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We present an elementary introduction to a new logic for reasoning about behaviors that occur over

time. This logic is based on temporal type theory. The syntax of the logic is similar to the usual first-

order logic; what differs is the notion of truth value. Instead of reasoning about whether formulas are

true or false, our logic reasons about temporal landscapes. A temporal landscape may be thought of

as representing the set of durations over which a statement is true. To help understand the practical

implications of this approach, we give a wide variety of examples where this logic is used to reason

about autonomous agents.

1 Introduction

Logical formalization of temporal considerations has a long and rich history, though the first modern

treatment is probably the tense logic of Prior [Pri67], which has yielded what is now known simply as

temporal logic. In temporal logic, as in any logical system, one has a syntactic way of building new

formulas from simpler ones, say using conjunction and negation (ϕ ∧¬ψ), as well as a notion of model

whose purpose is to specify the truth value of each such formula.

Temporal logic gets its expressive power from various operators, which collect information about

other times into the current time. For example, in linear temporal logic (LTL), one considers the binary

until operator U. At time t, one may ask whether ϕ will hold until ψ holds, denoted t |= ϕ Uψ , which

more precisely means that there exists t ′ > t such that t ′ |= ψ and t ′′ |= ϕ for all t < t ′′ < t ′. One can

understand all such operators as given by some sort of quantification over t : T , replacing each formula,

e.g. ϕ , by a predicate ϕ(t) in one variable. Restricting first-order logic by requiring that all atomic

predicate symbols take only one variable, one obtains what is known as first-order monadic logic, and

adding the 2-ary predicate t < t ′, one obtains what is known as the first order monadic logic of order,

FO(<). It was shown by Kamp [Kam68] that temporal logic with the until operator, together with its

past-tense cousin since, is precisely as expressive as FO(<). Various additions and restrictions have

been proposed over the years, in attempts to co-optimize between expressivity and computability.

A completely different approach to temporal reasoning, known as temporal type theory (TTT), was

given in [SS19]. Instead of defining new logical operators that collate past and future times into the

present, temporal type theory alters the very notion of truth itself, to make truth inherently depend on

time. The goal of this article is to describe, in elementary terms, how TTT makes this idea precise, as

well as how it can be used in practice.

Temporal type theory begins by defining a topological space called the interval domain IR, whose

points are the closed intervals [t1, t2]⊆R, which we call time-intervals, and whose open sets are generated

by open intervals (a,b), each of which consists of all points [t1, t2] with a < t2 ≤ t2 < b. A sheaf B on IR

is a type of behavior: it assigns to each basic open (a,b) a set B(a,b) ∈ Set, and for every a≤ a′ ≤ b′ ≤ b,
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it assigns a restriction function ρ : B(a,b)→ B(a′,b′) that clips a longer-lasting behavior x ∈ B(a,b) to a

shorter-lasting behavior ρ(x) ∈ B(a′,b′). Behavior types include:

1. N, Z, Q, and R, the behaviors of natural numbers, integers, rationals, and reals (unchanging over

any interval (a,b));
2. R̃, the behavior of “varying” real numbers (changing continuously over any (a,b));1

3. for any vector field V on a topological space, the behavior of integral curves through V (of duration

b−a);

4. for any graph G, the behavior of stochastically-timed walks through G;

5. more generally, for any hybrid system [Hen00], the behavior of all legal trajectories;

6. Prop, the behavior of truth values, also known as propositions, which one can think of as audits or

monitors of behavior. Prop will be the main character in this paper;

7. the empty behavior and the singleton behavior (Time itself), as well as products, unions, subob-

jects, quotients, and exponentials of all the above.

Discussing behavior types in detail is out of scope for this paper, as it includes definitions of sheaves and

toposes; the interested reader is referred to [SS19] for a technical discussion, or to [FS19, Chapter 7] for

a gentle introduction. The goal in this paper is to give the reader a relatively self-contained understanding

of Prop—the behavior type of truth values—in terms of temporal landscapes.

