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String diagrams are an increasingly popular algebraic language for the analysis of graphical models

of computations across different research fields. Whereas string diagrams have been thoroughly

studied as semantic structures, much less attention has been given to their algorithmic properties, and

efficient implementations of diagrammatic reasoning are almost an unexplored subject.

This work intends to be a contribution in such a direction. We introduce a data structure rep-

resenting string diagrams in terms of adjacency matrices. This encoding has the key advantage

of providing simple and efficient algorithms for composition and tensor product of diagrams. We

demonstrate its effectiveness by showing that the complexity of the two operations is linear in the

size of string diagrams. Also, as our approach is based on basic linear algebraic operations, we can

take advantage of heavily optimised implementations, which we use to measure performances of

string diagrammatic operations via several benchmarks.

1 Introduction

String diagrams are a ubiquitous graphical notation for depicting morphisms of a monoidal category, and

have been used in a variety of settings— see e.g. [3, 5, 6, 16] and [13] for an overview.

In order to work with string diagrams on a computer, we require a representation of them which we

can manipulate. Several such representations have been explored in the literature—see for example the

wiring diagrams of Catlab.jl [12], and the hypergraphs of [2] as used in CARTOGRAPHER [15].

However, to support ‘industrial scale’ uses of string diagrams where modelisations are very large,

there is a pressing need to ensure that operations for combining these structures are efficient. In this work,

we define a string diagram representation inspired by the parallel programming literature (specifically

[8, 14]). Our data structure of choice is based on sparse adjacency matrices representing hypergraphs,

and thus we call it HAR — hypergraph adjacency representation. We shall show how to encode string

diagrams into HARs, using their characterisation as hypergraphs (from [2]) as intermediate steps. The

following picture summarises the various steps of the encoding:

String Diagram Hypergraph with Interfaces Bipartite Graph with Interfaces Har

Abstract Concrete

The main point of this implementation is that the encoding allows for simple algorithms for compo-

sition and tensor product. Composition is especially simplified, being completely expressible in terms of

permutation and tensor product operations on matrices (see Definition 4.1 below).

Furthermore, the algorithms we describe are completely in terms of linear-algebraic operations on

matrices. Since highly optimised implementations of such operations are widely available, this makes

our approach straightforward to implement while providing good performance. Additionally, since im-

plementations of linear algebra routines are also available for specialised parallel hardware such as GPUs,

our algorithms require little additional effort to support such settings.
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Importantly, we also show that the operations of composition and tensor product for our representa-

tion have linear complexity, a fact which we support with empirical validation on synthetic benchmarks.

We summarise our main contributions as follows:

• An isomorphic representation of string diagrams in terms of adjacency matrices of certain graphs

• Algorithms for tensoring and composition of string diagrams (via their representation)

• Computational complexity bounds for tensor and composition algorithms

• An empirical analysis of the performance of our approach

The structure of the paper is as follows. In Section 2 we recall the directed hypergraphs of [2] and

discuss a bipartite encoding of undirected hypergraphs from the parallel processing literature [8]. In

Section 3 we formally describe our proposed encoding of hypergraphs in terms of adjacency matrices.

We then proceed in Section 4 to describe operations such as composition and tensor product for our

encoding, before showing that these form a symmetric monoidal category, which is isomorphic to the

original category of string diagrams, in Section 5. Finally, in Section 6 we discuss the complexity of the

operations described in Section 4, and show empirical performance results on some synthetic benchmarks

in Section 7.

2 Background

2.1 Hypergraphs with Interfaces

Following [2], we will regard string diagrams combinatorially as a certain class of hypergraphs, which we

now recall. Throughout this section we fix a monoidal signature Σ, that is, a set of operations o : n→ m,

where n is the arity and m the coarity of o.

Hypergraphs are a generalisation of directed graphs where edges (ordered pairs of vertices) are re-

placed by hyperedges (ordered lists of vertices). As shown in [2], hypergraphs serve as a characterisation

of string diagrams over Σ when equipped with the following features: (i) a labeling of hyperedges with

Σ-operations; (ii) the identification of a left and a right interface of the hypergraph; (iii) the restriction to

hypergraphs with interfaces that are monogamous. We recall the relevant definitions below.

