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Università di Torino, Torino, Italy

Andrea Laretto⊛

Tallinn University of Technology, Tallinn, Estonia

Fosco Loregian♣
Tallinn University of Technology, Tallinn, Estonia∗

Stefano Luneia♥
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We study bicategories of (deterministic) automata, drawing from prior work of Katis-Sabadini-
Walters, and Di Lavore-Gianola-Román-Sabadini-Sobociński, and linking their bicategories of ‘pro-
cesses’ to a bicategory of Mealy machines constructed in 1974 by R. Guitart. We make clear the
sense in which Guitart’s bicategory retains information about automata, proving that Mealy machines
à la Guitart identify to certain Mealy machines à la K-S-W that we call fugal automata; there is a
biadjunction between fugal automata and the bicategory of K-S-W. Then, we take seriously the motto
that a monoidal category is just a one-object bicategory. We define categories of Mealy and Moore
machines inside a bicategory B; we specialise this to various choices of B, like categories, relations,
and profunctors. Interestingly enough, this approach gives a way to interpret the universal property of
reachability as a Kan extension and leads to a new notion of 1- and 2-cell between Mealy and Moore
automata, that we call intertwiners, related to the universal property of K-S-W bicategory.

1 Introduction

The profound connection between category theory and automata theory is easily explained: one of
the founders of the first wrote extensively about the second [23, 24]. A more intrinsic reason is that
category theory is a theory of systems and processes. Morphisms in a category can be considered a
powerful abstraction of ‘sequential operations’ performed on a domain/input to obtain a codomain/output.
Hence the introduction of categorical models for computational machines has been rich in results,
starting from the elegant attempts by Arbib and Manes [2, 7, 5, 6, 8, 59] –cf. also [3, 20, 22] for
exhaustive monographs– and Goguen [28, 29, 30], up to the ultra-formal –and sadly, under-appreciated–
experimentations of [9, 10, 32, 33, 35] using hyperdoctrines, 2-dimensional monads, bicategories, lax
co/limits. . . up to the modern coalgebraic perspective of [38, 62, 63, 67]; all this, without mentioning
categorical approaches to Petri nets [54], based essentially on the same analogy, where the computation
of a machine is concurrent –as opposed to single-threaded.

Furthermore, many constructions of computational significance often, if not always, have a math-
ematical counterpart in terms of categorical notions: the transition from a deterministic machine to a
non-deterministic one is reflected in the passage from automata in a monoidal category (cf. [22, 55]),
to automata in the Kleisli category of an opmonoidal monad (cf. [34, 40]; this approach is particularly
useful to capture categorically stochastic automata, [19, 7, 15] as they appear as automata in the Kleisli
category of a probability distribution monad); minimisation can be understood in terms of factorisation
systems (cf. [18, 30]); behaviour as an adjunction (cf. [56, 57]).

The present work starts from the intuition, first presented in [45, 60], that the analogy between
morphisms and sequential machines holds up to the point that the series and parallel composition of
automata should itself be reflected in the ‘series’ and ‘parallel’ composition of morphisms in a category.
As a byproduct of the ‘Circ’ construction in op. cit., one can see how the 1-cells of a certain monoidal
bicategory specialise exactly a Mealy machines 𝐸 𝑑←− 𝐸 ⊗ 𝐼 𝑠−→𝑂 with inputs and outputs 𝐼 and 𝑂.
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Outline of the paper. The first result we present in section 2 is that this category relates to another
bicategory constructed by R. Guitart in [32]. Guitart observes that one can use certain categories
Mac(M,N) of spans as hom categories of a bicategory Mac, and shows that Mac admits a concise
description as the Kleisli bicategory of the monad of diagrams [32, §1] (cf. also [35], by the same author,
and [58] for a more modern survey); Mealy machines shall be recognisable as the 1-cells of Mac between
monoids, regarded as categories with a single object. The fundamental assumption in [32] is that a Mealy
machine 𝐸 𝑑←− 𝐸 ⊗𝑀 𝑠−→ 𝑁 satisfies a certain property of compatibility with the action of 𝑑 on 𝐸 , cf.
(2.8), that we call being a fugal automaton:

𝑠(𝑒,𝑚 ·𝑚′) = 𝑠(𝑒,𝑚) · 𝑠(𝑑 (𝑒,𝑚),𝑚′).

This notion can be motivated in the following way: if 𝑠 satisfies the above equation, then it lifts to a
functor E[𝑑] → 𝑁 defined on the category of elements of the action 𝑑, and in fact, defines a ‘relational
action’ in its own right, compatible with 𝑑 (formally speaking, E[𝑑] is a displayed category [4] over
𝑁). We show that there is a sub-bicategory Mly♭Set of MlySet made of fugal automata and that Mly♭Set is
biequivalent (actually, strictly) to the 1-full and 2-full sub-bicategory of Mac spanned by monoids.

The second result we propose in this paper is motivated by the motto for which a monoidal category is
just a bicategory with a single object: what are automata inside a bicategory B with more than one object,
where instead of input/output objects 𝐼,𝑂 we have input/output 1-cells, arranged as 𝑒

𝛿⇐ 𝑒 ◦ 𝑖 𝜎⇒ 𝑜?
Far from being merely formal speculation (a similar idea was studied in a short, cryptic note [10] to
describe behaviour through Kan extensions: we take it seriously and present it as a quite straightforward
observation in Remark 3.6), we show how this allows for a concise generalisation of ‘monoidal’ machines.

Related work. A word on related work and how we fit into it: the ideas in section 2 borrow heavily
from [45, 60] where bicategories of automata (or ‘processes’) are studied in fine detail; in section 2 we
carry on a comparison with a different approach to bicategories of automata, present in [32] but also in
[33, 35]; in particular, our proof that there is an adjunction between the two bicategories is novel –to the
best of our knowledge– and it hints at the fact that the two approaches are far from being independent. At
the level of an informal remark, the idea of approaching automata via (spans where one leg is a) fibrations
bears some resemblance to Walters’ work on context-free languages through displayed categories in [69],
and the requirement to have a fibration as one leg of the span should be thought as mirroring determinism
of the involved automata: if ⟨𝑠, 𝑑⟩ : 𝐸 ×𝑀 → 𝑁 × 𝐸 is fugal and 𝑠 defines a fibration over 𝑁 , then 𝐸
is a 𝑀-𝑁-bimodule, not only an 𝑀-set; there is extensive work of Betti-Kasangian [12, 11, 42] and
Kasangian-Rosebrugh [43] on ‘profunctorial’ models for automata, their behaviour, and the universal
property enjoyed by their minimisation: spans of two-sided fibrations [64, 65] and profunctors are well-
known to be equivalent ways to present the same bicategory of two-sided fibrations. Carrying on our
study will surely determine a connection between the two approaches.

For what concerns section 3, the idea of valuing a Mealy or a Moore machine in a bicategory seems
to be novel, although in light of [60] and in particular of their concrete description of C = ΩΣ(K,⊗) it
seems that both MlyB and MreB allow defining tautological functors into C. How these two bicategories
relate is a problem we leave for future investigation: [60] proves that when K is Cartesian monoidal,
MlyK is ΩΣ(K,×). The conjecture is that our MlyB is ΩB under some assumptions on the bicategory B:
our notion of intertwiner seems to hint in that direction. Characterising ‘behaviour as a Kan extension’ is
nothing but taking seriously the claim that animates applications of coalgebra theory [39, 40] to automata;
the –apparently almost unknown– work of Bainbridge [10] bears some resemblance to our idea, but his
note is merely sketched, no plausibility for his intuition is given. Nevertheless, we recognise the potential
of his idea and took it to its natural continuation with modern tools of 2-dimensional algebra.
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1.1 Mealy and Moore automata

The scope of the following subsection is to introduce the main characters studied in the paper:1 categories
of automata valued in a monoidal category (K,⊗) (in two flavours: ‘Mealy’ machines, where one
considers spans 𝐸← 𝐸 ⊗ 𝐼→𝑂, and ‘Moore’, where instead one consider pairs 𝐸← 𝐸 ⊗ 𝐼, 𝐸→𝑂.

The only purpose of this short section is to fix the notation for section 2 and 3; comprehensive classical
references for this material are [3, 22].

For the entire subsection, we fix a monoidal category (K,⊗,1).
Definition 1.1 (Mealy machine). A Mealy machine inK of input object 𝐼 and output object𝑂 consists of a
triple (𝐸, 𝑑, 𝑠) where 𝐸 is an object ofK and 𝑑, 𝑠 are morphisms in a span 𝔢 :=

(
𝐸 𝐸 ⊗ 𝐼𝑑oo 𝑠 // 𝑂

)
.