We will also not give a detailed comparison between the expressive power of various temporal logics,

such as Metric Interval Temporal Logic (MITL) [AFH96] or Signal Temporal Logic (STL) [MN04], with

that of temporal type theory. The main difference is simply that temporal type theory is a type theory,

meaning that it can combine and reason about various types of behaviors, as exemplified above. Another

is that temporal logic assumes a kind of omniscience about the future: the truth value of a proposition at

time t1 can contain information about what occurs over a whole interval [t1, t2]. TTT does not have this

omniscience: a proposition whose truth value depends on more than one moment—such as “whenever A

occurs at time t1, B must occur before time t2”—is only falsifiable on long-enough intervals, e.g. those

containing [t1, t2]. The aggregated truth value of a proposition over all intervals is its temporal landscape;

information about what occurs over an interval is “stored” over the interval itself, not at its left endpoint.

However, LTL and MITL do embed as a fragment of TTT [SS19, Chapter 8.6], so proofs from these

logics are valid in TTT.

Our focus will be on the descriptive power of temporal type theory: through increasingly complex

examples we shall demonstrate how TTT—in particular temporal landscapes—can be used to accurately

model the relevant time-varying phenomena. We hope that this will be enough to give the reader a basic

understanding of these ideas, even if translating them into reasoning power holds few subtleties.

Luckily, the base language of TTT is standard higher-order logic, which is quite similar to first-order

logic. Not only should reasoning in TTT thus be more familiar to users with a grounding in predicate

logic, a wide variety of proof assistants, including HOL, Lean, and Coq, can hence be easily adapted to

provide formal verification of reasoning in TTT [CH88; Mou+15; NPW02].

We will begin in Section 2 by defining temporal landscapes. In Section 3 we discuss logical op-

erations on temporal landscape and in Section 4 we give several increasingly expressive examples of

temporal landscapes in the context of autonomous agents. Conclusions are provided in Section 5.

1Note that the constant reals can be considered as a subtype R⊆ R̃ of the varying real numbers.
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2 Definition of temporal landscape

Temporal landscapes provide the truth values of a logical system, which we call temporal landscape

logic. Truth values may be thought of as acceptable answers to “yes/no”-style questions. For example,

in standard propositional logic, the truth values are simply true and false. In propositional logic then,

the question “Is it raining?” may be answered with “yes” (true) or “no” (false). In temporal landscape

logic, the answer to this question is a temporal landscape indicating precisely those time intervals during

which it is raining. Let us be a bit more precise.

Let R be the real numbers, thought of as representing points in time. Given two times t1, t2 ∈R with

t1 ≤ t2, we write [t1, t2] for the set of all times between t1 and t2; we call this a time interval. Graphically,

we may represent a time interval by a point above the diagonal in the plane R2, see Fig. 1a.

A temporal landscape is a set of time intervals with two special properties. The first is known as

down-closure: if a time interval [t1, t2] is in the temporal landscape, and [t ′1, t
′
2] is contained in [t1, t2], then

[t ′1, t
′
2] is in the temporal landscape too. This property makes the assumption that if an assertion holds

throughout a time interval, then it holds on all subintervals. For example, if it is raining throughout the

time interval from 9:00 to 13:00, then it is also raining throughout the time interval from 10:00 to 10:45.

In pictures, this means that a temporal landscape must be closed under both moving right and moving

downward, as shown in Fig. 1a.

The second property of temporal landscapes is an openness (sometimes called a roundedness) prop-

erty: if an assertion holds on some [t1, t2], then there exists some larger interval, [t ′1, t
′
2] with both t ′1 < t1

and t2 < t ′2. This larger interval may only be infinitesimally larger, but it must be strictly larger on both

sides. In pictures, we illustrate this as in Fig. 1b.The above is summarized in Definition 2.1.

Definition 2.1. A temporal landscape on R is a set L of time intervals [t1, t2]⊆R, t1 ≤ t2, such that

(a) if [t1, t2] ∈ L, and t1 ≤ t ′1 ≤ t ′2 ≤ t2, then [t ′1, t
′
2] ∈ L.

(b) if [t1, t2] ∈ L then there exists t ′1 < t1 ≤ t2 < t ′2 such that [t ′1, t
′
2] ∈ L.

We write Prop for the set of temporal landscapes.

Together, requirements (a) and (b) state that temporal landscapes form the open sets of the Scott

topology on the interval domain IR, a well-studied topological space in domain theory [Gie+03]. While

we will not need any topos or sheaf theory here, we remark that sheaves on IR form a topos, whose

subobject classifier consists precisely of temporal landscapes; this topos is the subject of [SS19].

