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In this paper, we prove a geometrical inequality which states that for any four points on a hemisphere
with the unit radius, the largest sum of distances between the points is 4+4

√
2. In our method, we

have constructed a rectangular neighborhood of the local maximum point in the feasible set, which
size is explicitly determined, and proved that (1): the objective function is bounded by a quadratic
polynomial which takes the local maximum point as the unique critical point in the neighborhood,
and (2): the rest part of the feasible set can be partitioned into a finite union of a large number of
very small cubes so that on each small cube the conjecture can be verified by estimating the objective
function with exact numerical computation.

1 Introduction

Assume that four points are placed on the hemisphere of the unit radius:

S2
≥0 := {(x,y,z)|x2 + y2 + z2 = 1,z≥ 0},

we want to find the largest value of the sum of distances between them. A similar problem for maximizing
the sum of distances between n points on the unit sphere has been studied by many people in past (see
[1], [2], and [3] for example), where we can see that the problem for four points is very easy and for
n ≥ 5 it becomes very difficult. To our knowledge, the question for points on hemispheres seems not
settled yet in the literature.

As we will prove in Lemma 1, if the sum of distances between four points is maximal, then the
center of the sphere must lie in the interior or on one of the surfaces of the tetrahedron formed by the
four points, which immediately implies that, as shown in Fig. 1, at least three of the four points must lie
on the equator of the hemisphere:

S1 := {(x,y,0)|x2 + y2 = 1}.

In the beginning, we guessed that the optimal configuration is formed by three vertices of an equilateral
triangle inscribed in the equator with the fourth point at the North Pole, so the largest sum is equal to
3
√

3+ 3
√

2 ≈ 9.43879311 · · · . Soon we found that 3
√

3+ 3
√

2 is not the maximal, since if we put all
four points on the equator in a regular square form, then the sum of distances is:

4
√

2+4 = 9.65685424 · · ·> 3
√

3+3
√

2≈ 9.43879311 · · · .
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Figure 1: Four points on a hemisphere, three of them on the equator.

Indeed, it is easy to see that if A,B,C are arbitrary points on the equator and the point D ∈ S2
≥0 is located

very close to the North Pole N, namely, if the distance d(D,N) = DN ≤ 0.07268, then we have

(AB+BC+CA)+AD+BD+CD≤ 3
√

3+(AN +DN)+(BN +DN)

+(CN +DN)≤ 3
√

3+3
√

2+3×0.07268≤ 9.4388+0.21804 < 9.65685,

and therefore, {A,B,C,D} is not the optimal configuration.
Considering that the optimal configuration is invariant under the rotation around the z-axis, we can

express the optimal problem to a non-linear programming as follows:

max f := ∑
0≤i< j≤3

√
(xi− x j)2 +(yi− y j)2 +(zi− z j)2, (1)

s.t. x2
i + y2

i + z2
i = 1, i = 0,1,2,3,

x0 = 0,y0 =−1,z0 = z1 = z2 = 0, z3 ≥ 0.

We may try to solve this problem by using the Lagrangian multiplier method and symbolic computer
algebra. It is easy to prove that

A := (0,−1,0), B := (1,0,0), C := (−1,0,0), D := (0,1,0)

form a local optimal solution of Problem (1), but it is hard to prove that it is also a global maximum. The
attempt for proving that (A,B,C,D) is the unique critical point of f : (S1)2×S2

≥0→ R was not successful
since too large objects occurred in the elimination process. We have also applied several numerical
algorithms to search the optimal configuration and found from experiments that 4

√
2+4 seems to be the

real global maximum. In this paper, we devote ourselves to construct a proof of this fact by combining
numerical and symbolic computation. Our strategy is as follows. In the first stage (the numerical global
search stage) we prove that
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Theorem 1. If A,B,C ∈ S1 and D ∈ S2
≥0 form an optimal configuration for Problem (1), then, up to a

rotation of hemisphere around the z-axis, we have

A = (0,−1,0), B ∈U, C ∈V, D ∈W

where

U := {(x,y,0)|1−δ1 < x≤ 1, −δ2 < y < δ2} (2)

V := {(x,y,0)|−1≤ x <−1+δ1, −δ2 < y < δ2} (3)

W := {(x,y,z)|−δ2 < x < δ2, 1−δ1 < y≤ 1, 0≤ z < δ2} (4)

and δ1 = 1/32,δ2 = 1/4.

