A minimally rigid graph, also called Laman graph, models a planar framework which is rigid for a general choice of distances between its vertices. In other words, there are finitely many ways, up to isometries, to realize such a graph in the plane. Using ideas from algebraic and tropical geometry, we derive a recursive formula for the number of such realizations. Combining computational results with the construction of new rigid graphs via gluing techniques, we can give a new lower bound on the maximal possible number of realizations for graphs with a given number of vertices.