Remark 2.2. By definition—Definition 2.1(b)—a temporal landscape L does not include its boundary: it

is an open set in IR. Hence in our examples so far, Figs. 1a and 1b, we have drawn them using a dotted

line. From now on we use the visually simpler convention of drawing them with a solid line.

The simplest temporal landscape is that of a roof ; this form the basis for the topology on IR.

t1

t2
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If an assertion

holds here...

◦
[t ′1, t

′
2]

...then it must

hold here too
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where it holds too t1
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Figure 1: Downclosure and openness.
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Figure 2: Temporal landscape for the implication ϕ⇒ ψ .

Definition 2.3. Given a pair a < b in R, the roof over a,b is the temporal landscape

TimeBetw(a,b) := {[t1, t2] | a < t1 ≤ t2 < b}

Given any pair of real numbers a < b, a temporal landscape on (a,b) is a temporal landscape that is a

subset of TimeBetw(a,b).

General temporal landscapes are curves that remain above the diagonal line and whose slope is

piecewise continuous and remains in the interval [0,∞]. Note that rotating by 45◦, the slope condition

becomes precisely the statement that the curve must be what is known as a 1-Lipschitz function.

3 Temporal landscape logic

Temporal landscapes form the truth values of a logical system. More precisely, temporal landscapes

form the elements of what is known as a Heyting algebra. This means that standard logical constants

and operations, such as true, false, AND (∧), OR (∨) and implication (⇒), have interpretations as

temporal landscapes and operations on them.

To begin, we introduce the temporal landscapes true and false. The temporal landscape true

contains all time intervals true := {[t1, t2] | t1 < t2 ∈R}. This landscape is the maximal one that visually

can be depicted as a infinite triangle over the time line. On the other hand, the temporal landscape false

contains no time intervals at all: false :=∅ and it is the minimal landscape.

Given temporal landscapes ϕ and ψ , their conjunction ϕ ∧ψ is given by their intersection, and their

disjunction ϕ ∨ψ is given by their union. For an explicit example of conjunction, see Fig. 4 on page

283. In that example, the temporal landscape Free(Nbr(v)) on the right is the conjunction—that is, the

intersection—of the temporal landscapes Free(wr) and Free(wu) on the left and center.

It is straightforward to check that the results of these operations are again temporal landscapes, and

that ∧,∨ obey the usual properties of (constructive) first-order logic; for example, for any temporal

landscape ϕ , we have ϕ ∧true= ϕ .

Defining an implication that obeys the usual properties is a bit more subtle. Given temporal land-

scapes ϕ and ψ , we define the temporal landscape

(ϕ ⇒ ψ) := {[a,b] | TimeBetw(a,b)∩ϕ ⊆ ψ}.

To become acquainted with implication in general, we start with a special case, namely that of negation.
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The negation operator ¬ϕ is given by ¬ϕ := (ϕ ⇒ false). Equivalently, since false is the empty

set, we may write

¬ϕ = {[a,b] | TimeBetw(a,b)∩ϕ =∅}.

The visual intuition of the implication ϕ ⇒ ψ generalizes that of negation, replacing the empty

landscape false with ψ . The temporal landscape of ϕ ⇒ ψ contains a roof over all time intervals

within which ϕ is contained in ψ , as shown in Fig. 2.2 In the example shown in Fig. 2, the landscape ψ

might appear having a confusing shape. The interpretation of such a landscape is that the predicate ψ is

only true over intervals of length at most three, the union of which is the solid line of height 3 above the

axis.

Now that we have defined the logical connectives, we move on to the quantifiers ∃(x : X).P(x) and

∀(x : X).P(x). The simplest case is when these quantifiers range over a constant type A, which we

may think of simply as a set.3 Given a set A, a function P : A→ Prop is a collection of |A|-many

temporal landscapes. Taking their union defines the temporal landscape ∃(a : A).P(a), which will be

a temporal landscape. Taking their intersection may not satisfy condition (b) of Definition 2.1, so we

define ∀(a : A).P(a) to be the largest temporal landscape contained in this intersection.

Throughout this document, the reader will see the connectives ∧,∨,⇒,¬, and the quantifiers ∃ and

∀. In each case, they refer to the operations on landscapes defined above.