In this stage, we divide the set of the feasible points of Problem (1), namely, (S1)
2× S2

≥0 \ (U ×V ×
W ), into a disjoint union of finitely many small cubes and check the conjecture on each cube through
estimating the upper bound of the objective function on that cube with exact numerical computation
of computer algebra software like MAPLE, throw away those cubes where the conjecture is proved,
and do branch-and-bound process recursively on the remained cubes. According to the Borel-Lebesgue
covering theorem and the continuity of the objective function, this process will be terminated in finitely
many rounds if the strict inequality f < 4

√
2+4 is actually true on the consideration set.

In the second stage (the local critical analysis stage), we use symbolic computation to prove the
following inequality:

Theorem 2. If U,V,W are defined in Theorem 1. Then for any B ∈ U,C ∈ V,D ∈W, the following
inequality is valid:

AB+BC+CA+DA+DB+DC ≤ 4+4
√

2.

In this stage, we first verify that A = (0,−1,0), B = (1,0,0),C = (−1,0,0),D = (0,1,0) constitute a
critical point of f , and the objective function can be expressed in the form

f (A,B,C,D) = 4
√

2+4+
1

Q(s, t,u,v)

(
X ·H ·XT +h.o.t.

)
,

where (s, t,u,v) ∈ R4 are determined by

B = (
1− s2

1+ s2 ,
2s

1+ s2 ,0), C = (−1− t2

1+ t2 ,
2t

1+ t2 ,0),

and

D = (
2u

1+u2 ,
1− v2

1+ v2 , z3) ∈ S2
≥0,

Q(s, t,u,v) is a positive definite polynomial, H is a negative semi-definite 4× 4 symmetric matrix, and
h.o.t. stands for higher order terms of polynomials, then construct a symmetric matrix M, in a mechanical
way, so that

−XMXT ≤ h.o.t.≤ XMXT ,

and H +ρ ·M is negative semi-definite when (s, t,u,v) satisfies that (B,C,D) ∈U ×V ×W , and −1 ≤
ρ ≤ 1.

Certainly, by combining Theorem 1 and Theorem 2 together, we get a complete solution to Problem
(1). It is also clear that if we can construct larger neighborhoods in the local critical analysis stage,
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then the computation will be reduced significantly in the global numerical search stage, since f (X) is
changing very slowly when X approaches critical points. The first work to use this two-stage method for
proving geometric inequality can be traced to 1988 when Jingzhong Zhang of Chengdu Branch of the
Chinese Academy of Sciences gave a machine proof (unpublished) on a Sharp PC-1500 pocket computer
to a geometric inequality of Zirakzadeh [4], which says that given a triangle ABC, any points P,Q,R on
the boundary of ABC which divide the perimeter of ABC into three equal lengths satisfy PQ+QR+RP≥
(AB+BC+CA)/2. A detailed explanation of Zhang’s method is given in [5]. Related to the automated
deduction in the local critical analysis stage, a general construction method for computing the size of the
locally optimal regions of multivariable homogeneous polynomials is presented in [6]. Notice also that
in [7] Hou et al. reported a solution for maximizing the distance sum between five points on the unit
sphere essentially using the two-stage method.

For the sake of page limitation, we will concentrate mainly to make an explanation to the local
critical analysis (stage 2) for Problem (1) in this paper. The paper is organized as follows. In Section 2
we transform Problem (1) to an equivalent non-linear optimization problem which has relatively simple
objective function f : (S1)2×D2 → R. In Section 3 we prove a stronger version of Theorem 2. In
Section 4 we concisely describe the process of global numerical search for proving Theorem 1.

2 Prelimnaries

Lemma 1. If A,B,C,D are four points on the upper hemisphere S2
≥0 such that the sum of distances

between them is maximal, then the sphere center O is contained in the interior of ABCD or lies on one
surface of ABCD.

Proof. It is easy to see that the convex hull of any four points on a sphere is either a tetrahedron or a
planar (convex) quadrilateral, and in the latter case, if the sum of distances between them is maximal,
then they are all on the equator and O is contained in the interior of the quadrilateral.

Now we assume that the convex of A,B,C,D is a tetrahedron and that the center of the sphere O
lies in the outside of ABCD, then, without loss of generality, we can assume further that D and O lie at
different sides of the plane ABC. Let r be the radius of the circumcircle of the triangle ABC, O′ the center
of the circle.