Definition 2.1. A Σ-labeled (directed) hypergraph H is a triple (V,E,L), where V is a set of nodes,

E ⊆ List(V )×List(V ) is a set of hyperedges, and L : E → Σ is a labeling function, where the arity and

coarity of L(e) must agree with the length of lists e #π0 and e #π1 respectively, for each e ∈ E. A node v is

a source of e ∈ E if it appears in the list e #π0, and a target if it appears in e #π1. Σ-labeled hypergraphs

with the evident structure-preserving morphisms form a category HypΣ.

A Σ-labeled hypergraph with interfaces is a cospan n
f
−→ G

g
←− m in HypΣ, where n and m are the

discrete hypergraphs constiting of n and m nodes respectively. We call f [n] the left interface of G and

g[m] the right interface of G. We write Csp(HypΣ)I for the PROP1 whose morphisms n→ m are the

hypergraph with interfaces n
f
−→ G

g
←− m. Composition is defined by pushout.2 The notation is due to

Csp(HypΣ)I being a subcategory of the category of cospans in HypΣ.

1PROPs [9] are symmetric monoidal categories with objects the natural numbers. They are widely adopted as a way to

express algebraic theories of string diagrams categorically.
2In order for composition to be uniquely defined, strictly speaking morphisms of Csp(HypΣ)I should be equivalence classes

of hypergraphs with interfaces, where n −→ G←− m and n −→ G′ ←− m are equivalent when there is an isomorphism G→ G′

commuting with the cospan legs. For the sake of simplicity, we shall use representatives of such equivalence classes when

working with morphisms of Csp(HypΣ)I . This does not have any consequence for the theory developed in the rest of the paper.
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Σ-labeled hypergraphs with interfaces serve as a faithful interpretation for the PROP FreeΣ whose

morphisms are freely generated by the signature Σ [2]. For example, the string diagram c : 2→ 2 in

FreeΣ as on the left below is interpreted as the hypergraph with interfaces 2
f
−→ G

g
←− 2 on the right.

α

β

γ
α

β

γ

(1)

Note Σ-operations α : 1→ 1, β : 1→ 2 and γ : 2→ 1 appearing in c are mapped to hyperedges with the

appropriate number of source and target nodes, and the ‘dangling wires’ of c are expressed by the left

and right interfaces 2
f
−→ G and 2

g
−→ G, depicted as dashed arrows. Note also that diagrams consisting

of only wires are represented by hypergraphs with no hyperedges. For example, the string diagram and

hypergraph representation for id2 are depicted as follows:

(2)

Although this interpretation is faithful, it is not full — there are hypergraphs not representing any

string diagram [2]. One may achieve a full interpretation by restricting to monogamous acyclic hyper-

graphs with interfaces.

Before recalling the definition of monogamous, we need to record a few preliminaries. The in-degree

(respectively, out-degree) of a node v in a hypergraph G is the number of hyperedges having v as target

(source). Write in(G) (inputs) for the set of nodes with in-degree 0 and out(G) (outputs) for the set of

nodes with out-degree 0.

Definition 2.2. A hypergraph G is monogamous acyclic (ma-hypergraph) if it contains no cycle (acyclic-

ity) and every node has at most in- and out-degree 1 (monogamy).

A hypergraph with interfaces n
f
−→G

g
←−m is monogamous acyclic when G is an ma-hypergraph, f is

a monomorphism and its image is in(G), g is a monomorphism and its image is out(G). Ma-hypergraphs

with interfaces form a sub-PROP Csp(HypΣ)MI of Csp(HypΣ)I.

Ma-hypergraphs with interfaces are in 1-to-1 correspondence with string diagrams over the same

signature, yielding the isomorphism FreeΣ
∼= Csp(HypΣ)MI [2].