4 Predicates over grid worlds

In this section we give increasingly expressive examples of how to use temporal landscapes to describe

the behavior of an agent moving in various types of environments. We start with a fairly standard model,

used in the Artificial Intelligence (AI) literature, to describe motions of an agent over a discretized space.

In a non-temporal situation, it is typical to represent an environment as a two- (or higher-)dimensional

regular grid where each region of the space is a cell and cells overlap only on specified boundaries.

Mathematically it is convenient to model this with an undirected graph G = (V,E), where V = {0, . . . ,N}
is a set of vertices, associated to subdivisions (or cells) of the environment, and E ⊆V ×V is the set of

edges representing the fact that it is possible to move from one subdivision to another.

As we are working temporally, we replace sets with behavior types, which may be thought of as

time-varying sets. More precisely, a behavior type specifies, for every temporal landscape, a set of

behaviors that could take place over those durations. These sets of behaviors are required to obey a certain

compatibility condition, so that for example behaviors over long time intervals restrict to behaviors on

shorter subintervals.

4.1 Modelling the environment: constant and non-constant behavior types

Static environments. To simplify matters, let us first consider the case in which the environment does

not vary in time. For this, we use constant behavior types: given a set X , the constant behavior type on

X , by abuse of notation written again simply as X , is the behavior type that for every temporal landscape

simply specifies X as its set of possible behaviors.

2In the following, we will often restrict ourselves to temporal landscapes on some arbitrary bounded interval, typically

starting at 0, just for typographical convenience.
3In temporal type theory we can also quantify over non-constant behavior types, e.g. ∀(x : X).P(x), but this is a bit more

technical. Since such quantification appears only in a single subsection (e.g. in Eq. (4)), we simply refer the reader to [SS19]

for a definition.
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Suppose we want to say that our environment is modelled by the graph (V,E), and that it does not

change over time. To do this, we simply take V and construct its constant behavior type V , and take E

as the constant subtype of V ×V consisting precisely of the pairs (v1,v2) in the set E . The constancy of

the subtype E says that the adjacency relation does not change: v1 and v2 either are adjacent or are not

adjacent, independently of time.

To describe this fact logically in temporal type theory (TTT), we may write the formula

∀(v1,v2 : V ).(v1,v2) ∈ E ∨ (v1,v2) 6∈ E.

That said, in higher order logics like TTT, one typically exchanges subobjects for predicates, e.g. replac-

ing E ⊆V ×V with E : V ×V → Prop.4 Then the statement would read

∀(v1,v2 : V ).E(v1,v2)∨¬E(v1,v2). (1)

If we impose axiom Eq. (1) then for any v1,v2, the landscape for E(v1,v2) is either the always-true

landscape true, or the always-false landscape false, depending on whether we want an edge (v1,v2)
or not. In this case we would say that (V,E) forms a constant graph.

Dynamic environments. It is also interesting, however, to decline to require that our environment obey

axiom Eq. (1), and thus model environments in which the adjacency of cells changes over time. This

makes sense in the autonomous setting if we imagine that sometimes a door is blocked or a secret passage

is opened.

That said, for most situations, including all that follow, it is good enough to use a model of the

environment where adjacency is symmetric: if v1 is connected to v2, then v2 is connected to v1. Using

the language of TTT, this means our environment obeys the axiom

∀(v1,v2 : V ).(v1,v2) ∈ E ⇔ (v2,v1) ∈ E .

It will also be convenient to work with the function V → (V → Prop) given by currying E : V ×V →
Prop. It sends a cell v : V to the (time-varying) set {v′ : V | E(v,v′)} of cells adjacent to v. For our

example, we want to consider the notion of neighbor, by which we mean an adjacent cell, not including

the cell itself. For each v : V , its neighbors are the subtype of V defined by the formula

Nbr(v) := {v′ : V | v′ 6= v∧E(v,v′)} .

It is worth noticing, once more, that we can interpret Nbr in terms of temporal landscapes, by considering

Nbr : V → (V → Prop). This means that Nbr(v)(v′) is a truth value—i.e. a temporal landscape—that

describes when a given v′ : V is a neighbor of v : V . Of course, if we assume that (V,E) is a constant

graph, again Nbr(v)(v′) will either be the true landscape or the false landscape, depending on whether

v and v′ are neighbors.

