences of the basic propositions mentioned in 2.4.
Uniformization of a conjecture E1 = E2 is the process of transforming each geometric quantity occurring
in the equality into its canonical form. The arguments of each function are sorted according to their order
(if no construction is explicitly specified the points will be sorted according to the canonical order of their
names as Wolfram Language Symbols), and an appropriate sign change is applied if necessary to preserve
orientation. We chose to implement this procedure as conditional evaluation rules for our functions, the
condition being that the arguments are not sorted according to their construction order. This ensures that
each geometric quantity is always in the appropriate form for an Elimination Lemma to be applied. It
also ensures that syntactically different expressions describing the same quantity, for example SABC and
SBCA, are provably equal.

Simplification is the process of applying field operations as well as evaluating degenerated geometric
quantities. For the field operations we made do with the Wolfram Language’s built in symbolic com-
putation capabilities. Degenerated geometric quantities are quantities of the type AA, SAAB, PAAB, etc.
They correspond to degenerate line segments and triangles and are all identically equal to zero. This
procedure is also implemented as conditional evaluation rules for the appropriate geometric quantities.



Heimrath 71

It helps reduce the size and complexity of the conjecture E1 = E2 during the elimination process and
ensures that any “division by zero” errors are immediately caught.

3.2 The Area Method Algorithm

The elimination algorithm works by applying appropriate Elimination Lemmas to the conjecture E1 = E2
in an order determined by the construction. After all possible lemmas have been applied, the conjecture
is transformed into a reduced form E ′1 = E ′2. We now have the following scenarios:

1. E ′1 = E ′2 is not expressed solely in terms of geometric quantities of free points. In this case the
conjecture is not a theorem and the algorithm returns the statement E ′1 = E ′2 and terminates;

2. E ′1 = E ′2 is an algebraically provable polynomial equation in free points. In this case the conjecture
is a theorem and the algorithm returns True and terminates;

3. E ′1 = E ′2 is a polynomial equation in free points, but is not algebraically provable. In this case the
area coordinates algorithm is applied to the reduced conjecture.

3.2.1 The Elimination Algorithm

The elimination algorithm works by repeatedly applying the following procedure:
• determine the last non-free point Y occurring in the current conjecture statement;

• try to replace every geometric quantity containing Y with an expression determined by the appro-
priate Elimination Lemma. The geometric quantity containing Y together with the knowledge of
which ECS was used to construct Y are sufficient to determine which Elimination Lemma should
be used;

• Simplify the resulting expression, which becomes the new conjecture statement.
Once this process terminates we are left with a reduced conjecture E ′1 = E ′2. If it is not algebraically
verifiable, we expand all Pythagorean differences appearing in the conjecture according to the definition
Pabc = ab

2
+bc

2−ac2. If after these substitutions the conjecture is still not algebraically verifiable we
pass on to the area coordinates algorithm.

Some Elimination Lemmas have side conditions which alter the expression substituted into the con-
jecture. As was the case with ndg’s, side conditions are also tested using the area method algorithm.
These conditions are always mutually exclusive and exhaustive, so the first condition which can be veri-
fied determines the exact form of the Elimination Lemma.

3.2.2 The Area Coordinates Algorithm

It may be the case that the elimination algorithm successfully reduces the conjecture to an arithmetic
expression using only geometric quantities in free points, but which is not immediately algebraically
verifiable. Heron’s Formula for the area of a triangle is a good example, because the associated conjecture
is stated exclusively in terms of free points. In cases such as these the area coordinate algorithm may be
used to further reduce the conjecture. The first two points introduced into the construction are renamed
O and X and a new point is added via ECS5[Y,O,X,1]. Essentially, this introduces an orthogonal basis
{OX ,OY} into the construction, which W.L.O.G.we can assume to be orthonormal. The Area Coordinate
Lemmas are then applied, reducing the conjecture to an expression in the area coordinates of the free
points w.r.t. the basis. These quantities are independent, making it possible to algebraically prove or
disprove the conjecture.
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Figure 1: A full proof of the existence of the Gauss-Newton line

3.3 Example Proofs in Mathematica

Figure 1 contains a full proof of the existence of the Gauss-Newton line, that is the line containing all
three midpoints of the diagonals of a complete quadrilateral, as generated by our prover.