Remark 1.2 (The category of Mealy machines). Mealy machines of fixed input and output 𝐼,𝑂 form a
category, if we define a morphism of Mealy machines 𝑓 : 𝔢 = (𝐸, 𝑑, 𝑠) → (𝐹, 𝑑′, 𝑠′) = 𝔣 as a morphism
𝑓 : 𝐸→ 𝐹 in K such that

• 𝑑′ ◦ ( 𝑓 ⊗ 𝐼) = 𝑓 ◦ 𝑑;
• 𝑠′ ◦ ( 𝑓 ⊗ 𝐼) = 𝑠.

Composition and identities are performed in K.
The category of Mealy machines of input and output 𝐼,𝑂 is denoted as MlyK (𝐼,𝑂).

Definition 1.3 (Moore machine). A Moore machine in K of input object 𝐼 and output object 𝑂 is a
diagram 𝔪 :=

(
𝐸 𝐸 ⊗ 𝐼 ; 𝐸𝑑oo 𝑠 // 𝑂

)
.

Remark 1.4 (The category of Moore machines). Moore machines of fixed input and output 𝐼,𝑂 form a
category, if we define a morphism of Moore machines 𝑓 : 𝔢 = (𝐸, 𝑑, 𝑠) → (𝐹, 𝑑′, 𝑠′) = 𝔣 as a morphism
𝑓 : 𝐸→ 𝐹 in K such that

• 𝑑′ ◦ ( 𝑓 ⊗ 𝐼) = 𝑓 ◦ 𝑑;
• 𝑠′ ◦ 𝑓 = 𝑠.

Remark 1.5 (Canonical extension of a machine). If (K,⊗) has countable coproducts preserved by each
𝐴⊗ then the span Definition 1.1, considering for example Mealy machines, can be ‘extended’ to a span

𝐸 𝐸 ⊗ 𝐼∗𝑑∗oo 𝑠∗ // 𝑂 (1.1)

where 𝑑∗, 𝑠∗ can be defined inductively from components 𝑑𝑛, 𝑠𝑛 : 𝐸 ⊗ 𝐼⊗𝑛 → 𝐸,𝑂; if K is closed, the
map 𝑑∗ corresponds, under the monoidal closed adjunction, to the monoid homomorphism 𝐼∗→ [𝐸,𝐸]
induced by the universal property of 𝐼∗ =

∑
𝑛≥0 𝐼

⊗𝑛.

2 Bicategories of automata

Let (K,×) be a Cartesian category. There is a bicategory MlyK defined as follows (cf. [60] where
this is called ‘Circ’ and studied more generally, in case the base category has a non-Cartesian monoidal
structure):
Definition 2.1 (The bicategory MlyK , [60]). The bicategory MlyK has

• its 0-cells 𝐼,𝑂,𝑈, . . . are the same objects of K;

1An almost identical introductory short section appears in [13], of which the present note is a parallel submission –although
related, the two manuscripts are essentially independent, and the purpose of this repetition is the desire for self-containment.



4 Bicategories of Automata, Automata in Bicategories

• its 1-cells 𝐼→ 𝑂 are the Mealy machines (𝐸, 𝑑, 𝑠), i.e. the objects of the category MlyK (𝐼,𝑂) in
Remark 1.2, thought as morphisms ⟨𝑠, 𝑑⟩ : 𝐸 × 𝐼→𝑂 ×𝐸 in K;

• its 2-cells are Mealy machine morphisms as in Remark 1.2;
• the composition of 1-cells ♦ is defined as follows: given 1-cells ⟨𝑠, 𝑑⟩ : 𝐸 × 𝐼 → 𝐽 × 𝐸 and
⟨𝑠′, 𝑑′⟩ : 𝐹 × 𝐽→ 𝐾 ×𝐹 their composition is the 1-cell ⟨𝑠′ ♦ 𝑠, 𝑑′ ♦ 𝑑⟩ : (𝐹 ×𝐸) × 𝐼→ 𝐾 × (𝐹 ×𝐸),
obtained as

𝐹 ×𝐸 × 𝐼𝐹×⟨𝑠,𝑑⟩// 𝐹 × 𝐽 ×𝐸⟨𝑠
′ ,𝑑′ ⟩×𝐸// 𝐾 ×𝐹 ×𝐸 ; (2.1)

• the vertical composition of 2-cells is the composition of Mealy machine morphisms 𝑓 : 𝐸→ 𝐹 as
in Remark 1.2;

• the horizontal composition of 2-cells is the operation defined thanks to bifunctoriality of ♦ :
MlyK (𝐵,𝐶) ×MlyK (𝐴, 𝐵) →MlyK (𝐴,𝐶);

• the associator and the unitors are inherited from the monoidal structure of K.
Remark 2.2. Spelled out explicitly, the composition of 1-cells in Equation 2.1 corresponds to the
following morphisms (where we freely employ 𝜆-notation available in any Cartesian closed category):

𝑑2 ♦ 𝑑1 : 𝜆𝑒 𝑓 𝑎.⟨𝑑2( 𝑓 , 𝑠1(𝑒, 𝑎)), 𝑑1(𝑒, 𝑎)⟩ 𝑠2 ♦ 𝑠1 : 𝜆𝑒 𝑓 𝑎.𝑠2( 𝑓 , 𝑠1(𝑒, 𝑎)) (2.2)

Remark 2.3 (Kleisli extension of automata as base changes). If 𝑃 : K → K is a commutative monad
[48, 49], we can lift the monoidal structure (K,⊗) to a monoidal structure (Kl(𝑃), ⊗̄) on the Kleisli
category of 𝑃; this leads to the notion of 𝑃-non-deterministic automata or 𝑃𝜆-machines studied in [34,
§2, Définition 6]. Nondeterminism through the passage to a Kleisli category is a potent idea that developed
into the line of research on automata theory through coalgebra theory [40], cf. in particular Chapter 2.3
for a comprehensive reference, or the self-contained [38].

We do not investigate the theory of 𝑃𝜆-machines apart from the following two results the proof of
which is completely straightforward: we content ourselves with observing that the results expounded in
[44, 60], and in general the language of bicategories of processes, naturally lends itself to the generation
of base-change functors, of which the following two are particular examples.
Proposition 2.4. The correspondence defined at the level of objects by sending (𝐸, 𝑑, 𝑠) ∈MlyK (𝐼,𝑂) to

𝑃𝐸 𝐸
𝜂𝐸oo 𝐸 ⊗ 𝐼𝑑oo 𝑠 // 𝑂

𝜂𝑂 // 𝑃𝑂 (2.3)

extends to a functor 𝐿 : MlyK (𝐼,𝑂) →MlyKl(𝑃) (𝐼,𝑂).
Proposition 2.5. The correspondence sending (𝐸, 𝑑, 𝑠) ∈ MlyKl(𝑃) (𝐼,𝑂) into

𝑃𝐸 𝑃𝑃𝐸
𝜇𝐸oo 𝑃𝐸 ⊗ 𝑃𝐼𝑃𝑑◦𝐷oo 𝑃𝑠◦𝐷 // 𝑃𝑃𝑂

𝜇𝑂 // 𝑃𝑂 (2.4)

extends to a functor (−)e : MlyKl(𝑃) (𝐼,𝑂) →MlyK (𝑃𝐼, 𝑃𝑂).
More precisely, the proof of the following result is straightforward –only slightly convoluted in terms

of notational burden– so much so that we feel content to enclose it in a remark.
Remark 2.6. Let H ,K be cartesian monoidal categories, then we can define 2-categories MlyH ,MlyK
as in Definition 2.1; let 𝐹 : H → K be a lax monoidal functor. Then, there exists a ‘base change’
pseudofunctor 𝐹∗ : MlyH→MlyK , which is the 1-cell part of a 2-functor Cat×→ Bicat defined on objects
as K ↦→ MlyK , from (Cartesian monoidal categories, product-preserving functors, Cartesian natural
transformations), to (bicategories, pseudofunctors, oplax natural transformations).

As a corollary, we re-obtain the functors of Proposition 2.5 and Proposition 2.4 from the free and
forgetful functors 𝐹𝑃 :K → Kl(𝑃) and𝑈𝑃 : Kl(𝑃) → K.
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2.1 Fugal automata, Guitart machines

A conceptual construction for MlyK in Definition 2.1 is given as follows in [44]: it is the category
ΩΣ(K,⊗) of pseudofunctors N→ Σ(K,×) and lax transformations, where Σ is the ‘suspension’ of
(K,⊗), i.e. K regarded as a one-object bicategory; a universal property for MlyK is provided in [45]
(actually, for anyΩΣ(K,⊗)): it is the free category with feedbacks (op. cit., Proposition 2.6, see also [51])
on K. The bicategory MlyK addresses the fundamental question of whether one can fruitfully consider
morphisms in a category as an abstraction of ‘sequential operations’ performed on a domain/input to
obtain a codomain/output, and up to what point the analogy between morphisms and sequential machines
holds up (composing 1-cells in MlyK accounts for the sequential composition of state machines, where
the state 𝐸 is an intrinsic part of the specification of a machine/1-cell ⟨𝑠, 𝑑⟩).