Working with TTT feels much like predicate logic and set theoretic constructions. In contrast with

temporal logic, where one must get used to working with new logical operators such as ‘until’ and

‘since’. For those who are trained in these languages, TTT provides a more easy to read language for

reasoning about time. However, it is also true that TTT, being an intuitionistic logic, does introduce some

“complexities”, as the law of excluded middle (or equivalently, double negation elimination) needs not

to hold. Temporal landscapes provide a graphical interpretation that helps reason about temporal logic

statement and mitigate some of these complexities.

4Recall that Prop is the set of temporal landscapes; see Definition 2.1.
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Figure 3: Temporal landscapes for: (a) Occ(v), (b) Free(v) := ¬Occ(v), and (c) ¬Free(v) = ¬¬Occ(v).

4.2 Free/occupied cells: the negation operator

We now expand our example by adding a predicate Occ(v) : V → Prop. This predicate will be assumed

to model the idea of a cell being occupied: for each cell v, it specifies the set of time intervals over which

v is occupied. We will see that this predicate can capture situations that are more interesting than “mere

occupancy”, and that temporal landscapes provides a formal language to express such scenarios.

If a cell is not occupied, we will say that it is free. We further define Free := ¬Occ; for each v : V ,

the landscape Free(v) is the set of time intervals over which v is free. As mentioned in Section 3, double

negation is not a trivial operation (the logic is constructive rather than Boolean). The predicate Occ gives

a good example of why this might be useful, i.e. why it makes sense that Occ
?
= ¬¬Occ need not hold.

Suppose we have agents A, B, and C, and predicates OccA, OccB, and OccC, which map a cell v to the

temporal landscape of intervals over which the respective agent is in v. Suppose that we wish to define

Occ to be the predicate describing the intervals over which at least one of the agents A, B, and C is in v.

Note that this is slightly ambiguous in English, but we will see that the negation operator in TTT allows

us to easily distinguish between the two readings of this sentence as Occ and ¬¬Occ.

To do this, define Occ to be the disjunction of these three predicates. For each v, Occ(v) specifies the

time intervals over which a single agent, whether it be A, B, or C, remains in the cell throughout. Then

¬¬Occ(v) specifies the time intervals over which there is always at least one agent in v, but agents are

allowed to come and go.

More concretely, fix some cell v and suppose that an agent A is in v throughout the interval [0,3],
an agent B is in v throughout [2,4], and another agent C is in v throughout [5,6]. Then the temporal

landscapes for Occ(v), for Free(v) := ¬Occ(v), and for ¬Free(v) = ¬¬Occ(v) are shown on the left,

middle, and right, of Fig. 3. While the middle and right-hand diagram fit the usual interpretation of

“when” the room is free/occupied, they are derived from the left-hand diagram, which is more expressive.

In particular, note that on the left-hand side diagram we have that Occ(v) does not contain the time

interval [1.5,3.5], because this point falls in between the two roofs corresponding to A and B occupying

the cell. This might appear strange, since there is at least one agent in the cell throughout [1.5,3.5], and

thus we might expect Occ(v) to contain this interval. However, Occ expresses the more refined idea of

those intervals over which there exists any specific agent occupying v: agent A occupies v on the interval

[1,3] and B occupies v on the interval [2,4]; Occ(v) is the disjunction of A, B and C.

As an example of where the extra expressivity of Occ might be important, consider a simple situation

where an emergency light is placed within the cell v and where two consecutive “blinks” of the light

would represent a dangerous situation. In the case the light is ON at 1.5 and again at 3.5, the temporal

landscape for Occ(v) would correctly capture the fact that such an alarm would be missed as there is

not a single agent in the cell at those instances. Thus, unless A and B communicate about the status of

the light, the notification of danger would be completely missed. Such communication—and memory /
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Figure 4: (a) Grid world. (b)-(d) Temporal landscapes related to the grid world model.

recall in general—amounts to a strategy for persistently encoding intervallic facts into the present state.

4.3 Objects in a room: quantifiers

In this subsection we use TTT to describe when neighbors of a cell are free (unoccupied), despite possibly

moving obstacles. We will consider two scenarios, both depicted in Fig. 4a.

This might be important, for example, for an autonomous vehicle, where one might want to know

when it is immediately adjacent to an obstacle, and hence should be wary of a collision. In these scenarios

the large black dots each represent an obstacle. In the first scenario the objects are stationary; in the

second, they move in the direction shown by the arrow.