If r < 1, then the plane determined by A,B,C cuts the unit sphere into two spherical caps, whereas
D lies on the smaller one (denoted by KD), and O lies in the interior of the convex hull of the larger one
(denoted by KO). Construct the sphere S′2 with center at O′ and radius r. Then A,B,C are on a great
circle on S′2 and the plane ABC cuts S′2 into two hemispheres. Let S′2≥0 be the hemisphere of S′2 which
lies in the same side of the plane ABC with D. Then, KD is contained in the interior of S′2≥0 and D is
contained in the interior of the convex hull of S′2≥0. Let D′ be the point on S′2≥0 so that D′D⊥ ABC. Then
it is easy to see that

AD < AD′,BD < BD′,CD <CD′,
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and therefore,

AB+BC+CA+AD+BD+CD < AB+BC+CA+AD′+BD′+CD′

≤ max
P′∈S′2≥0

(AB+BC+CA+AP′+BP′+CP′)

≤ max
A1,B1,C1,D1∈S′2≥0

(A1B1 +B1C1 +C1A1 +A1D1 +B1D1 +C1D2)

= r · (AB+AC+AD+BC+CD+DB),

which is impossible since r < 1.
If r = 1 and O is neither in the interior of ABCD and nor in the triangle ABC and its edges, then

A,B,C are on the equator of S2
≥0. Without loss of generality, we may assume that A,O lie on different

sides of line BC. Let r2 be the radius of the circumcircle of the triangle BCD, O′′ the center of the circle.
Construct the sphere S′′2 with center at O′′ and radius r2 < 1. Then the plane BCD cuts S′′2 into two
hemispheres. Let S′′2≥0 be the hemisphere that lies on the same side of the plane BCD with A. Then A is
contained in the interior of S′′2≥0. Let A′ ∈ S′′2≥0 be the point satisfying A′A⊥ BCD. Then we will have

AB+BC+CA+AD+BD+CD < A′B+BC+CA′+A′D+BD+CD

≤r2(AB+BC+CA+AD+BD+CD),

which is also impossible since r2 < 1.
Finally we proved that if A,B,C,D ∈ S2

≥0 form an optimal solution of Problem (1), then A,B,C are
on the equator of the hemisphere, and O is in the interior or edges of ABC, up to a permutation of the
four points.

According to Lemma 1, we may assume that A=(x0,y0,0)= (0,−1,0), B=(x1,y1,0),C =(x2,y2,0)∈
S1 and D = (x3,y3,z3) ∈ S2

≥0 and search the maximal sum of the distances between the four points. It is
clear that for any two points P = (x,y,z),Q = (x′,y′,z′) ∈ S2 with z · z′ = 0, we have

PQ = d(P,Q) =
√
(x− x′)2 +(y− y′)2 +(z− z′)2 =

√
2 · (1− xx′− yy′).

Define the “warp distance” between two points P1 = (x,y),Q1 = (x′,y′) in the unit disk D2 as follows:

δ (P1,Q1) :=
√

2−2xx′−2yy′.

Let
()1 : R3→ R2, (x,y,z) 7→ (x,y), (5)

be the z-projection. Then for A,B,C on the equator and D on the hemisphere S2
≥0, we have

d(P,Q) = δ (P1,Q1)

for P,Q ∈ {A,B,C,D}. Thus, we can transform Problem (1) into the following optimization problem on
S1×S1×D2:

max δ (A1,B1)+δ (B1,C1)+δ (C1,A1)+δ (A1,D1)+δ (B1,D1)+δ (C1,D1),

s.t. A1 = (0,−1),B1 = (x1,y1),C1 = (x2,y2) ∈ S1 := {(x,y)|x2 + y2 = 1},
D1 = (x3,y3) ∈ D2 = {(x,y) | x2 + y2 ≤ 1}. (6)

It is clear that {A,B,C,D} is an optimal configuration of Problem (1) if and only if {A1,B1,C1,D1}
is an optimal configuration of Problem (6). We will prove the following result:
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Theorem 3. If A1 = (0,−1) and B1 = (x1,y1),C1 = (x2,y2),D1 = (x3,y3) ∈ [−1,1]× [−1,1] satisfy the
following conditions:

(i) x2
1 + y2

1 = 1, |x1−1| ≤ 1/25, |y1| ≤ 7/25,

(ii) x2
2 + y2

2 = 1, |x2 +1| ≤ 1/25, |y2| ≤ 7/25,

(iii) |x3| ≤ 7/25, |y3−1| ≤ 1/25,

(iv) the triangle ABC contains O = (0,0) in its inside or edges,

then
δ (A1,B1)+δ (B1,C1)+δ (C1,D1)+δ (A1,D1)+δ (B1,D1)+δ (C1,D1)≤ 4+4

√
2,

and the equality holds if and only if B1 = (1,0),C1 = (−1,0),D1 = (0,1).