Figure 2 contains a proof of the triangle inequality. The conjecture is of a form not typically consid-
ered when discussing the area method as it contains square roots4. Despite this we chose to include it to
demonstrate that our prover handles simple inequalities, to illustrate the proof of a theorem which doesn’t
contain any constructed points, and finally due to the triangle inequality’s importance in mathematics in
general.

Finally, Table 2 shows how long it takes to prove some famous geometric theorems. All computations
were run on a fresh Mathematica kernel, on an Intel Core i7-8650U CPU with 8GB of RAM.

4No special adjustments were made to the prover to let it handle square roots.

Figure 2: A proof of the triangle inequality
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Table 2: The time (in ms) it takes to prove some famous geometric theorems.

Theorem Area Coordinates Time (ms)
Ceva’s Theorem no 974.3

Desargues Theorem no 495.1
Euler Line yes 6647.5

Gauss-Newton Line yes 548.9
Heron’s Formula yes 406.4

Intercept Theorem no 425.7
Midpoint Theorem no 199.6
Menelaus’ Theorem no 1143.7

Pappus’s Line Theorem no 583.2
Pythagorean Theorem no 131.7

Triangle Inequality yes 219.7

4 Future Work

We see two ways of further developing the capabilities of this package. The first is to extend our im-
plementation to higher-dimensional or non-euclidean geometries. In principle this would require only
the development of a suitable axiomatization and modification of the elimination lemmas. The second
is to invert the elimination procedure to search for invariants within a specific construction. While this
approach could potentially require much more computational power than the standard area method, it
might lead to the discovery of new theorems or simplify proofs of existing results.

Less “theoretical” directions of future work include integrating this package into existing geometrical
functionality available within the Wolfram Language and improving it’s performance in the Wolfram
cloud. This last item in particular is of note, as it makes it possible for anyone to experiment with the
area method in a browser, without installing a local Wolfram environment or buying a license.

5 Conclusion

In this paper we gave a description of the area method and its implementation as a stand-alone Mathemat-
ica package. We believe this method is particularly well served by the symbolic computation and pattern
matching capabilities of the Wolfram Language — a collection of 20 examples, including theorems of
Desargues, Menelaus, and the existence of the Euler line, is proved in under 20 seconds. We have also
implemented ways of dealing with all possible non-degeneracy conditions, ensuring the correctness of
our results.
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A Elimination Lemmas

Below we provide a list of Elimination Lemmas implemented in our prover. Since the simplification of
degenerate quantities precedes the application of Elimination Lemmas in our implementation we may
assume that the points A,B,C,D are all distinct from the point Y . Recall that G(Y ) denotes a linear
quantity.

Elimination Lemma 1 If Y is introduced by ECS2(Y,U,V,P,Q) then:

AY
CY

=

{
SAPQ
SCPQ

if A is on UV
SAUV
SCUV

otherwise
(8)

AY
CD

=

{
SAPQ
SCPDQ

if A is on UV
SAUV
SCUDV

otherwise
(9)

Elimination Lemma 2 If Y is introduced by ECS3(Y,P,U,V ) then:

AY
CY

=

{
PPUV PPCAV+PPVU PPCAU

PPUV PCVC+PPVU PCUC−PPUV PPVU
if A is on UV

SAUV
SCUV

otherwise
(10)

AY
CD

=

{
PPCAD
PCDC

if A is on UV
SAUV
SCUDV

otherwise
(11)

Elimination Lemma 3 If Y is introduced by ECS4(Y,R,P,Q,r) then:

AY
CY

=


AR
PQ

+r
CR
PQ

+r
if A is on RY

SAPRQ
SCPRQ

otherwise
(12)