To begin, note that we can extend a predicate Free over any subtype N : V → Prop as follows:5

Free(N) := ∀(v : V ).N(v)⇒ Free(v) . (2)

This predicate describes the intervals over which all v ∈ N are free. In particular, we will be interested in

Free(Nbr(v)) for a cell v, which tells us when every neighbor of v is free, or equivalently, when none of

v’s neighbors is occupied.

Static objects. Assume that the objects, represented by the two large black dots, are static (i.e. forget the

arrows in Fig. 4a for now). Consider the cell v indicated in Fig. 4a. In the case that the black objects are

static, one sees that the predicate Free(Nbr(v)) is the always-true landscape true, since the configuration

of “free” cells does not change over time. In particular, if we were to draw the temporal landscapes

Free(w) for each w : Nbr(v), each one would be the always-true landscape, and so their conjunction.

Dynamic objects. Next we consider a situation in which the black dots represent moving objects. In

this scenario, the two objects move in the indicated directions (one downwards and the other leftwards)

at a rate of one cell per unit time. When they reach a cell adjacent to the boundary of the domain, they

remain there forever after.

In this case there is an equality of predicates Free(wℓ) = Free(wd); both correspond to the always-

true landscape, because these two cells are never occupied by either of the moving obstacles. For the

predicate Free(wr), however we note that the cell will be occupied for one time unit, between 3 and 4.

Thus the cell wr is free for the interval [0,3], and of course for any subinterval of it, such as [1,1.46]. The

cell wr is also free for any interval [4,b], as long as 4 < b; the temporal landscape Free(wr) is shown in

Fig. 4b. Similar reasoning applied to Free(wu) yields the temporal landscape shown in Fig. 4c.

5Note that Free(N) is (constructively) equivalent to ∀(v : V ).Occ(v)⇒¬N(v).
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Figure 5: (a) Grid world with a room whose walls are shown in gray and interior in light blue. (b) Tem-

poral landscape for ∀(a : A).(Pos(a) ⊆ R) (blue) and ∃(s : R).TimeBetw(s,s+ 3)) (red). (c) Temporal

landscape of the implication (3).

The temporal landscape for Free(Nbr(v)) is the conjunction of these temporal landscapes, i.e. all

of v’s neighbors must be free, as shown in Fig. 4d. As described in Section 3 the resulting temporal

landscape is going to be the “minimum” landscape—red boldface in Fig. 4d—of the four landscapes

shown with dashed lines Free(wℓ) and Free(wd) in black, Free(wr) in green, and Free(wu) in blue.

Looking at the red landscape on the right of Fig. 4 we immediately see that the neighborhood of v,

namely Nbr(v), is not free in the interval [3,5].

4.4 Max dwell time in a room: implication

Let A denote the type of agents’ IDs and let Pos : A→ (V → Prop) denote the predicate that an agent

a : A is at a vertex v : V . We also define a room R to be a subset of vertices, R : V → Prop.6 Then for an

agent a : A, one may write Pos(a)⊆ R to denote the proposition ∀(v : V ).Pos(a)(v)⇒ R(v), namely the

agent a is in the room R. The situation is shown in Fig. 5a, where we indicate an agent by a blue dot and

shade in lighter blue the cells forming a room R.

The wall—cells that are always occupied—are depicted in gray. Arrows depict possible trajectories

that agent a can take to move within the room R and then exit.

Suppose we want to express the proposition that an agent stays in a room R for at most τ units of

time before it must exit the room. To model this, for some τ : R≥0, we can use the predicate

∀(a : A).(Pos(a)⊆ R)⇒∃(s : R).TimeBetw(s,s+ τ) , (3)

which says that given an agent a, as long as a’s position remains in room R, there is some start time s

such that the clock remains between s and s+ τ .

Let us consider an example. Let τ = 3 and suppose the agent is not in the room during the intervals

[0,3] and [6,7], but is in the room during [3,6] and [7,15]. The landscapes for the left and right hand side

of (3), namely Pos⊆ R and ∃(s : R).s < t < s+ τ respectively, are shown in blue and red in Fig. 5b.