Twenty eight years before [45], however, René Guitart [32] exhibited another bicategory Mac of
‘Mealy machines’, defined as a suitable category of spans, of which one leg is a fibration, and its universal
property: Mac is the Kleisli bicategory of the diagram monad (monade des diagrammes in [32, §1], cf.
[47, 58]) Cat// .2

Definition 2.7 (The bicategory Macs, adapting [32]). Define a bicategory Macs as follows:

• 0-cells are categories A,B,C. . . ;

• 1-cells (E; 𝑝, 𝑆) :A→B consist of spans

A E𝑝oooo 𝑆 // B (2.5)

where 𝑝 : E →A is a discrete opfibration;

• 2-cells 𝐻 : (E; 𝑝, 𝑆) ⇒ (F ;𝑞,𝑇) are pairs where 𝐻 : E →F is a morphism of opfibrations (cf. [37,
dual of 1.7.3.(i)]): depicted graphically, a 2-cell is a diagram

E

𝐻   

𝑆 //

𝑝
����

B

A F
𝑞
oooo

𝑇

OO

(2.6)

where both triangles commute and 𝐻 is an opCartesian functor (it preserves opCartesian mor-
phisms);

• composition of 1-cellsA
𝑝
←− E 𝑆−→B and B

𝑞
←− F 𝑇−→ C is via pullbacks, as it happens in spans, and

all the rest of the structure is defined as in spans.

Given this, a natural question that might arise is how do the two bicategories of Definition 2.1 and
Definition 2.7 interact, if at all?

In the present section, we aim to prove the existence of an adjunction (cf. Theorem 2.18) between a
suitable sub-bicategory of Macs and a sub-bicategory of MlySet spanned over what we call fugal Mealy

2Guitart’s note [32] is rather obscure with respect of the fine details of his definition, as he chooses for 2-cells the 𝐻 for which
the upper triangle in (2.6) is only laxly commutative, and when it comes to composition of 1-cells he invokes a produit fibré
canonique; apparently, this can’t be interpreted as a strict pullback, or there would be no way to define horizontal composition
of 2-cells; using a comma object instead of a strict pullback, the lax structure is given by the universal property –observe that
the functor that must be an opfibration is indeed an opfibration, thanks to [37, Exercise 1.4.6], but this opfibration does not
remember much of the opfibration 𝑞 one pulled back. Our theorem involves a strict version of Guitart’s Mac, because the functor
Π of Theorem 2.17 factors through Macs ⊆ Mac.
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machines between monoids (cf. Definition 2.11).3
Since the construction of Macs outlined in [32] requires some intermediate steps (and it is written in

French), we deem it necessary to delve into the details of how its structure is presented. To fix ideas, we
keep working in the category of sets and functions.
Notation 2.8. In order to avoid notational clutter, we will blur the distinction between a monoid 𝑀 and
the one-object category it represents; also, given the 𝑑 part of a Mealy machine, we will denote as 𝑑∗ both
the extension 𝐸 × 𝐼∗→ 𝐸 of Remark 1.5, which is a monoid action of 𝐼∗ on 𝐸 , and the functor 𝐼∗→ Set
to which the action corresponds.
Remark 2.9. In the notation above, a Mealy machine 𝔢 = (𝐸, 𝑑, 𝑠) yields a discrete opfibration (cf. [1, 37])
E[𝑑∗] → 𝐼∗ over the monoid 𝐼∗, and E[𝑎] is the translation category of an 𝑀-set 𝑎 : 𝑀 × 𝑋 → 𝑋 (cf.
[14] for the case when 𝑀 is a group: clearly, E[𝑎] is the category of elements of the action 𝑎 : 𝑀→ Set
regarded as a functor), i.e. the category having

• objects the elements of 𝐸 ;
• a morphism 𝑚 : 𝑒→ 𝑒′ whenever 𝑒′ = 𝑑∗(𝑒,𝑚).

Composition and identities are induced by the fact that 𝑑∗ is an action.
Remark 2.10. The hom-categories Macs(A,B) of Definition 2.7 fit into strict pullbacks

Macs(A,B) //

��

Cat/B

��
opFib/A // Cat

(2.7)

where Cat/B is the usual slice category of Cat over B.
Definition 2.11 (Fugal automaton). Let 𝑀,𝑁 be monoids; a Mealy machine ⟨𝑠, 𝑑⟩ : 𝐸 ×𝑀 → 𝑁 ×𝐸 is
fugal if its 𝑠 part satisfies the equation

𝑠(𝑒,𝑚 ·𝑚′) = 𝑠(𝑒,𝑚) · 𝑠(𝑑 (𝑒,𝑚),𝑚′). (2.8)

Remark 2.12. This definition appears in [32, §2] and it looks an ad-hoc restriction for what an output
map in a Mealy machine shall be; but (2.8) can be motivated in two ways:

• A fugal Mealy machine ⟨𝑠, 𝑑⟩ : 𝐸 ×𝑀→ 𝑁 ×𝐸 induces in a natural way a functor Σ : E[𝑑∗] → 𝑁

because (2.8) is exactly equivalent to the fact that Σ defined on objects in the only possible way,
and on morphisms as Σ(𝑒→ 𝑑∗(𝑒,𝑚)) = 𝑠(𝑒,𝑚) preserves (identities and) composition;

• given a generic Mealy machine ⟨𝑠, 𝑑⟩ : 𝐸 × 𝐴→ 𝐵×𝐸 one can produce a ‘universal’ fugal Mealy
machine ⟨𝑠, 𝑑⟩♭ = ⟨𝑠♭, ⟩ : 𝐸 × 𝐴∗ → 𝐵∗ × 𝐸 , and this construction is well-behaved for 1-cell
composition in MlySet, in the sense that (𝑠2 ♦ 𝑠1)♭ = 𝑠♭2 ♦ 𝑠

♭
1.

The remainder of this section is devoted to making these claims precise (and prove them). In
particular, the ‘universality’ of ⟨𝑠, 𝑑⟩♭ among fugal Mealy machines obtained from ⟨𝑠, 𝑑⟩ is clarified by
the following Lemma 2.13 and by Theorem 2.18, where we prove that there is a 2-adjunction between
MlySet and Mly♭Set.
Lemma 2.13. Given sets 𝐴, 𝐵, denote with 𝐴∗, 𝐵∗ their free monoids; then, there exists a ‘fugal extension’
functor ( )♭

𝐴,𝐵
: MlySet(𝐴, 𝐵) →Mly♭Set(𝐴∗, 𝐵∗).

3A fugue is ‘a musical composition in which one or two themes are repeated or imitated by successively entering voices and
contrapuntally developed in a continuous interweaving of the voice parts’, cf. [68]. In our case, the interweaving is between 𝑠, 𝑑
in a Mealy machine.
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Proof. The proof is deferred to the appendix, p. 16. In particular, the map 𝑠♭ is constructed inductively
as {

𝑠♭ (𝑒, [ ]) = [ ]
𝑠♭ (𝑒, 𝑎 :: 𝑎𝑠) = 𝑠(𝑒, 𝑎) :: 𝑠♭ (𝑑 (𝑒, 𝑎), 𝑎𝑠)

(2.9)

and it fits in the Mealy machine ⟨𝑠♭, 𝑑∗⟩ : 𝐸 × 𝐴∗→ 𝐵∗×𝐸 where 𝑑∗ is as in (1.1). The proof that ⟨𝑠♭, 𝑑∗⟩
is fugal in the sense of (2.8) can be done by induction and poses no particular difficulty. □

Lemma 2.14. Given sets 𝐴, 𝐵 there exists a commutative square

Mly♭Set(𝐴∗, 𝐵∗) //

��

Cat/𝐵∗

��
opFib/𝐴∗ // Cat.