This result is stronger than Theorem 2, since if A = (0,−1,0), and

B ∈ [
31
32

,1]× [−1
4
,
1
4
],C ∈ [−1,−31

32
]× [−1

4
,
1
4
],D ∈ [−1

4
,
1
4
]× [

31
32

,1]× [0,
1
4
],

then their z-projections A1,B1,C1,D1 satisfy the conditions (i), (ii) and (iii) in Theorem 3. To prove The-
orem 3 we first setup a parametric representation for the coordinates of points B1,C1,D1 in Problem (6).
Notice that the property O ∈ ABC in Lemma 1 implies that x1x2 < 0 so we may assume that

x1 =
1− s2

1+ s2 , y1 =
2s

1+ s2 , x2 =−
1− t2

1+ t2 , y2 =
2t

1+ t2 ,

for −1≤ s, t ≤ 1, and since the optimal configuration A,B,C,D satisfies

AD+BD+CD≥ 4+4
√

2− (AB+BC+CA)≥ 4+4
√

2−3
√

3 > 3
√

2,

so without loss of generality, we may take A = (0,−1,0) such that

AD =
√

2+2y3 = max{AD,BD,CD}>
√

2,

and therefore y3 > 0, and we assumed that

x3 =
2u

1+u2 , y3 =
1− v2

1+ v2 ,

for −1≤ u≤ 1 and 0≤ u≤ 1. Furthermore, the condition (x3,y3) ∈ D2 together with v≥ 0 implies that
−v≤ u≤ v. Thus, the constraint conditions of Problem (6) can be expressed as

B1 = (
1− s2

1+ s2 ,
2s

1+ s2 ),C1 = (−1− t2

1+ t2 ,
2t

1+ t2 ),D1 = (
2u

1+u2 ,
1− v2

1+ v2 ),

−1≤ s, t,u≤ 1,0≤ v≤ 1,−v≤ u≤ v.

We also need the following two lemmas in the proof of Theorem 3.

Lemma 2. For −1≤ x≤ 1,
√

1− x≤ 1− 1
2

x− 1
8

x2− 1
16

x3.
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Proof. (
1− 1

2
x− 1

8
x2− 1

16
x3
)2

− (1− x) =
x4
(
x2 +4x+20

)
256

> 0.

Lemma 3. If x1,x2, · · · ,xn are positive real numbers such that x1,x2, · · · ,xn ≤ r, then

xd1
1 xd2

2 · · ·x
dn
n ≤

rN−2

N

(
x2

1 ·d1 + x2
2 ·d2 + · · ·+ x2

n ·dn
)
, (7)

where N = d1 +d2 + · · ·+dn.

Proof. Let y1,y2, · · · ,yN be a permutation of the following N = d1 +d2 + · · ·+dN numbers

d1︷ ︸︸ ︷
x1, · · · ,x1,

d2︷ ︸︸ ︷
x2, · · · ,x2, · · · ,

dn︷ ︸︸ ︷
xn, · · · ,xn,

then 0 < y1,y2, · · · ,yN ≤ r and

xd1
1 xd2

2 · · ·x
dn
n = y1y2 · · ·yN ≤

1
N(N−1) ∑

1≤i< j<N
2yiy j · rN−2

=
rN−2

N(N−1)
(
(y1 + y2 + · · ·+ yN)

2− (y2
1 + y2

2 + · · ·+ y2
N)
)

=
rN−2

N(N−1)
(
(d1x1 +d2x2 +dnxn)

2− (d1x2
1 +d2x2

2 + · · ·+dnx2
n)
)

=
rN−2

N(N−1)

(
n

∑
k=1

(d2
k −dk)x2

k + 2 ∑
1≤i< j≤n

did j · xix j

)

≤ rN−2

N(N−1)

(
n

∑
k=1

(d2
k −dk)x2

k + ∑
1≤i< j≤n

did j(x2
i + x2

j)

)
.

Now we compute
S = ∑

1≤i< j≤n
did j(x2

i + x2
j)

as follows.

2S = ∑
1≤i, j≤n

did j(x2
i + x2

j)−
n

∑
k=1

d2
k (x

2
k + x2

k)

=
n

∑
i=1

[
dix2

i (
n

∑
j=1

d j)
]
+

n

∑
j=1

[
(

n

∑
i=1

di)d jx2
j

]
−2

n

∑
k=1

[
d2

k x2
k
]

= 2N
n

∑
i=1

dix2
i −2

n

∑
k=1

d2
k x2

k .