2.2 Parallel Hypergraph Processing

Hypergraphs have many choices of implementation as a data structure. For example, one might choose

to model hyperedges directly as pairs of lists. However, the code for such representations must be written

from scratch, and can typically be complicated and error-prone. Instead, we would like to take advantage

of existing, high performance code for representing graphs, and apply it to hypergraphs. To this end, we

take inspiration from the parallel programming literature.

The authors of [8] describe a distributed processing system for undirected hypergraphs.

Definition 2.3. An undirected hypergraph U is a pair (V,E) where V is a set of nodes, and E ⊆P(V )\ /0

is a set of hyperedges.
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Analogously, this definition is a generalisation of the notion of undirected graphs: where an edge is

an unordered pair of vertices, a hyperedge is a set of vertices.

In order to achieve high performance, the authors define an encoding of their undirected hypergraphs

as labeled bipartite graphs. Concretely, vertices are labeled either • or ◦, with •-vertices playing the

role of hypernodes, and ◦-vertices playing the role of hyperedges. For example, the bipartite graph

below depicts such an encoding, where an edge •→ ◦ indicates that the source hypernode appears in the

hyperedge set.

(3)

However, since this encoding is specific to the undirected hypergraphs of [8], we must adapt it to suit

our purposes.

2.3 PROPs of Matrices

We denote the PROP of matrices over a semiring S by MatS, where the tensor product f ⊗ g is the

direct sum, i.e.:

∣

∣

∣

∣

f 0

0 g

∣

∣

∣

∣

. In this paper, we will only consider matrices over the semirings of booleans

B and natural numbers N. We denote the m× n zero matrix as 0n,m, dropping the subscripts where

unambiguous. We refer to the set of m× n matrices as MatS(n,m), and note that we always write

composition in diagrammatic order: that is, for composition n
f
→ m

g
→ l we always write f #g.

2.4 Adjacency Matrices

The adjacency matrix representation of a graph is central to our representation of hypergraphs, and so

we recall it now. The adjacency matrix of a K-node directed graph is a matrix MatB(K,K) where the ith

column denotes the outgoing edges of the ith node. For example, consider the graph and its adjacency

matrix below:

• •

•

•

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

(4)

Note that in this particular representation, there can be exactly one edge between two nodes of the

graph. We can also introduce labeled edges by varying the semiring of Mat: for example, by considering

matrices MatN(K,K) we can consider edges to have labels in the set {1,2, . . .}, with 0 denoting no edge.

Consider for example the same graph as (4) but with labeled edges:

• •

•

•

8

2

4 ∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0

8 0 0 0

2 0 0 0

0 4 0 0

∣

∣

∣

∣

∣

∣

∣

∣

(5)
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3 Hypergraph Adjacency Representation

In this section we provide the main technical definition of the paper: the notion of Hypergraph Adjacency

Representation (HAR). We begin by providing a roadmap to the formal definition. In a nutshell, the main

hurdle is to adapt the approach to undirected hypergraphs in [8] (reported in Section 2.2) to (directed)

hypergraphs with interfaces. This will provide us a means of representing hypergraphs with interfaces as

bipartite graphs, and thus as the corresponding adjacency matrices. As string diagrams can be identified

as a certain class of hypergraphs with interfaces, this methodology will yield an implementation of string

diagrams as adjacency matrices.

Before delving in the formal definition, the approach is best illustrated via an example. Recall the

string diagram in (1) (below left) with its interpretation as a hypergraph with interfaces (below center).

Its bipartite graph encoding is displayed below right.

α

β

γ
α

β

γ
α

β

γ
1

1
1

2

21

1

1

(6)

Note this is similar to the bipartite graph encoding shown in (3), as made evident when we rearrange the

bipartite graph of (6) as follows:

α β γ

1 1
1

2

21

1

1

1 (7)

The differences are (i) the presence of interfaces (needed because we are interested in composing these

structures), (ii) the labeling of ◦-vertices with Σ-operations, and (iii) the labeling of edges with natural

numbers. The latter information indicates the position, in the original hypergraph with interfaces, of a

node in the source/target lists of a hyperedge. For instance, the edge labeled with 2 indicates that, in

the original hypergraph, the target node of hyperedge α is in the second position in the source list of

hyperedge γ .