(2.10)

Proof of Lemma 2.14. Given a fugal Mealy machine ⟨𝑠, 𝑑⟩ : 𝐸 × 𝐴∗ → 𝐵∗ × 𝐸 between free monoids,
from the action 𝑑 we obtain a discrete opfibration E[𝑑] → 𝐴∗, and from the map 𝑠 : 𝐸 × 𝐴∗→ 𝐵∗ we
obtain a functor Σ : E[𝑑∗] → 𝐵∗ as in Remark 2.12. So, one can obtain a span

𝐴∗ E[𝑑∗]𝐷oooo Σ // 𝐵∗ (2.11)

where the leg 𝐷 : E[𝑑∗] → 𝐴∗ is as in Remark 2.9 and Σ is an in Remark 2.12. The functors opFib/𝐴∗←
Mly♭Set(𝐴∗, 𝐵∗) → Cat/𝐵∗ project to each of the two legs. □

Corollary 2.15. The universal property of the hom-categories Macs(A,B) exposed in Remark 2.10
yields the right-most functor in the composition

Γ𝐴,𝐵 : MlySet(𝐴, 𝐵)
( )♭

𝐴,𝐵 // Mly♭Set(𝐴∗, 𝐵∗)
Π𝐴,𝐵 // Macs(𝐴∗, 𝐵∗) (2.12)

Lemma 2.16 (Fugal extension preserves composition). Let 𝐴, 𝐵,𝐶 be sets, 𝑠1 : 𝐸 × 𝐴→ 𝐵 and 𝑠2 :
𝐹 ×𝐵→ 𝐶 parts of Mealy machines ⟨𝑠1, ⟩ and ⟨𝑠2, ⟩; then (𝑠2 ♦ 𝑠1)♭ = 𝑠♭2 ♦ 𝑠

♭
1.

Proof. The proof is deferred to the appendix, p. 16.4 □

This, together with the fact that the identity 1-cell 1×𝐴→ 𝐴×1 is fugal (the proof is straightforward),
yields that there exists a 2-subcategory Mly♭Set of MlySet where 0-cells are monoids, 1-cells are the ⟨𝑠, 𝑑⟩
where 𝑠 is fugal in the sense of Definition 2.11, and we take all 2-cells.

Theorem 2.17. The maps Γ𝐴,𝐵 of Corollary 2.15 constitute the action on 1-cells of a 2-functor Γ :
MlySet → Macs. More precisely, there are 2-functors ( )♭ : MlySet → Mly♭Set and Π : Mly♭Set → Macs

whose composition is Γ.

Proof. The proof is deferred to the appendix, p. 17. □

Theorem 2.18. The 2-functor ( )♭ : MlySet→Mly♭Set admits a right 2-adjoint; the 2-functor Π : Mly♭Set→
Macs identifies Mly♭Set as the 1-full and 2-full subcategory of Macs spanned by monoids.

4The argument is straightforward but tedious (the difficult part is that the condition to verify on (𝑠2 ♦ 𝑠1)♭ involves 𝑑2 ♦ 𝑑1,
the expression of which we recall from (2.2), is the 𝜆-term 𝜆𝑒 𝑓 𝑎.⟨𝑑2 ( 𝑓 , 𝑠1 (𝑒, 𝑎)), 𝑑1 (𝑒, 𝑎)⟩).
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Proof. The proof is deferred to the appendix, p. 17. The last statement essentially follows from (2.11):
the span (𝐷,Σ) is essentially equivalent to the fugal Mealy machine ⟨𝑠, 𝑑⟩, since its left leg 𝐷 determines
a unique action of 𝐴∗ on the set of objects E[𝑑∗]0, and Σ and 𝑠 are mutually defined. □

3 Bicategory-valued machines

A monoidal category is just a bicategory with a single 0-cell; then, do Definition 1.1 and Definition 1.3
admit a generalisation when instead of K we consider a bicategory B with more than one object? The
present section answers in the positive. We also outline how, passing to automata valued in a bicategory,
a seemingly undiscovered way to define morphisms between automata, different (from (1.2) and) from
the categories of ‘variable’ automata described in [22, §11.1]: we study this notion in Definition 3.12.

In our setting, ‘automata’ become diagrams of 2-cells in B, between input, output and state 1-cells,
in contrast with previous studies where automata appeared as objects, and with [60] (and our section 2),
where they appear as diagrams of 1-cells between input, output and state 0-cells. This perspective
suggests that 2-dimensional diagrams of a certain shape can be thought of as state machines -so, they
carry a computational meaning; but also that state machines can be fruitfully interpreted as diagrams: in
Example 3.11 we explore definitions of an automaton where input and output are relations, or functors
(in Example 3.9), or profunctors (in Example 3.10); universal objects that can be attached to the 2-
dimensional diagram then admit a computational interpretation (cf. (3.9) where a certain Kan extension
resembles a ‘reachability’ relation).

This idea is not entirely new: it resembles an approach contained in [10, 9] where the author models
the state space of abstract machines as a functor, of which one can take the left/right Kan extension along
an ‘input scheme’. However, Bainbridge’s works are rather obscure (and quite ahead of their time), so
we believe we provide some advancement to state of the art by taking his idea seriously and carrying to
its natural development –while at the same time, providing concrete examples of bicategories in which
inputs/outputs automata can be thought of as 1-cells, and investigating the structure of the class of all
such automata as a global object.
Definition 3.1. Adapting from Definition 1.1 verbatim, if B is a bicategory with 0-cells 𝐴, 𝐵, 𝑋,𝑌, . . . ,
1-cells 𝑖 : 𝐴→ 𝐵,𝑜 : 𝑋→𝑌, . . . and 2-cells 𝛼, 𝛽, . . . the kind of object we want in MlyB(𝑖, 𝑜) is a span of
the following form:

𝑒 𝑒 ◦ 𝑖𝛿ks 𝜎 +3 𝑜 (3.1)

for 1-cells 𝑖 : 𝑋→𝑌 , 𝑒 : 𝐴→ 𝐵, 𝑜 :𝐶→ 𝐷. Note that with ◦ , we denote the composition of 1-cells in
B, which becomes a monoidal product in B has a single 0-cell.
Remark 3.2. The important observation here is that the mere existence of the span (𝛿,𝜎) ‘forces the
types’ of 𝑖, 𝑜, 𝑒 in such a way that 𝑖 must be an endomorphism of an object 𝐴 ∈ B, and 𝑒, 𝑜 : 𝐴→ 𝐵 are
1-cells. Interestingly, these minimal assumptions required even to consider an object like (3.1) make
iterated compositions 𝑖 ◦ · · · ◦ 𝑖 as meaningful as iterated tensors 𝐼 ⊗ · · · ⊗ 𝐼, and in fact, the two concepts
coincide when B has a single object ∗ and hom-category B(∗,∗) =K.

In the monoidal case, the fact that an input 1-cell stands on a different level from an output was
completely obscured by the fact that every 1-cell is an endomorphism.

Let us turn this discussion into a precise definition.
Definition 3.3 (Bicategory-valued Mealy machines). Let B be a bicategory, and fix two 1-cells 𝑖 : 𝐴→ 𝐴

and 𝑜 : 𝐴→ 𝐵; define a category MlyB(𝑖, 𝑜) as follows:
bml1) the objects are diagrams of 2-cells as in (3.1);
bml2) the morphisms (𝑒, 𝛿,𝜎) → (𝑒′, 𝛿′,𝜎′) are 2-cells 𝜑 : 𝑒⇒ 𝑒′ subject to conditions similar to Re-

mark 1.2:
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• 𝜎′ ◦ (𝜑 ∗ 𝑖) = 𝜎;
• 𝛿′ ◦ (𝜑 ∗ 𝑖) = 𝜑 ◦ 𝛿.

Definition 3.4 (Bicategory-valued Moore machines). Define a category MreB(𝑖, 𝑜) as follows:
bmo1) the objects are pairs of 2-cells in B, 𝛿 : 𝑒 ◦ 𝑖⇒ 𝑒 and 𝜎 : 𝑒⇒ 𝑜;
bmo2) the morphisms (𝑒, 𝛿,𝜎) → (𝑒′, 𝛿′,𝜎′) are 2-cells 𝜑 : 𝑒⇒ 𝑒′ such that diagrams of 2-cells similar

to those in Definition 3.3 are commutative.
Notation 3.5. In the following, an object of MlyB(𝑖, 𝑜) (resp., MreB(𝑖, 𝑜)) will be termed a bicategorical
Mealy machine (resp., a bicategorical Moore machine) of input cell 𝑖 and output cell 𝑜, and the objects
𝐴, 𝐵 are the base of the bicategorical Mealy machine (𝑒, 𝛿,𝜎). To denote that a bicategorical Mealy
machine is based on 𝐴, 𝐵 we write (𝑒, 𝛿,𝜎)𝐴,𝐵.