AY
CD

=


AR
PQ

+r
CD
PQ

if A is on RY

SAPRQ
SCPDQ

otherwise
(13)

Elimination Lemma 4 If Y is introduced by ECS5(Y,P,Q,r) then:

AY
CY

=

{SAPQ− r
4 PPQP

SCPQ− r
4 PPQP

if A is on PY
PAPQ
PCPQ

otherwise
(14)

AY
CD

=

{SAPQ− r
4 PPQP

SCPDQ
if A is on PY

PAPQ
PCPDQ

otherwise
(15)

Elimination Lemma 5 If Y is introduced by ECS2(Y,U,V,P,Q) then:

G(Y ) =
SUPQG(V )−SV PQG(U)

SUPV Q
(16)
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Elimination Lemma 6 If Y is introduced by ECS3(Y,P,U,V ) then:

G(Y ) =
PPUV G(V )+PPVU G(U)

PUVU
(17)

Elimination Lemma 7 If Y is introduced by ECS4(Y,W,U,V,r) then:

G(Y ) = G(W )+ r(G(V )−G(U)) (18)

Elimination Lemma 8 If Y is introduced by ECS5(Y,P,Q,r) then:

SABY = SABP−
r
4
PPAQB (19)

Elimination Lemma 9 If Y is introduced by ECS5(Y,P,Q,r) then:

PABY = PABP−4rSPAQB (20)

Elimination Lemma 10 If Y is introduced by ECS2(Y,U,V,P,Q) then:

PAY B =
SUPQ

SUPV Q
G(V )+

SV PQ

SUPV Q
G(U)−SUPQSV PQPUVU

S 2
UPV Q

(21)

Elimination Lemma 11 If Y is introduced by ECS3(Y,P,U,V ) then:

PAY B =
PPUV

PUVU
G(V )+

PPVU

PUVU
G(U)−PPUV PPVU

PUVU
(22)

Elimination Lemma 12 If Y is introduced by ECS4(Y,W,U,V,r) then:

PAY B = PAWB + r(PAV B−PAUB +2PWUV )− r(1− r)PUVU (23)

Elimination Lemma 13 If Y is introduced by ECS5(Y,P,Q,r) then:

PAY B = PAPB + r2PPQP−4r(SAPQ +SBPQ) (24)

The final three lemmas are applied only if the use of area coordinates is necessary and requested
by the user and if the conjecture has been reduced to an expression involving only free points. In what
follows the points O,X ,Y are as discussed in Section 3.2.2.

Area Coordinate Lemma 1 Let A, B, C be any free points, then:

SABC =
(SOY B−SOYC)SOXA +(SOYC−SOYA)SOXB +(SOYA−SOY B)SOXC

SOXY
(25)

Area Coordinate Lemma 2 Let A, B, C be any free points, then:

AB2
=

OX2
(SOYA−SOY B)

2 +OY 2
(SOXA−SOXB)

2

S 2
OXY

(26)

Area Coordinate Lemma 3
S 2

OXY =
1
4

(27)



76 The Area Method in the Wolfram Language

References
[1] Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific, Singapore, 1994.
[2] JGEX https://github.com/yezheng1981/Java-Geometry-Expert/blob/master/gprover/Area.

java

[3] Narboux, J.: A Decision Procedure for Geometry in Coq. In: S. Konrad, B. Annett, G. Ganesh (eds.)
Proceedings of TPHOLs’2004, Lecture Notes in Computer Science, vol. 3223. Springer-Verlag, 2004.
doi:10.1007/978-3-540-30142-4 17

[4] Janičić, P., Quaresma, P.: System Description: GCLCprover + GeoThms. In: F. Ulrich, S. Natarajan (eds.)
Automated Reasoning, Lecture Notes in Artificial Intelligence, vol. 4130, pp. 145–150. Springer-Verlag, 2006.
doi:10.1007/11814771 13

[5] Robu, J.: Geometry theorem proving in the frame of the Theorema project. Ph.D. thesis, Johannes Kepler
Universitat, Linz, 2002.
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