The next step is translating this bipartite graph into an adjacency matrix (along the lines of Sec-

tion 2.4), together with information on what are the interfaces of the graph. This leads us to the data

structure called HAR: a 4-tuple (M,L,R,N), with M serving double-duty as the adjacency matrix and

edge-label data, N a vector of node labels, and L and R permutation matrices reordering M so that left

boundary nodes are the first and right boundary nodes the last, respectively. Returning to our example

hypergraph in (6), we represent it with the following data (in which we write N twice for clarity):
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M =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 2 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 2 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

•
•
α

β

•
•
γ

•
•

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L = id9 R =

∣

∣

∣

∣

id7 0

0 σ1,1

∣

∣

∣

∣

N =
∣

∣• • α β • • γ • •
∣

∣

We can read the columns of M as the outgoing edges for a particular node. See for example the

column for β , which has two outgoing edges labeled 1 and 2, both of which connect to nodes labeled •.
Note that L is the identity matrix: this means that the left interface nodes appear first, and moreover they

appear in the same order as in the interface. Hence, the first 2 rows contain only zeros because the left

interface nodes have no incoming edges. On the other hand R is the block matrix

∣

∣

∣

id 0

0 σ

∣

∣

∣

and so while

the final two nodes are the right interface nodes, their order in the interface is swapped.

3.1 Main Definition

We can now give our main definition—for background on matrix notation see Section 2.3.

Definition 3.1 (Hypergraph Adjacency Representation). Fix a monoidal signature Σ. A hypergraph

adjacency representation of type n→ m is written Harn,m and consists of the following data:

- Size K ∈N

- Labeled Adjacency Matrix M ∈MatN(K,K)

- Left Permutation L ∈MatB(K,K)

- Right Permutation R ∈MatB(K,K)

- Node Labels N ∈ ({•}+({◦}×Σ))K

satisfying the following conditions:

- The graph represented by M is acyclic.

- The matrix LT #M #L is ordered such that the first m nodes are the left interface nodes

- The matrix RT #M #R is ordered such that the last n nodes are the right interface nodes.

- If a node labeled • is not an interface node, then it has exactly one incoming and outgoing edge.

- For each vertex v labeled (◦,g) with g having arity/coarity m,n,

- v has incoming edges e1 . . .em with labels 1 . . .m respectively.

- v has outgoing edges e1 . . .en with labels 1 . . .n respectively.
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3.2 Permutation Equivalence and Boundary Orderings

In Section 4 we will see that composition of Hars is only associative up to isomorphism. Therefore, in

order to form a category of Hars, we will quotient by the following equivalence relation,3 which equates

Hars having isomorphic graphs.

Definition 3.2 (Permutation Equivalence). f ,g : Harn,m are equivalent up to permutation P, denoted

f
P
∼ g, when P is a permutation matrix such that the following conditions hold:

gM = PT # fM #P gL = PT # fL gR = PT # fR gN = fN #P

Remark 3.3. Note that this definition ensures that if f
P
∼ g then gM is a graph isomorphic to fM and also

that the interfaces of f and g are the same.

Proposition 3.4 (Permutation Equivalence is an Equivalence Relation). Fix some f ,g ∈ Harn,m. Then

there exists an equivalence relation denoted ∼ such that f ∼ g iff there exists some permutation matrix

P ∈MatB(K,K) such that f
P
∼ g (cf. Definition 3.2)

Proof. Clearly ∼ is reflexive because f
id
∼ f . Further, it is symmetric because if f

P
∼ g, then g

PT

∼ f .

Finally, transitivity follows from matrix composition: If f
P
∼ g and g

Q
∼ h, then f

P#Q
∼ h.