In [10] the author models the state space of abstract machines as follows: fix categories 𝐴, 𝑋, 𝐸 and a
functor Φ : 𝑋→ 𝐴, of which one can take the left/right Kan extension along an ‘input scheme’ 𝑢 : 𝐸→ 𝑋;
a machine with input scheme 𝑢 is a diagram of 2-cells in Cat(𝐸, 𝐴) of the formM = (𝐼 ⇒ Φ◦𝑢⇒ 𝐽),
and the behaviour 𝐵(M) ofM is the diagram of 2-cells Lan𝑢𝐼⇒Φ⇒ Ran𝑢𝐽.

All this bears some resemblance to the following remark, but at the same time looks very mysterious,
and not much intuition is given in op. cit. for what the approach in study means; we believe our
development starts from a similar point (the intuition that a category of machines is, in the end, some
category of diagrams –a claim we substantiate in Proposition 3.8) but rapidly takes a different turn (cf.
Definition 3.12), and ultimately gives a cleaner account of Bainbridge’s perspective (see also [9] of the
same author).
Remark 3.6 (Behaviour as a Kan extension). A more convenient depiction of the span in bmo1 will shed
light on our Definition 3.3 and 3.4, giving in passing a conceptual motivation for the convoluted shape of
finite products in MreK (𝐼,𝑂) and MlyK (𝐼,𝑂) (cf. [22, Ch. 11]): a bicategorical Moore machine in B of
fixed input and output 𝑖, 𝑜 consists of a way of filling the dotted arrows in the diagram

𝐴

𝑖

��
𝑒
��

𝑜

��

;C𝜎

𝐴
𝑒

//

+3𝛿

𝐵

(3.2)

with 𝑒 : 𝐴→ 𝐵 and two 2-cells 𝛿,𝜎. But then the ‘terminal way’ of filling such a span can be characterised
by the right extension of the output object along a certain 1-cell obtained from the input 𝑖. Let us investigate
how.

First of all, we have to assume something on the ambient hom-categories B(𝐴, 𝐴), namely that each
of these admits a left adjoint to the forgetful functor

B(𝐴, 𝐴) // Mnd/𝐴 (3.3)

(cf. [21, Ch. II]) so that every endo-1-cell 𝑖 : 𝐴→ 𝐴 has an associated extension to an endo-1-cell
𝑖♮ : 𝐴→ 𝐴 with a unit map 𝑖⇒ 𝑖♮ that is initial among all 2-cells out of 𝑖 into a monad in B; 𝑖♮ is usually
called the free monad on 𝑖.
Construction 3.7. Now, fix 𝑖, 𝑜 as in Definition 3.4; we claim that the terminal object of MreB(𝑖, 𝑜) is
obtained as the right extension in B of the output 𝑜 along 𝑖♮. We can obtain

• from the unit 𝜼 : id𝐴⇒ 𝑖♮ of the free monad on 𝑖, a canonical modification Ran𝑖 ⇒ Ranid = id𝐴,
with components at 𝑜 given by 2-cells 𝜎 : Ran𝑖𝑜⇒ 𝑜; this is a choice of the right leg for a diagram
like bmo1;
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• from the multiplication 𝝁 : 𝑖♮ ◦ 𝑖♮ ⇒ 𝑖♮ of the free monad on 𝑖, a canonical modification Ran𝑖♮ ⇒
Ran𝑖♮ ◦Ran𝑖♮ , whose components at 𝑜 mate to a 2-cell 𝛿0 : Ran𝑖♮𝑜 ◦ 𝑖♮⇒ Ran𝑖♮𝑜; the composite

𝛿 : Ran𝑖♮𝑜 ◦ 𝑖
Ran

𝑖♮
𝑜∗𝜼
+3 Ran𝑖♮𝑜 ◦ 𝑖♮ +3 Ran𝑖♮𝑜 (3.4)

The left leg is now chosen for a diagram like bmo1.
Together, (Ran𝑖♮𝑜, 𝛿,𝜎) is a bicategorical Mealy machine, and the universal property of the right Kan
extension says it is the terminal such. A similar line of reasoning yields the same result for MlyB(𝑖, 𝑜),
only now 𝜎 is the 2-cell obtained as mate of 𝜖 ◦ (Ran𝑖♮𝑜 ∗ 𝜼) : Ran𝑖♮𝑜 ◦ 𝑖⇒ Ran𝑖♮𝑜 ◦ 𝑖♮ ⇒ 𝑜 from the
counit of ◦ 𝑖♮ ⊣ Ran𝑖♮ .
Proposition 3.8 (MreB(𝒊, 𝒐) and MlyB(𝒊, 𝒐) as categories of diagrams.). There exists a 2-category P and
a pair of strict 2-functors 𝑊,𝐺 : P → B such that bicategorical Moore machines with ‘variable output
1-cell’ i.e. the 2-dimensional diagrams like in (3.2) where 𝑜 is variable, can be characterised as natural
transformations𝑊 ⇒ 𝐺.

Proof. The proof is deferred to the appendix, p. 18.
As explained therein, bicategorical Moore machines with fixed output 𝑜 can be characterised as

particular such natural transformations that take value 𝑜 on one argument.
Also, minor adjustments to the shape of𝐺 yield a similar result for bicategorical Mealy machines. □

Example 3.9 (Bicategorical machines in Cat). Consider a span C 𝐼←− C 𝑂−→ D in the strict 2-category
Cat of categories, functors and natural transformations, whereD is a 𝜅-complete category. The category
MreCat(𝐼,𝑂) has objects the triples (𝐸, 𝛿,𝜎) where 𝐸 : C → D is a functor and 𝜎,𝛿 are natural trans-
formations arranged as in (3.2); assuming enough limits in D, we can compute the action of the right
Kan extension of 𝑂 along 𝐼♮ (the free monad on the endofunctor 𝐼, cf. [46], whose existence requires
additional assumptions on C) on an object 𝐶 ∈ C as the equaliser

𝑅𝐶 //∏
𝐶∈C𝑂𝐶

C(𝐴,𝐼♮𝐶 ) //
//
∏
𝐶→𝐵𝑂𝐵

C(𝐴,𝐼♮𝐶 ) (3.5)

or (better, cf. [52, 2.3.6]) as the end5 𝐴 ↦→
∫
𝐶
𝑂𝐶C(𝐴,𝐼

♮𝐶 ) , i.e. as the ‘space of fixpoints’ for the conjoint
action of the functor 𝑂 and of the presheaf 𝐶 ↦→ C(𝐴, 𝐼♮𝐶) on objects of C; the free monad 𝐼♮ sends an
object 𝐶 to the initial algebra of the functor 𝐴 ↦→ 𝐶 + 𝐼 𝐴, so that 𝐼♮𝐶 � 𝐶 + 𝐼 (𝐼♮𝐶).

For the sake of simplicity, let us specialise the discussion whenD is the category of sets and functions:
the input 𝐼 and the output 𝑂 of the state machine in Definition 1.1 are now variable objects ‘indexed’
over the objects of C, and the behaviour of the terminal machine can be described as a known object:
unpacking the end (3.5) we obtain the functor

𝐴
� // [C,Set] (C(𝐴, 𝐼♮ ),𝑂) (3.6)

sending an object 𝐴 to the set of natural transformations 𝛼 : C(𝐴, 𝐼♮ ) ⇒𝑂; the intuition here is that to
each generalised 𝐴-element of 𝐼♮𝐶 corresponds an element of the output space Υ𝐶 (𝑢) ∈ 𝑂𝐶, and that
this association is natural in 𝐶.
Example 3.10 (Bicategorical machines in profunctors). We can reason similarly in the bicategory of
categories and profunctors of [41, 16, 17], [52, Ch. 5]; now an endo-1-cell 𝐼 : C → C on a category C

5Recall that if 𝑆 is a set and 𝐶 is an object of a category C with limits, by 𝐶𝑆 we denote the power of 𝐶 and 𝑆, i.e. the
iterated product

∏
𝑠∈𝑆𝐶 of as many copies of 𝐶 as there are elements in 𝑆.
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consists of an ‘extension’ of the underlying graph of𝑈C to a bigger graph (𝑈C)+,6 and the free promonad
𝐼♮ (cf. [50, §5]) corresponds to the quotient of the free category on (𝑈C)+ where ‘old’ arrows compose
as in C, and ‘new’ arrows compose freely; moreover, all right extensions ⟨𝑃/𝑄⟩ :X⇝Y of 𝑄 :A⇝Y
along 𝑃 :A⇝ X exist in the bicategory Pr of , as they are computed as the end in [52, 5.2.5],

⟨𝑃/𝑄⟩ : (𝑋,𝑌 ) � //
∫
𝐴

Set(𝑃(𝑌, 𝐴),𝑄(𝑋, 𝐴)). (3.7)