Therefore,

xd1
1 xd2

2 · · ·x
dn
n ≤

rN−2

N(N−1)
·(N−1)

n

∑
k=1

dkx2
k =

rN−2

N
(d1x2

1 +d2x2
2 + · · ·+dnx2

n),

as claimed.
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3 Automated Local Critical Analysis

Now we give the proof of Theorem 3.

Proof. For simplicity we drop the subscripts of A1,B1,C1,D1. Assume that

B = (x1,y1) = (
1− s2

1+ s2 ,
2s

1+ s2 ), C = (x2,y2) = (−1− t2

1+ t2 ,
2t

1+ t2 ),

and

D = (x3,y3) = (
2u

1+u2 ,
1− v2

1+ v2 ).

Then, the conditions (i), (ii), (iii) in Theorem 3 can be transformed into

−1/7≤ s, t,u,v≤ 1/7,

and the condition (iv) that O = (0,0) is in the inside (or on the edges) of ABC can be represented by that
the oriented area of ABC is positive,

1
2
det


0 0 1

−s2+1
s2+1

2s
s2+1 1

−−t2+1
t2+1

2 t
t2+1 1

=
(s+ t)(1− st)
(t2 +1)(s2 +1)

≥ 0, i.e., s+ t ≥ 0. (8)

Applying Lemma 2, we have

δ (A,B) =

√
2+

4s
s2 +1

≤
√

2+

√
2s

s2 +1
−

√
2s2

2 (s2 +1)2 +

√
2s3

2 (s2 +1)3 , (9)

δ (A,C) =

√
2+

4 t
t2 +1

≤
√

2+

√
2t

t2 +1
−

√
2t2

2 (t2 +1)2 +

√
2t3

2 (t2 +1)3 , (10)

δ (A,D) =

√
2+2

−v2 +1
v2 +1

≤ 2− v2

v2 +1
− v4

4 (v2 +1)2 −
v6

8 (v2 +1)3 , (11)

δ (B,C) =

√
2+2

(−t2 +1)(−s2 +1)
(t2 +1)(s2 +1)

− 8st
(t2 +1)(s2 +1)

= 2

√
1− s2 + t2

(t2 +1)(s2 +1)
− 2st

(t2 +1)(s2 +1)

≤ 2− s2 +2st + t2

(t2 +1)(s2 +1)
−

(
s2 +2st + t2

)2

4 (t2 +1)2 (s2 +1)2−
(
s2 +2st + t2

)3

8 (t2 +1)3 (s2 +1)3 , (12)
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δ (D,B) =

√
2+4

(−s2 +1)u
(s2 +1)(u2 +1)

−4
s(−v2 +1)

(s2 +1)(v2 +1)

≤
√

2−
√

2
(
s2uv2− su2v2 + s2u+ su2− sv2−uv2 + s−u

)
(s2 +1)(u2 +1)(v2 +1)

−1/2

√
2
(
s2uv2− su2v2 + s2u+ su2− sv2−uv2 + s−u

)2

(s2 +1)2 (u2 +1)2 (v2 +1)2

−1/2

√
2
(
s2uv2− su2v2 + s2u+ su2− sv2−uv2 + s−u

)3

(s2 +1)3 (u2 +1)3 (v2 +1)3 , (13)

δ (C,D) =

√
2−4

(−t2 +1)u
(t2 +1)(u2 +1)

−4
t (−v2 +1)

(t2 +1)(v2 +1)

≤
√

2+

√
2
(
t2uv2 + tu2v2 + t2u− tu2 + tv2−uv2− t−u

)
(t2 +1)(u2 +1)(v2 +1)

−1/2

√
2
(
t2uv2 + tu2v2 + t2u− tu2 + tv2−uv2− t−u

)2

(t2 +1)2 (u2 +1)2 (v2 +1)2

+1/2

√
2
(
t2uv2 + tu2v2 + t2u− tu2 + tv2−uv2− t−u

)3

(t2 +1)3 (u2 +1)3 (v2 +1)3 . (14)

Summer up the right sides of (9) to (14), we have

δ (A,B)+δ (A,C)+δ (A,D)+δ (B,C)+δ (C,D)+δ (D,B)

≤4+4
√

2+
J(s, t,u,v)

8 (t2 +1)3 (s2 +1)3 (v2 +1)3 (u2 +1)3 ,

where J(s, t,u,v) is a polynomial of s, t,u,v with 1288 monomials, and the lowerest and higher degree
of the monomials are 2 and 24, respectively. Let H j be the homogeneous terms of degree j. To prove
Theorem 3, we need to verify that J(s, t,u,v) ≤ 0 for all s, t,u,v ∈ [−1/7,1/7] with extra condition
s+ t ≥ 0.