Note the temporal landscape of the right hand side of (3) (red), it is an “always true” capped at 3

time units. This is because given a time t there always exists a real value s with t ∈ [s,s+ τ ], and such

predicate is true for intervals [t1, t2] of length t2− t1 ≤ 3.

6Note that we have not said A and R are constant over time: agents might come into service or be decommissioned, and

rooms might be constructed, demolished, or expanded over time.
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Figure 6: (a) Layout of a building with the trajectory (dashed line) followed by an agent (blue dot).

Specific locations where the agent is at time instances t0, t1, . . . are shown with red crosses. (b) Temporal

landscape corresponding to the agent being in a room. The colors correspond to the rooms in (a).

The temporal landscape for the entire predicate (3), is shown in Fig. 5c. Note that in the interval

[0,10] it is always true that the agent is within the room for at most 3 time units, however in [7,15] it is

never true that the agent is within the room for at most 3 time units. Indeed, all we can say is that on

intervals of length at most 3, the agent is clearly is in the room for at most 3 time units, however this is

not true for longer time intervals.

4.5 Regions and occupancy

Let us now consider a modified grid world, where instead of constructing a uniform spatial partitioning of

the environment we leverage what we, as humans, would argue is a reasonable “semantic” subdivision of

the space. Take for example a building, such a partitioning would be based on more abstract concepts than

cells, such as “rooms”, “corridors”, “foyers” etc. To ground the discussion, consider the scenario depicted

in Fig. 6a. This picture depicts an agent (shown with a red dot) traversing a continuous environment,

following a trajectory shown by a dashed line. The environment has been semantically subdivided into

different regions (rooms).

In order to model the agent moving through the building, we begin by saying what a trajectory is.

We normalize the building to be the square S := [0,6]2 ⊆ R2. Then define the set of all possible time-

parametrized trajectories through the building to be:

X :=
{
(x1,x2) : R̃× R̃ | 0≤ x1 ≤ 6 and 0≤ x2 ≤ 6

}
.

For example, in Fig. 6a, we depict a time-parametrized trajectory over an interval (t0, t11), where t0 = 0,

t1 = 1, t2 = 2, etc. making the distance traveled per unit time non-uniform along the trajectory.

It is worth noticing that in earlier examples, we considered a discretized space, whereas now we are

considering a continuous space S, and behaviors defined over such space.

As in the discrete case, suppose we are given a predicate Occ : S→ Prop that models the subset of

S (possibly changing in time) in which the agent cannot be. For example in Figure 6a we show some

gray regions, which are intended to be walls, and hence always occupied/non-traversable. Thus if s : S

is in a wall, we put Occ(s) := true. Again as in the discrete case, we use this to define a predicate

Free : X → Prop, by Free(x) := ∀(s : S).Occ(s)⇒¬(x = s).
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Figure 7: (a) LIDAR returns (blue dots) as an agent (red dot) travels along a corridor. (1) and (2) show

two specific locations of the agent as it travels left to right. (b) Example of a slanted temporal landscape.

The agent is moving through the building, but to be more realistic we could imagine that the agent

occupies space larger than a point, and that different parts of the agent move at slightly different speeds.

Hence the agent consists of several different trajectories, all of which are close to one another, say

within a distance of γ : R. We define close : X ×X → Prop using the Euclidean norm close(x1,x2) :=
‖x1− x2‖2 ≤ γ . We also put an upper bound on the speed of the agent, say vmax : R, and define the

agent’s possible positions as the following behavior type:

AgentPos :=

{
p : X → Prop

∣∣∣∣
∀(x1,x2 : X ).

(
(p(x1)∧p(x2))⇒ close(x1,x2)

)
∧

∀(x : X ).p(x)⇒
(
Free(x)∧−vmax ≤ ẋ≤ vmax

)
}
. (4)

Here the bound −vmax ≤ ẋ ≤ vmax is the temporal landscape consisting of those intervals [t1, t2] over

which ‖x(t ′1)− x(t ′2)‖2 < (t ′2− t ′1)vmax holds for all t1 < t ′1 < t ′2 < t2. For more on derivatives in temporal

type theory, see [SS19, Section 7.3].