Example 3.11 (Bicategorical machines in relations). When it is instantiated in the (locally thin) bicategory
of relations between sets, i.e. {0,1}-profunctors, given 𝐼 : 𝐴⇝ 𝐴,𝑂 : 𝐴⇝ 𝐵, 𝐼♮ is the reflexive-transitive
closure of 𝐼, and the above Kan extension is uniquely determined as the maximal 𝐸 such that 𝐸 ⊆ 𝑂 and
𝐸 ◦ 𝐼♮ ⊆ 𝐸 (here ◦ is the relational composition). So 𝑅 = Ran𝐼♮𝑂 is the relation defined as

(𝑎, 𝑏) ∈ 𝑅 ⇐⇒ ∀𝑎′ ∈ 𝐴.((𝑎′, 𝑎) ∈ 𝐼♮⇒ (𝑎′, 𝑏) ∈ 𝑂). (3.8)

This relation expresses reachability of 𝑏 from 𝑎: it characterises the sub-relation of 𝑂 connecting those
pairs (𝑎, 𝑏) for which, for every other 𝑎′ ∈ 𝐴, if there is a finite path (possibly of length zero, i.e. 𝑎 = 𝑎′)
connecting 𝑎′, 𝑎 through 𝐼-related elements, then (𝑎′, 𝑏) ∈ 𝑂. In pictures:

𝑎 𝑅 𝑏 ⇐⇒
(
(𝑎′ = 𝑎) ∨ (𝑎′ 𝐼−→ 𝑎1

𝐼−→ . . .
𝐼−→ 𝑎𝑛

𝐼−→ 𝑎) ⇒ 𝑎′𝑂 𝑏
)

(3.9)

When the above example is specialised to the case when 𝐴 = ∗ is a singleton, there are only two possible
choices for 𝐼 (both reflexive and transitive), and 𝑂 identifies to a subset of 𝐵; a bicategorical Moore
machine is then a subset 𝑅 ⊆ 𝑂, and thus for both choices of 𝐼, MreRel(𝐼,𝑂)∗,𝐵 = 2𝑂. One can reason in
the same fashion for Mealy machines.

3.1 Intertwiners between bicategorical machines

In passing from MlyK (𝐼,𝑂) to MlyB(𝑖, 𝑜) we gain an additional degree of freedom by being able to index
the category over pairs of 0-cells of B, and this is particularly true in the sense that the definition of
MlyB(𝑖, 𝑜) and its indexing over pairs of objects 𝐴, 𝐵 of K leads to a seemingly undiscovered way to
define morphisms between automata:
Definition 3.12 (Intertwiner between bicategorical machines). Consider two bicategorical Mealy ma-
chines (𝑒, 𝛿,𝜎)𝐴,𝐵, (𝑒′, 𝛿′,𝜎′)𝐴′ ,𝐵′ on different bases (so in particular (𝑒, 𝛿,𝜎)𝐴,𝐵 ∈ MlyB(𝑖, 𝑜) and
(𝑒′, 𝛿′,𝜎′)𝐴′ ,𝐵′ ∈ MlyB(𝑖′, 𝑜′)); an intertwiner (𝑢, 𝑣) : (𝑒, 𝛿,𝜎) ↬ (𝑒′, 𝛿′,𝜎′) consists of a pair of 1-
cells 𝑢 : 𝐴→ 𝐴′, 𝑣 : 𝐵→ 𝐵′ and a triple of 2-cells 𝜄, 𝜖 ,𝜔 disposed as in (A.2), to which we require to
satisfy the identities in (A.1) (we provide a ‘birdseye’ view of the commutativities that we require, as
(A.2) is unambiguous about how the 2-cells 𝜄, 𝛿,𝜎, 𝜖,𝜔 can be composed).
Remark 3.13. Interestingly enough, when it is spelled out in the case when B has a single 0-cell, this
notion does not reduce to Remark 1.2, as an intertwiner between a Mealy machine (𝐸, 𝑑, 𝑠)𝐼,𝑂 and another
(𝐸 ′, 𝑑′, 𝑠′)𝐼 ′ ,𝑂′ consists of a pair of objects𝑈,𝑉 ∈ K, such that
ic1) there exist morphisms 𝜄 : 𝐼 ′ ⊗𝑈→𝑉 ⊗ 𝐼, 𝜖 : 𝐸 ′ ⊗𝑈→𝑉 ⊗ 𝐸,𝜔 :𝑂′ ⊗𝑈→𝑉 ⊗𝑂;
ic2) the following two identities hold:

𝜖 ◦ (𝑑′ ⊗𝑈) = (𝑉 ⊗ 𝑑) ◦ (𝜖 ⊗ 𝐼) ◦ (𝐸 ′ ⊗ 𝜄)
𝜔 ◦ (𝑠′ ⊗𝑈) = (𝑉 ⊗ 𝑠) ◦ (𝜖 ⊗ 𝐼) ◦ (𝐸 ′ ⊗ 𝜄)

6More precisely, to the underlying graph of C, made of ‘old’ arrows, we adjoin a directed edge 𝑒𝑥 : 𝐶 → 𝐶′ for each
𝑥 ∈ 𝐼 (𝐶,𝐶′).



12 Bicategories of Automata, Automata in Bicategories

In the single-object case, this notion does not trivialise in any obvious way, and –in stark contrast
with the notion of morphism of automata given in (1.2)– intertwiners between machines support a notion
of higher morphisms even in the monoidal case.

Definition 3.14 (2-cell between machines). In the same notation of Definition 3.12, let (𝑢, 𝑣), (𝑢′, 𝑣′) :
(𝑒, 𝛿,𝜎) ↬ (𝑒′, 𝛿′,𝜎′) be two parallel intertwiners between bicategorical Mealy machines; a 2-cell
(𝜑,𝜓) : (𝑢, 𝑣) ⇒ (𝑢′, 𝑣′) consists of a pair of 2-cells 𝜑 : 𝑢⇒ 𝑢′, 𝜓 : 𝑣⇒ 𝑣′ such that the identities in (A.3)
hold true.

Remark 3.15. When it is specialised to the monoidal case, Definition 3.14 yields the following notion:
a 2-cell ( 𝑓 , 𝑔) : (𝑈,𝑉) ⇒ (𝑈′,𝑉 ′) as in Remark 3.13 consists of a pair of morphisms 𝑓 :𝑈 →𝑈′ and
𝑔 : 𝑉 → 𝑉 ′ subject to the conditions that the two squares in (A.4) commute: intuitively speaking, in
this particular case, the machine 2-cells correspond to pairs ( 𝑓 , 𝑔) of K-morphisms such that both pairs
(𝐸 ′ ⊗ 𝐼 ′ ⊗ 𝑓 , 𝐸 ′ ⊗ 𝑓 ) and (𝑔 ⊗ 𝐸 ⊗ 𝐼, 𝑔 ⊗ 𝐸) form morphisms in the arrow category of K.

Remark 3.16. Let B be a bicategory; in [44] the authors exploit the universal property of a bicategory
ΩB = Psd(N,B) as the category of pseudofunctors, lax natural transformations and modifications with
domain the monoid of natural numbers, regarded as a single object category. The typical object of ΩB
is an endomorphism 𝑖 : 𝐴→ 𝐴 of an object 𝐴 ∈ B, and the typical 1-cell consists of a lax commutative
square

𝐴 //

��
|�

𝐴

��
𝐵 // 𝐵.

(3.10)

This presentation begs the natural question of whether there is a tautological functor MlyB→ ΩB given
by ‘projection’, sending (𝑖, 𝑜; (𝑒, 𝛿,𝜎)) into 𝑖; the answer is clearly affirmative, and in fact such functor
mates to a unique 2-functor N⊠MlyB→ B under the isomorphism given by Gray tensor product [31];
this somehow preserves the intuition (cf. [66, §1]) of ΩB as a category of ‘lax dynamical systems’.

4 Conclusions

We sketch some directions for future research.

Conjecture 4.1. Given a monad 𝑇 on Set and a quantale V [25, Ch. 2] we can define the locally
thin bicategory (𝑇,V)-Pr of as in [36, Ch. III]; as (𝑇,V) vary we generate a plethora of bicategories,
yielding the categories of topological spaces, approach spaces [53], metric and ultrametric, and closure
spaces as the (𝑇,V)-categories of [36, §III.1.6]. We conjecture that when instantiated in (𝑇,V)-Pr of ,
Equation 3.9 yields a 2-categorical way to look at topological, metric and loosely speaking ‘fuzzy’
approaches to automata theory.