The the expanded form of H2,H3,H4 has 9,20,28 terms, respectively,

H2 =−8(
√

2+1)s2−16st−8(
√

2+1)t2 +8
√

2su−8
√

2tu−8
√

2u2−8v2, (15)

H3 =−4
√

2
(
su− tu+3u2−4v2)(s+ t) , (16)

H4 =−18v4−8
√

2s4−8
√

2t4−8
√

2u4−48
√

2s2t2−32
√

2s2u2−8
√

2s2v2

+16
√

2su3−32
√

2t2u2−8
√

2t2v2−16
√

2tu3−24
√

2u2v2−44s2t2

−24s2u2−48s2v2−24 t2u2−48 t2v2−24u2v2−40s3t−40st3

−48stu2−48stv2−24
√

2s2tu+24
√

2st2u+8
√

2suv2

−8
√

2tuv2−18s4−18 t4. (17)
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The number of monomials in H5,H6, · · · ,H24 are listed as follows:

20,59,44,101,70,134,88,145,90,133,74,100,50,59,26,29,10,10,2,1,

and
H23 = 16

√
2s6t5u6v6 +16

√
2s5t6u6v6, H24 =−11s6t6u6v6.

Let H := H5 +H6 + · · ·+H24. Let

s′ = abs(s), t ′ = abs(t), u′ = abs(u),v′ = abs(v),

be the absolute values and the transformation

T : R[s, t,u,v]−→ R[s′, t ′,u′,v′]

be defined by
T
(
∑ad1,d2,d3,d4sd1td2ud3vd4

)
= ∑bd1,d2,d3,d4s′d1t ′d2u′d3v′d4 ,

where

bd1,d2,d3,d4 =

{
0, if all d1,d2,d3,d4 are even integers, and ad1,d2,d3,d4 < 0,

abs(ad1,d2,d3,d4), otherwise.

Then
J(s, t,u,v)≤ H2 +H3 +H4 +TH(s′, t ′,u′,v′), (18)

here
TH(s′, t ′,u′,v′) = T (H5)+ · · ·+T (H24)

has 797 monomials, in which T (H24) = 0, and T (Hd) (d = 5,6, · · · ,23) has

20,24,44,42,70,57,88,64,90,57,74,42,50,24,26,10,10,3,2,

monomials, respectively. It is clear that for odd d, T (Hd) and Hd have the equal number of monomials,
and for even d, the number of monomials in T (Hd) might have less than that in Hd .

Now variables (s′, t ′,u′,v′) and coefficients of polynomials T (Hd) for (d = 5,6, · · · ,23) are all pos-
itive. We use the following transformation to map them to quadratic polynomials. For each d, we define
a transformation over homogeneous polynomials of degree d to a quadratic polynomial of s, t,u,v as
follows:

Sd

(
∑

d1+d2+d3+d4=d
bd1,d2,d3,d4s′d1t ′d2u′d3v′d4

)

= ∑bd1,d2,d3,d4

rd−2
0
12

(
(s ·d′1)2 +(t ·d′2)2 +(u ·d′3)2 +(v ·d′4)2) .

Here, we take r0 = 1/7, and

d′1 = 4d2
1 −d1, d′2 = 4d2

2 −d2, d′3 = 4d2
3 −d3, d′4 = 4d2

4 −d4,

Since we assumed that −1≤ s, t,u,v≤ r0 = 1/7, so s′, t ′,u′,v′ ∈ [0,1/7], and the inequality

s′d1t ′d2u′d3v′d4 ≤
rd−2

0
4×3

·
(
(d′1s′)2 +(d′2t ′)2 +(d′3u′)2 +(d′4v′)2)

≤
rd−2

0
12
·
(
(s ·d′1)2 +(t ·d′2)2 +(u ·d′3)2 +(v ·d′4)2)
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is valid for all d ≥ 2, according to Lemma 3. Therefore, we have following inequalities:

T (Hd)(s′, t ′,u′,v′)≤Sd(T (Hd)), d = 5, · · · ,23,

and
T (H)(s′, t ′,u′,v′)≤ ∑

d=5,··· ,23
Sd(T (Hd)) := res5.