Let us consider the constant type R := {RoomA,RoomB,Entrance,Lobby,Corridor} representing the

rooms as shown in Figure 6a. Suppose we have a predicate Room : R→ (X → Prop), indicating the

landscape on which a trajectory stays within a room. As before, for any moving agent a : A with trajecto-

ries Pos(a) : AgentPos, let us denote with Pos(a)⊆ r the predicate ∀(x : X ).Pos(a)(x)⇒ Room(r)(x),
which says that agent a is in a room r if all of the trajectories that make up a are in r.

The temporal landscape for the proposition Pos(a) ⊆ r for when a single agent a is in a room r is a

roof. Thus the temporal landscape of AgentInARoom := ∃(r : R).Pos(a) ⊆ r is obtained by taking the

union—namely the max—of these roofs as shown in Fig. 6b.

Note that because of the agent footprint there are intervals where the agent can be in two rooms and

since the agent is always in some room and thus ¬¬AgentInARoom is the always-true landscape.

4.6 Landmarks and maps: “slanted” temporal landscapes

So far, for most of the examples—except for that in Fig. 5—all the temporal landscapes have consisted

of a finite union of roofs. One thus wonders when a “slanted” temporal landscape would be relevant in

an application and what it would represent.

Consider the scenario as shown in Fig. 7a. An agent (red dot) travels, at constant velocity, within an

indoor environment along the red dashed path. The agent is equipped with a range limited sensor, such

as a LIDAR (blue disk) which emits a set of discrete laser beams. For each laser beam the LIDAR gets

a return whenever a laser beam hits a surface. The measurement is the (possibly noisy) location of the
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surface along each beam (blue dots). We have denoted with (1) and (2) two specific locations along the

path. We depict with small blue dots a possible set of sensor measurements—samples—along walls and

columns (black rectangles).

Further suppose that the agent is equipped with a fixed amount of onboard memory, so that not all the

samples can be stored. When the buffer used to store samples is full, past samples will be deleted to make

space for new ones. Identify each sample with an integer i : N and define the predicate SampleInMem(i)
that will be true over [t1, t2] as long as the sample i is in the memory of the agent.

The temporal landscape for SampleInMem(i) is clearly a roof over the interval [t1, t2] where t1 is the

instance when the sample i was first stored in memory and t2 is the instance when it was overwritten by

a new sample (for t2 =+∞ then there is enough memory so that no overwriting occurs).

The following predicate will have a “slanted” temporal landscape

SamplesInMem=
∨

i

SampleInMem(i) .

For example, it might look like the temporal landscape in Fig. 7b. Initially, in the corridor, the number of

samples is high and the memory will be fully allocated. As new samples are obtained, old ones will be

overwritten. Assuming a constant velocity and number of samples per unit of time, we have a constant

overwriting so that a sample is in memory only over a constant size interval: thus the landscape will

be parallel to the time line. As the agent enters a part of the environment that has fewer surfaces, the

number of samples per unit time decreases, and thus samples will persist in memory over longer and

longer periods of time, especially given that the environment becomes sparser as the agent moves left

to right. Once the agent starts sensing the beginning of the right-most corridor, the number of samples

starts to quickly increase, the persistence of a sample in memory decreases and the maximum persistence

in the onboard memory is reached (the landscape is parallel to the time line again).

It is worth mentioning that an idea related to temporal landscapes has been applied to other problems

in robotics and in particular to monitor and diagnose perception systems [ASC21]. In this context, the

concept of temporal diagnostic graphs was introduced.

5 Conclusion

In this paper, we have attempted to give an intuitive introduction to the logic of temporal type theory in

terms of temporal landscapes. On the one hand, these are just collections of time intervals over which a

proposition may be true. On the other, they can be drawn as Lipschitz functions and hence visualized.

They form a logical system, where all of the connectives and quantifiers are defined by operations on

these Lipschitz functions.

After introducing these landscapes, we discussed a series of examples from the domain of au-

tonomous agents. These became fairly complex, e.g. considering an agent’s position not just as a point

but as a collection of points, each moving with bounded speed, avoiding possibly moving obstacles, and

storing recent LIDAR measurements in a small-capacity memory that is constantly being overwritten.

These examples point to the great expressivity of temporal type theory.

In practice, TTT can serve as a sort of big tent, where calculations from model checkers or ODE

solvers can be embedded. While infinite in nature, we explained how temporal landscapes can be finitely

approximated. We thus hope to have shown how TTT can be used to specify and guide algorithmic

developments in autonomous systems and any modeling environment in which time is an issue.
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