Conjecture 4.2. From Example 3.9 and 3.10 we argue that the ‘non-determinism via Kleisli category’
approach of [34] can be carried over for the presheaf construction on Cat and its Kleisli bicategory Pr of :
if automata (classically intended) in the Kleisli category of the powerset monad are nondeterministic
automata in Set, bicategorical automata in the Kleisli bicategory of the presheaf construction (cf. [26])
are nondeterministic bicategorical automata: passing from Example 3.9 to Example 3.10 accounts for a
form of non-determinism. But then one might be able to address nondeterministic bicategorical automata
in B as deterministic bicategorical automata in a generic proarrow equipment [61, 70, 71] for B!
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A Appendix A: Proofs

A.1 Diagrams

=𝛿 𝛿′𝜖
𝜖

𝜄
=𝜎 𝜎′𝜔

𝜖

𝜄

and ; (A.1)

𝐴

|� 𝜄

𝑢 //

𝑖
��

𝐴′

𝑖′

��

𝐴

|� 𝜖

𝑢 //

𝑒

��

𝐴′

𝑒′

��

𝐴

|� 𝜔

𝑢 //

𝑜

��

𝐴′

𝑜′

��
𝐴

𝑢
// 𝐴′ 𝐵

𝑣
// 𝐵′ 𝐵

𝑣
// 𝐵′

(A.2)

𝜄′

𝜑

𝜄

𝜑

= 𝜖 ′

𝜑

𝜖

𝜓

= 𝜔′

𝜑

𝜔

𝜓

= (A.3)

𝐸 ′ ⊗ 𝐼 ′ ⊗𝑈 𝑑′⊗𝑈 //

𝐸′⊗𝐼 ′⊗ 𝑓
��

𝐸 ′ ⊗𝑈
𝐸′⊗ 𝑓
��

𝑉 ⊗ 𝐸 ⊗ 𝐼 𝑉⊗𝑑 //

𝑔⊗𝐸⊗𝐼
��

𝑉 ⊗ 𝐸
𝑔⊗𝐸
��

𝐸 ′ ⊗ 𝐼 ′ ⊗𝑈′
𝑑′⊗𝑈′

// 𝐸 ′ ⊗𝑈′ 𝑉 ′ ⊗ 𝐸 ⊗ 𝐼
𝑉 ′⊗𝑑

// 𝑉 ′ ⊗ 𝐸
(A.4)

A.2 Proofs

Proof of Lemma 2.13. In order to prove that the assignment 𝑠 ↦→ 𝑠♭ is well defined in the set of fugal
automata, we proceed by induction on the length of a string ℓ. We have to prove that

𝑠♭ (𝑒, ℓ ++ 𝑎𝑠) = 𝑠♭ (𝑒, ℓ) ++ 𝑠♭ (𝑑∗(𝑒, ℓ), 𝑎𝑠) (A.5)

The base case ℓ = [ ] is evidently true, so suppose that ℓ = 𝑥 :: 𝑥𝑠 is not empty and the claim is true for
every choice of a shorter 𝑥𝑠: then,

𝑠♭ (𝑒, (𝑥 :: 𝑥𝑠) ++ 𝑎𝑠) = 𝑠♭ (𝑒, (𝑥 :: 𝑥𝑠) ++ 𝑎𝑠)
= 𝑠♭ (𝑒, 𝑥 :: (𝑥𝑠 ++ 𝑎𝑠))
= 𝑠(𝑒, 𝑥) :: 𝑠♭ (𝑑 (𝑒, 𝑥), 𝑥𝑠 ++ 𝑎𝑠)
= 𝑠(𝑒, 𝑥) ::

(
𝑠♭ (𝑑 (𝑒, 𝑥), 𝑥𝑠) ++ 𝑠♭ (𝑑∗(𝑒, 𝑥𝑠), 𝑎𝑠)

)
=
(
𝑠(𝑒, 𝑥) :: 𝑠♭ (𝑑 (𝑒, 𝑥), 𝑥𝑠)

)
++ 𝑠♭ (𝑑 (𝑥, 𝑑∗(𝑒, 𝑥𝑠)), 𝑎𝑠)

= 𝑠♭ (𝑒, 𝑥 :: 𝑥𝑠) ++ 𝑠♭ (𝑑∗(𝑒, 𝑥 :: 𝑥𝑠), 𝑎𝑠)
= 𝑠♭ (𝑒, ℓ) ++ 𝑠♭ (𝑑∗(𝑒, ℓ), 𝑎𝑠).

We now have to show that any 2-cell 𝑓 : (𝐸, 𝑑, 𝑠) → (𝐹, 𝑐, 𝑡) is in fact a 2-cell (𝐸, 𝑑∗, 𝑠♭) → (𝐹, 𝑐∗, 𝑡♭).
This can be done by induction as well, with completely similar reasoning. □

http://www.numdam.org/item/CTGDC_1985__26_2_135_0/
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Proof of Lemma 2.16. We have to prove that

(𝑠2 ♦ 𝑠1)♭ = 𝑠♭2 ♦ 𝑠
♭
1. (A.6)

The two functions coincide on the empty list by definition; hence, let ℓ = 𝑎 :: 𝑎𝑠 be a nonempty list and
(𝑒, 𝑓 ) ∈ 𝐸 ×𝐹 a generic element. The right-hand side of the equation is

(𝑠♭2 ♦ 𝑠
♭
1) ((𝑒, 𝑓 ), 𝑎 :: 𝑎𝑠) = 𝑠♭2( 𝑓 , 𝑠

♭
1(𝑒, 𝑎 :: 𝑎𝑠))

= 𝑠♭2
(
𝑓 , 𝑠1(𝑒, 𝑎) :: 𝑠♭1(𝑑1(𝑒, 𝑎), 𝑎𝑠)

)
= 𝑠2( 𝑓 , 𝑠1(𝑒, 𝑎)) :: 𝑠♭2(𝑑2( 𝑓 , 𝑠1(𝑒, 𝑎)), 𝑠♭1(𝑑1(𝑒, 𝑎), 𝑎𝑠))
= (𝑠2 ♦ 𝑠1) ((𝑒, 𝑓 ), 𝑎) :: (𝑠2 ♦ 𝑠1)♭ ((𝑑2 ♦ 𝑑1) ((𝑒, 𝑓 ), 𝑎), 𝑎𝑠)

which concludes the proof. □

Proof of Theorem 2.17. Similarly to Lemma 2.16, we have to prove that 𝑑∗2 ♦ 𝑑
∗
1 = (𝑑2 ♦ 𝑑1)∗ whenever

𝑑2, 𝑑1 are two dynamic maps of composable Mealy machines ⟨𝑠1, 𝑑1⟩ : 𝐸 ×𝑀→ 𝑁 ×𝐸 and ⟨𝑠2, 𝑑2⟩ : 𝐹×
𝑁→ 𝑃×𝐹. This, together with Lemma 2.16, will establish functoriality on 1-cells of ( )♭. Functoriality
on 2-cells is very easy to establish. For what concerns Π, the proof amounts to showing that the
composition of (fugal) Mealy machines gets mapped into the composition of spans in Macs; this can be
checked with ease and follows from the fact that the translation category of the action 𝑑2 ♦ 𝑑1 as defined
in (2.2) has the universal property of the pullbackZ in

Z
##{{

E[𝑑∗1] Σ1

##
𝐷1

{{

E[𝑑∗2] Σ2

##
𝐷2

{{
𝑀 𝑁 𝑅.

(A.7)

This is a straightforward check, and it is also straightforward to see that the composition of Σ2 with
the right projection from Z coincides with the ‘Sigma’ functor induced by 𝑠2 ♦ 𝑠1, which concludes the
proof. □

Proof of Theorem 2.18. It is worthwhile to recall what a biadjunction is

𝐹 : C
//

⊥ D : 𝐺oo (A.8)

if C,D are bicategories (cf. [27, Ch. 9]): for each two objects 𝐶,𝐷 we are given an equivalence between
hom-categories D(𝐹𝐶,𝐷) ≃ C(𝐶,𝐺𝐷), i.e. a pair of functors 𝐻 : D(𝐹𝐶,𝐷) ⇆ C(𝐶,𝐺𝐷) : 𝐾 whose
composition in both directions is isomorphic to the identity functor of the respective hom-category –and
all this depends naturally on 𝐶,𝐷.