The computation of res5 is as follows:

res5=
2223743956730603493021422s2

2198957644322995555530531
+

351460055057882361271126u2

377598787408999236808273

+
39371575001649787465938178v2

37382279953490924444019027
+

2223743956730603493021422 t2

2198957644322995555530531
= 1.01127 . . .s2 +0.93077 . . .u2 +1.05321 . . .v2 +1.01127 . . . t2.

≤ 10
9

s2 +
10
9

t2 +u2 +
10
9

v2.

Here the equality holds if and only if s = t = u = v = 0. Thus, the inequality (18) implies that

J(s, t,u,v)≤ H2 +H3 +H4 +

(
5
4

s2 +
5
4

t2 +u2 +
5
4

v2
)
. (19)

Notice that from (15), (16) and (17), we have

H2 =−8v2 + k20(s, t,u),

H3 =16
√

2(s+ t)v2 + k30(s, t,u),

H4 =−18v4 + k42(s, t,u)v2 + k40(s, t,u),

where k20,k30,k42,k40 are polynimials of s, t,u, and

k42 =−8
√

2s2 +8
√

2su−8
√

2t2−8
√

2tu−24
√

2u2−48s2−48st−48 t2−24u2.

Let k22 =−8,k32 = 16
√

2s+ t and

K2(s, t,u) := k22 + k32 + k42 +
5
4
.

Then K2 is a polynomial of s, t,u of degree 2, and

∂K2

∂ s
=−16

√
2s−96s−48 t +8

√
2u+16

√
2,

∂K2

∂ t
=−96 t−48s−8

√
2u−16

√
2t +16

√
2,

∂K2

∂u
=−48u+8

√
2s−8

√
2t−48

√
2u.

so its critical point is (
− 2

79
+

9
√

2
79

,− 2
79

+
9
√

2
79

,0

)
,
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which is outside cube [−1/7,1/7]× [−1/7,1/7]× [−1/7,1/7], which means that K2(s, t,u) has no local
maximal or minimal point inside the cube. It is also verified that K(0,0,0) = −62/9, and on each face
of this cube, K(s, t,u) is also negative, therefore, we have

K2(s, t,u)< 0,

for all s, t,u ∈ [−1/7,1/7]. Therefore, we have the following inequality.

J(s, t,u,v)≤−18v4 +K2(s, t,u)v2 + k20 + k30 + k40 +

(
5
4

s2 +
5
4

t2 +u2
)

≤ k20 + k30 + k40 +

(
5
4

s2 +
5
4

t2 +u2
)
, (20)

here

k20 =−8
√

2s2−8
√

2t2−8
√

2u2 +8
√

2su−8
√

2tu−16st−8 t2−8s2,

k30 =−12
√

2(s+ t)u2 +4
√

2
(
−s2 + t2)u,

k40 =−8
√

2s4−8
√

2t4−8
√

2u4−48
√

2s2t2−32
√

2s2u2−32
√

2t2u2

−24s2u2−24 t2u2−44s2t2−18s4−18 t4

+16
√

2su3−16
√

2tu3−40s3t−40st3

−48stu2−24
√

2s2tu+24
√

2st2u.

Applying Lemma 3 we can get the following inequality for k30.

k30 ≤ 4
√

2
(
−s2 + t2)u≤ 4

√
2s′2u′+4

√
2t ′2u′

≤ 4
3

√
2(s′ · s′u′+ s′ · s′u′+u′ · s′s′)+ 4

3

√
2(t ′ · t ′u′+ t ′ · t ′u′+u′ · t ′t ′)

≤ 4
21

√
2(s′u′+ s′u′+ s′s′)+

4
21

√
2(t ′u′+ t ′u′+ t ′t ′)

≤ 2
21

√
2
(
4s2 +2u2)+ 2

21

√
2
(
4 t2 +2u2)

=
8
√

2s2

21
+

8
√

2u2

21
+

8
√

2t2

21
. (21)

For k40, applying Lemma 3 we get:

k40 ≤ 16
√

2su3 +16
√

2tu3 +40s3t +40st3 +48stu2 +24
√

2s2tu+24
√

2st2u

≤

(
22
√

2
49

+
52
49

)
s2 +

(
22
√

2
49

+
52
49

)
t2 +

(
36
√

2
49

+
24
49

)
u2. (22)
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Combining (20), (21), (22), we proved that under the assumption −1/7 < s, t,u < 1/7 and s+ t > 0,