This definition means that each f : Harn,m can be put into an equivalent left (resp. right) boundary

order by permuting by fL (resp. fR). We will make heavy use of these particular permutations in defining

composition and tensor product, so we define them explicitly.

Definition 3.5. The left boundary order of f ∈ Harn,m is denoted L( f ) and has the following data:

L( f )M = f T
L # fM # fL L( f )L = id fK

L( f )R = f T
L # fR L( f )N = fN # fL

Definition 3.6. The right boundary order of f ∈ Harn,m is denoted R( f ) and has the following data:

R( f )M = f T
R # fM # fR R( f )L = f T

R # fL R( f )R = id fK
R( f )N = fN # fR

Remark 3.7. Note that by definition L( f )
fL
∼ f and vice-versa, R( f )

fR
∼ f .

4 Operations on Hars

The main motivation for introducing Hars is providing an efficient implementation for composing string

diagrams. To this aim, in this section we define the operations for constructing and combining Hars.

These developments will also allow us to prove that Hars form a category, in the next section.

Definition 4.1.

• The identity Har of type n→ n is (0n,n, idn, idn,0n,1).

• The symmetry σn,m : n⊗m→m⊗n is (0n+m,n+m, idn+m,P,0n+m,1) with P the block matrix

∣

∣

∣

0 idm

idn 0

∣

∣

∣
.

3We could take the alternative perspective that Har forms a weak 2-category with permutation matrices as 2-cells, but we

will take the equivalence relation perspective to simplify our presentation.
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• Given an operation g : n→ m ∈ Σ, the ‘singleton’4Har is given by (M, idK , idK ,N), with size K =

n+m+1, node labels N = (01,n,g,01,m) and M the block matrix

∣

∣

∣

∣

0 0 0

S 0 0

0 T 0

∣

∣

∣

∣

, where S ∈MatN(1,n)

is the row vector (1,2, . . . ,n) and T ∈MatN(m,1) the column vector (1,2, . . . ,m).

• Let f : n1→ m1 and g : n2→ m2 be Hars. The tensor product f ⊗g is component-wise as follows.

( f⊗g)M =
fM

gM

fK fK

gK gK

( f⊗g)L =
fL

gL

fK
n1

gK

n2

fK−n1
gK−n2

( f⊗g)R =
fR

gR

fK

m1
gK m2

fK−m1
gK−m2

with ( f ⊗g)N given by appending fN and gN , i.e., the block vector ( fN gN).

• Let f : n→ m and g : m→ l be Hars. Composition is defined component-wise as follows:

( f #g)M =
R( f )M

fK−m fK

L(g)M gK−mgK

( f #g)L =
R( f )LfK fK

gK−m gK−m
( f #g)R =

L(g)R

fK−m fK−m

gK gK

with ( f # g)N given by appending R( f )N and L(g)N(b :), where x(b :) denotes all but the first b

elements of the array x. Alternatively, one may regard ( f # g)N as a diagonal matrix, and define

composition as for ( f #g)M .

Remark 4.2. Note that in the definition of ( f #g)M , the morphisms and represent the projection

π2 : A×B→ B and embedding ι1 : A→ A×B morphisms, respectively. One may think of the composition

M #π1 as selecting the last columns of M and ι0 #M as selecting the first rows.

5 Adequacy of the Har-Implementation

In this section we show how the interpretation of string diagrams as Hars can be described as a full and

faithful functor between PROPs, meaning that our implementation is actually a 1-to-1 correspondence.

As a preliminary step, we need to show how Hars form a category.

Proposition 5.1. There is a PROP HarΣ whose morphisms n→ m are equivalence classes of values

Harn,m under the equivalence relation ∼, and identity, symmetries, composition and tensor product are

as defined in Section 4.

Proof. We give a graphical proof that composition is assocative up to permutation in the full version of

our paper [17, Appendix A.6].

It is straightforward to check that f # id= f , and similarly one can check that σ #σ
σ
∼ id. Finally, one

can see that the tensor product is associative essentially because the direct sum is.