In order to prove this, let’s fix a set 𝐴 and a monoid 𝑀 , let’s build functors

Mly♭Set(𝐴∗, 𝑀)
𝐻 // MlySet(𝐴,𝑈𝑀) MlySet(𝐴,𝑈𝑀)

𝐾 // Mly♭Set(𝐴∗, 𝑀) (A.9)

and prove that they form an equivalence of categories by explicitly showing that 𝐻𝐾 and 𝐾𝐻 are
isomorphic to the respective identities. We’ll often adopt the convenient notation ⟨𝑠, 𝑑⟩ : 𝐸 × 𝑋→ 𝑌 ×𝐸
for a Mealy machine of input 𝑋 and output 𝑌 .
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• Let ⟨𝑠, 𝑑⟩ : 𝐸 × 𝐴∗→ 𝑀 ×𝐸 be a fugal Mealy machine; 𝐻⟨𝑠, 𝑑⟩ is defined as the composition

𝐸 × 𝐴 𝐸×𝜂𝐴 // 𝐸 × 𝐴∗ ⟨𝑠,𝑑⟩ // 𝑀 ×𝐸 (A.10)

where 𝜂𝐴 : 𝐴→ 𝐴∗ is the unit of the free-forgetful adjunction between Set and monoids. In simple
terms, 𝐻 acts ‘restricting’ a fugal Mealy machine to the set of generators of its input.

• Let ⟨𝑠0, 𝑑0⟩ : 𝐹× 𝐴→𝑈𝑀×𝐹 be any Mealy machine on Set, where𝑈𝑀 means that 𝑀 is regarded
as a mere set; 𝐾 ⟨𝑠0, 𝑑0⟩ is defined as the composition

𝐹 × 𝐴∗ ⟨𝑠0,𝑑0 ⟩♭// (𝑈𝑀)∗×𝐹 𝜀×𝐹 // 𝑀 ×𝐹 (A.11)

where 𝜀 : (𝑈𝑀)∗→ 𝑀 is the counit of the free-forgetful adjunction between Set and monoids, and
⟨𝑠0, 𝑑0⟩♭ is the fugal extension of Lemma 2.13.

The claim is now that the fugal Mealy machine 𝐾𝐻⟨𝑠, 𝑑⟩ coincides with ⟨𝑠, 𝑑⟩, and that the generic Mealy
machine 𝐻𝐾 ⟨𝑠0, 𝑑0⟩ coincides with ⟨𝑠0, 𝑑0⟩.

Both statements depend crucially on the following fact: if 𝑠 : 𝐸×𝑀→ 𝑁 satisfies Equation (2.8), then
for all 𝑒 ∈ 𝐸 the element 𝑠(1𝑀 , 𝑒) is idempotent in 𝑁 . In particular, if 𝑁 is free on a set 𝐵, 𝑠(1𝑀 , 𝑒) = [ ]
is the empty list, and more in particular, for a generic Mealy machine ⟨𝑠, ⟩ the fugal extension 𝑠♭ is such
that for all 𝑒 ∈ 𝐸 , 𝑠♭ ( [ ], 𝑒) = [ ].

Given this, observe that the Mealy machine 𝐻𝐾 ⟨𝑠0, 𝑑0⟩ coincides with ⟨𝑠♭0 ◦ (𝐹 ×𝜂𝐴), 𝑑
∗
0 ◦ (𝐹 ×𝜂𝐴)⟩;

now clearly the composition 𝑑∗0 ◦ (𝐹 × 𝜂𝐴) coincides with 𝑑0 : 𝐹 × 𝐴→ 𝐹 and the two maps determine
each other. As for 𝑠♭0 ◦ (𝐹 ×𝜂𝐴), we have that for all ( 𝑓 , 𝑎) ∈ 𝐹 × 𝐴

𝑠♭0 ◦ (𝐹 ×𝜂𝐴) ( 𝑓 , 𝑎) = 𝑠
♭
0( 𝑓 , 𝑎 :: [ ])

= 𝑠0( 𝑓 , 𝑎) :: 𝑠♭0( 𝑓 , [ ])
= 𝑠0( 𝑓 , 𝑎) :: [ ]

Reasoning similarly, one proves that the fugal Mealy machine 𝐾𝐻⟨𝑠, 𝑑⟩ has components ⟨(𝑠 ◦ (𝐸 ×
𝜂𝐴))♭, (𝑑 ◦ (𝐸 × 𝜂𝐴))∗⟩: again, since functions 𝐸 × 𝐴→ 𝐸 correspond bijectively to monoid actions
𝐸 × 𝐴∗→ 𝐸 , the map (𝑑 ◦ (𝐸 ×𝜂𝐴))∗ coincides with 𝑑; as for (𝑠 ◦ (𝐸 ×𝜂𝐴))♭, we can argue by induction
that

(𝑠 ◦ (𝐸 ×𝜂𝐴))♭ (𝑒, [ ]) = [ ] = 𝑠(𝑒, [ ])
(𝑠 ◦ (𝐸 ×𝜂𝐴))♭ (𝑒, 𝑎 :: 𝑎𝑠) = 𝑠(𝑒, 𝑎) :: (𝑠 ◦ (𝐸 ×𝜂𝐴))♭ (𝑑 (𝑎, 𝑒), 𝑎𝑠)

= 𝑠(𝑒, 𝑎) :: 𝑠(𝑑 (𝑎, 𝑒), 𝑎𝑠)
= 𝑠(𝑒, 𝑎 :: 𝑎𝑠)

where the last equality uses that 𝑠 was fugal to start with. This concludes the proof. □

Proof of Proposition 3.8. The category P is in fact 2-discrete (it has no 2-cells) and its objects and
morphisms are arranged as follows:

1 0
𝑦

oo
𝑥oo 𝑧 //

𝑡
// 2 (A.12)

For lack of a better name, P is the generic double span.
The functors𝑊,𝐺 are then constructed as follows:
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• 𝐺 : P → Cat is constant on objects at the category K(𝐴, 𝐵), and chooses the double span

K(𝐴, 𝐵) K(𝐴, 𝐵)
id
oo

idoo ◦𝑖 //
id
// K(𝐴, 𝐵); (A.13)

• 𝑊 : P → Cat chooses the double span

{0→ 1} {♥,♠}
𝑗

oo
𝑗oo 𝑐0 //

𝑐1
// {0→ 1} (A.14)

where {♥,♠} is a discrete category with two objects, 𝑗 =
(♥↦→0
♠↦→1

)
, and 𝑐𝑘 is constant at 𝑘 ∈ {0,1}.

Now, it is a matter of unwinding the definition of a natural transformation 𝛼 :𝑊 ⇒ 𝐺 to find that we are
provided with maps

{𝑒,#} = 𝛼0 :𝑊0→K(𝐴, 𝐵)
𝜎 = 𝛼1 :𝑊1→K(𝐴, 𝐵) (A.15)
𝛿 = 𝛼2 :𝑊2→K(𝐴, 𝐵)

and with commutative diagrams arising from naturality as follows, if we agree to label 𝛼0(♥) = 𝑒 and
𝛼0(♠) = 𝑜, and we blur the distinction between 𝛼0 and the embedding of its image {𝑒, 𝑜} in K(𝐴, 𝐵):

{𝑒, 𝑜}
𝑗 //

𝛼0

��

{0→ 1}

𝛼1

��

{𝑒, 𝑜} 𝑐0 //

𝛼0

��

{0→ 1}

𝛼2

��

{𝑒, 𝑜} 𝑐1 //

𝛼0

��

{0→ 1}

𝛼2

��
K(𝐴, 𝐵) K(𝐴, 𝐵) K(𝐴, 𝐵) ◦𝑖

// K(𝐴, 𝐵) K(𝐴, 𝐵) K(𝐴, 𝐵)

(A.16)

Altogether, we have that these data yield a diagram of 2-cells

𝐴

𝑖

��
𝑒
��

𝑜

��

;C𝜎

𝐴
𝑒

//

+3𝛿

𝐵

(A.17)

as in (3.2). Modifications between these natural transformations correspond to suitable arrangements of
2-cells, in such a way that we recover the notion of morphism of bicategorical Moore machine given in
bmo2.

In case the output 𝑜 is fixed, we just constrain 𝛼0(♠) to be mapped in 𝑜 and modifications to be the
identity at ♠.

For bicategorical Mealy machines, redefine𝐺𝑥 =𝐺𝑧 = ◦ 𝑖 and the rest of the argument is unchanged.
□

Discussion A.1. In a world of war and crippling inflation bytes are expensive, so page limits shorten by
the month. This forces authors to shrink their papers, and the only way to do that is remove text.

A simple interpolation suggests that one day, the average submission will consist of just the picture of
a cat surrounded by a circle and a square; already today, we feel constrained to push in the appendix the
email addresses of the authors: †guidoboccali@gmail.com, ⊛anlare@ttu.ee, ♣folore@ttu.ee,
and ♥stefano.luneia@gmail.com.
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