J(s, t,u,v)≤ q2(s, t,u) := k20(s, t,u)+

(
122
√

2
147

+
453
196

)
s2

+

(
122
√

2
147

+
453
196

)
t2 +

(
164
√

2
147

+
73
49

)
u2

=
1
2
(s, t, u)


−2108

√
2

147 − 1115
98 −16 8

√
2

−16 −2108
√

2
147 − 1115

98 −8
√

2

8
√

2 −8
√

2 −2024
√

2
147 + 146

49


 s

t

u

 . (23)

With computer algebra or hand computation, it is easy now to check that the matrix in (23) is a negative
semidefinite. Therefore, the inequality

J(s, t,u,v)≤ 0,

is valid for all −1/7 < s, t,u,v < 1/7 under the condition s+ t ≥ 0. This completes the proof of Theo-
rem 3.

Remark 1. The constant r0 = 1/7 can be enlarged to 1/6.7845≈ 0.1473.

4 Sketch of the Global Numerical Search

In this section, we briefly describe the global numerical search process for proving Theorem 1. We need
the following property of the optimal configuration.

Lemma 4. Suppose that A,B,C ∈ S1, D ∈ S2
≥0 and AB+BC +CA+DA+DB+DC is maximal, and

d1 ≤ d2 ≤ ·· · ≤ d6 is a permutation of AB,BC,CA,DA,DB,DC. Then

d1 ≥ 0.99200, d2 ≥ 1.21895, d3 ≥ 4/3, d4 ≥
√

2, d5 ≥ 1.53137, d6 ≥ 1.60947.

We will not show the proof of Lemma 4 here because of space limitation. The global numerical
search for Theorem 1 is composed of three steps as follows.

Step 1. Dividing the unit square [−1,1]× [−1,1]⊂R2 into 256 squares of edge 1/8, then we will see
that 224 of them have non-empty intersection with D2 = {(x,y)|x2 + y2 ≤ 1}, and 60 of them have non-
empty intersection with S1 = {(x,y)|x2 + y2 = 1}. From them, we build a set of N1 = 60× 60× 224 =
806,400 cubes of edge 1/8 (called 1

8 -cubes) in R6 to cover the feasible set (S1)2×D2 of Problem (6).
Applying Lemma 4 to test the bounds of six distances (called the distance bound test) we can see that only
11×11×88 = 10,648 are possible combinations to locate the optimal solution of Problem 6; applying
the exact numerical computation to estimate the sum of the six distances (called the distance sum test)
we see that among the 10,648 1

8 -cubes there are only 4,300(= 0.533%×N1) need to be divided and
checked in the next round. The first round checking has used 15.922 seconds on a notebook computer
with Intel COREi7 8th Gen CPU.

Step 2. Partition each 1
8 -cube into 16×16×16 = 4,096 equal cubes of edge 1/32 (called 1

32 -cubes),
we get a set of 4,300×4,096 = 17,612,800 cubes in R6, among them there are N2 = 1,105,782 having
non-empty intersection with (S1)2×S1×D2. Apply the distance bound test) we can verify that 844,917
are possible to locate the optimal solution. From these suspect cubes, remove 2,048 1

32 -cubes that are
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contained U ×V ×W1, where U,V,W are defined in Theorem 1 and W1 is the z-projection defined in
(5), and do the distance sum test so to remove another 823,663 1

32 -cubes that are clearly non-optimal
combination. Therefore, there are 844,917−2,048−823,663 = 19,206(= 1.737%×N2) cubes of edge
1/32 to be ckecked further. Computation in this step has used 1,170.266 seconds.

Step 3. In the first two steps we do breadth-first search (BFS), in this step we do deep-first search
(DFS) on each 1

32 -cube using only distance sum test. Namely, we take one 1
32 and divide it to 4,096

cubes of edge 1/128 and estimate the sum of distance, if some of the 1
128 have not passed the test, we

take first of them and divide it into 4,096 cubes of edge 1/512, and so on, and return to parent level until
all children-cubes passed the test. The computation has shown that among the 19,206 1

32 -cubes, 19,107
has passed the DFS checking on children-cubes of edge 1/128, and the rest 199 cubes passed on when
the edge of children-cubes is 1/512. The DFS computation has been completed in 8,777.250 seconds.

The exact numerical computation in this part and the symbolic computation in Section 3 are im-
plemented with the computer algebra software Maple. We will publish the proofs of Lemma 4 and
Theorem 1 in full in the Maple Conference 2021.
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