Definition 5.2. Let J·K : FreeΣ→ HarΣ be the identity-on-objects symmetric monoidal functor freely ob-

tained by the mapping of operations g ∈ Σ to singleton Hars, as defined in Section 4.

Proposition 5.3. J·K : FreeΣ→ HarΣ is an isomorphism of PROPs.

4The name ‘singleton’ refers to the fact that such a Har contains a single generator. We choose this name based on its

common usage in Haskell libraries for a function creating a datastructure (e.g. a set) with a single element.
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We now give a sketch of our proof, leaving the full details to the full version of our paper [17,

Appendix B].

Proof. Thanks to Proposition [17, B.6], it suffices to show that:

- There is a symmetric monoidal functor 〈·〉 : HarΣ→ FreeΣ,

- HarΣ is generated by the singleton Hars corresponding to the operations g ∈ Σ, and

- 〈JgK〉= g for g ∈ Σ.

Essentially, the idea is to show that HarΣ is just a ‘relabeling of generators’ of FreeΣ.

6 Complexity

We now give the time complexity of the composition and tensor product operations defined in Section 4.

We give empirical results to validate our claims in Section 7.

Naively, since our algorithm is expressed in terms of matrix multiplication, it should have a time

complexity of at best O(n2.3728596) (at time of writing [1]). However, we can do significantly better by

exploiting the high degree of sparsity of the matrices of a Har.

Concretely, observe that for a finite monoidal signature Σ and f ∈ Har(n,m), one can guarantee that

the number of non-zero elements in fM is O( fK):

Proposition 6.1 (Bounded sparsity). Fix a finite monoidal signature Σ and let f be a Har. Now Let m be

the largest arity of any generator g ∈ Σ and n the largest coarity. Then the rows of fM have at most m

non-zero elements, the columns at most n non-zero elements, and fM has O( fK) non-zero elements.

Proof. By Definition 3.1, each vertex v in the graph represented by fM must have exactly m incoming

and n outgoing edges. These edges correspond to the non-zero rows and columns of fM, respectively,

and so the non-zero elements of each row (resp. column) is at most m (resp. n).

Now, it happens that the time complexity of the ‘naive’ sparse matrix multiplication algorithm [7] is

essentially linear in the number of non-trivial multiplications required—that is, those scalar multiplica-

tions where neither multiplicand is zero. From this fact and the property of bounded sparsity, it follows

that both composition and tensor product of Hars are linear-time operations. To make this clear, we

introduce the following proposition:

Proposition 6.2 (Permutation of Har has linear complexity). Choose some f ∈ HarΣ and a permutation

matrix P ∈Mat( fK , fK). Then P # fM and fM #P can be computed in linear time.

Proof. For matrices A,B ∈ Har(k,k), the complexity of Gustavson’s sparse matrix multiplication rou-

tine [7] is O(2k+nnz(A)+m). Here nnz(A) is the number of non-zero entries of A and m is the number

of non-trivial multiplications required.

By the bounded sparsity property (Proposition 6.1), one can see that computing a row of the matrix

fM #P requires only a constant number of non-trivial multiplications, and further nnz( fM) is O( fK). Thus,

computing fM #P is O( fK).

Alternatively, one may also see that linear complexity is possible using Gustavson’s HALFPERM al-

gorithm [7], which can compute P # fM # QT in O(nnz( fM)) operations. Since nnz( fM) is O( fK), this

operation has linear complexity.
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Using Proposition 6.2 we can now show that composition and tensor product have linear time com-

plexity.

Proposition 6.3 (Tensor Product of Hars f⊗g is O( fK +gK)). Given f ∈Har(n1,m1) and g∈Har(n2,m2),
computation of f ⊗g is O( fK +gK).

Proof. It is clear from definition 3.1 that each component of f ⊗g is computed either as a direct sum or

a multiplication of permutation matrices of size fK +gK . Since each of these operations is O( fK +gK),
it is clear that the whole operation is as well.

Proposition 6.4 (Composition of Hars f # g is O( fK + gK)). Given f ∈ Har(n,m) and g ∈ Har(m, l),
computation of f #g is O( fK +gK).

Proof. The proof is similar to that of Proposition 6.3, except that we must include the cost of the oper-

ations R( f ) and L(g). These operations are linear by proposition 6.2, and so the composition f #g must

also be O( fK +gK).

7 Empirical Results

We now give an empirical evaluation of our complexity claims on several synthetic benchmarks. We

compare our own implementation to the wiring diagrams of Catlab.jl [11, 12].5 Both our implementa-

tion and benchmarking code are available on GitHub at https://github.com/statusfailed/cartographer-har.

In the following benchmarks we use a fixed monoidal signature based on the finite presentation

of boolean circuits described in [10]. We choose boolean circuits since they are a real-world applica-

tion of string diagrams in which string diagrams would typically be very large. For example, a string-

diagrammatic representation of a CPU would need (at least) hundreds of thousands of generators. In

particular, our benchmarks use the following generators:

Σ = {COPY : 1→ 2 XOR : 2→ 1 AND : 2→ 1 NOT : 1→ 1}

Experiment Details Each benchmark has the same structure: for k ∈ {1 . . .20} we construct two string

diagrams consisting of 2k−1 generators, and then measure tensor product or composition of those dia-

grams. We repeat each measurement 10 times for each k and plot the mean with minimum and maximum

error bars. Further, if a result takes longer than 60 seconds to compute, it is omitted. More details of our

experimental setup can be found in the full version of our paper [17, Appendix C].

Note carefully that the performance chart for each benchmark uses a log scale on both axes, since for

each k we construct a string diagram of size 2k.6

7.1 Benchmark #1: Repeated Tensor

We first measure the performance of the tensor product of large representations. Concretely, let f be the

k-fold tensor product of AND, i.e., f = AND⊗ k
. . .⊗AND. We measure the performance of computing

f ⊗ f .

5Note however that Catlab’s wiring diagrams provide a strictly more general setting than ours. We discuss possible gener-

alisations of our approach to address this in Section 8.
6In these experiments, by “size” we mean specifically the number of generators in the diagram.

https://github.com/statusfailed/cartographer-har
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7.2 Benchmark #2: Small-Boundary Composition

We measure the performance of composition n
f
→ m

g
→ l along a small shared boundary, i.e., where

m≪ fK + gK . Concretely, let f be the k-fold composition of NOT, so that f = NOT # k
. . . #NOT. We

measure the performance of computing f # f .
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7.3 Benchmark #3: Large-Boundary Composition

We measure the performance of composition n
f
→ m

g
→ l along a large shared boundary, i.e. where

m≈min( fK ,gK). In particular, let f be the k-fold tensor product of NOT. Then we measure f # f .
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7.4 Benchmark #4: Synthetic Benchmark

We give a final benchmark as a validity check to ensure our implementation still performs well on

realistic-looking representations. Specifically, we measure the performance of composing two 2k−1-bit

adder circuits to form a 2k-bit adder.
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8 Discussion & Future Work

We consider our work a step towards a set of high-performance algorithms for manipulating string dia-

grams, but naturally a number of avenues for improvement remain.
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Most obviously, it remains to explore algorithms for matching and rewriting, which are necessary to

support applications like a string-diagrammatic proof assistant. Perhaps less obviously, we would also

like to study algorithms for evaluating circuit diagrams: this can be useful for e.g., simulating a boolean

circuit or writing an interpreter for a programming language whose syntax is based on SMCs.

There are also several optimizations that could be made to our current algorithm. Firstly, we rep-

resent permutations as matrices, but a more efficient approach could be to use dense vectors of indices.

However, this would require the implementor to have access to a function like the HALFPERM algorithm

of [7].

Finally, several generalisations may be possible. Most useful would be to generalise to arbitrary

symmetric monoidal syntax rather than just PROPs. Secondly, by modifying our representation slightly,

we could account for arbitrary hypergraphs with interfaces — although we also believe this would affect

the complexity bounds.
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