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The exponential modalities of linear logic have been used by various authors to model infinite-
dimensional quantum systems. This paper explains how these modalities can also give rise to the
complementarity principle of quantum mechanics.

The paper uses a formulation of quantum systems based on †-linear logic, whose categorical
semantics lies in mixed unitary categories, and a formulation of measurement therein. The main
result exhibits a complementary system as the result of measurements on free exponential modalities.
Recalling that, in linear logic, exponential modalities have two distinct but dual components, ! and ?,
this shows how these components under measurement become “compacted” into the usual notion of
a complementary Frobenius algebras from categorical quantum mechanics.

1 Introduction

Linear logic introduced by Girard in his seminal paper [17] treats logical statements as resources, which
cannot be duplicated or destroyed. The word “linear” refers to this resource sensitivity of the logic: a
proof of a statement in linear logic may thus be regarded as a series of resource transformations. In full
linear logic the classical ability to duplicate and destroy resources is recaptured by the exponential (or
storage) modality written ! (pronounced the “bang”). The type !A may be interpreted as an unbounded
“store” from which resources of type A can be extracted an arbitrary (including 0) number of times.

The exponential modality ! has been proposed as a structure for modelling infinite dimensional sys-
tems: [23] used the exponential modality to model the quantum harmonic oscillator, and [5] used it to
model the bosonic Fock space. However, these uses did not explain what exponential modalities ! and its
dual ? (pronounced the “whimper”) have to do with the complementarity principle of quantum mechan-
ics [11]. A pair of quantum observables (physical properties of a system) is said to be complementary if
measuring one observable increases the uncertainty regarding the value of the other. The classic example
is that the more one knows about position of a particle the less one knows about its momentum. The
purpose of this article is to exhibit a relationship between the exponential modalities ! and its dual ?, and
complementary observables — a relationship which suggests a possibly new perspective on measurement
in quantum systems.

Linearly distributive categories (LDCs) [8] provide a categorical semantics for the multiplicative
fragment of linear logic (MLL). Thus, LDCs are equipped with two distinct tensors called the “tensor”,
⊗, and the “par”, ⊕.1 These are related by a linear distributor. It is not assumed that the tensor is dual
to the par — which would be normal in linear logic. In an LDC, having a dual is a property which an
object may or may not possess. When every object possesses a dual then the category is ∗-autonomous.

*Partially supported by NSERC, Canada
1In the linear logic community the par is often denoted by ` but we follow the convention in [8] and use ⊕.
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In this development, LDCs which satisfy the so-called “mix law” are particularly important. The
mix law provides a natural transformation from the tensor to the par called the mixor. When the mixor
is a natural isomorphism the LDC becomes equivalent to a monoidal category. Conversely, monoidal
categories can be viewed as being degenerate or compact LDCs in which the mixor is the identity map.
Thus, from this perspective, a compact closed category is a compact LDC with duals, that is, a compact
∗-autonomous category.

In [6], we introduced †-linearly distributive categories (†-LDCs) with mix for modelling possibly
infinite-dimensional quantum processes. In a mix LDC, there is always a set of objects which cannot
distinguish between the tensor and the par in the sense that A⊗ ' A⊕ : these objects form a compact
subLDC called the core. In a mix †-LDC, it is possible to go one step further, and identify a unitary
core in which every object is not only in the core but isomorphic to its †-dual in a coherent way. A
unitary core is equivalent to a †-monoidal category and when this category has duals it is equivalently a
†-compact closed category [1, 21]. This is the main structure underlying categorical quantum mechanics
(CQM) [12, 19]: finite-dimensional Hilbert spaces provide the paradigmatic example.

The general notion of a mixed unitary category (MUC) is essentially a mix †-LDC with a specified
unitary core. In particular, the unitary core may be viewed as comprising the finite-dimensional processes
while the larger category extends this to include infinite-dimensional processes. An example of a MUC is
given by the embedding of complex finite matrices into the category of finiteness matrices [16]. Another
example is given by the embedding of the finite-dimensional Hilbert spaces within the category of Chu
spaces [2] of vector spaces over complex numbers with the field C as the dualizing object. For further
details see [6, 9], where completely positive maps, and environment structures for MUCs are described.
In this article, we explore the notions of measurement and complementarity in MUCs.

In CQM, Coecke and Pavlovic [13] described a “demolition” measurement in a †-monoidal category
as a map, m : A −→ X , with m†m = 1X , to a special commutative †-Frobenius algebra, X . Interpreted in
the category of finite-dimensional Hilbert spaces, the notion of the demolition measurement models the
Projection-Valued Measures (PVMs) of quantum mechanics. Generalizing this idea to MUCs to model
measurements here is complicated by the fact that, in a MUC, generally, A 6= A†, except in the unitary
core. Thus, in a MUC, a measurement can be viewed as a two-step process in which one first “compacts”
an object into the unitary core by a retraction and then one performs Coecke and Pavlovic’s demolition
measurement. The compaction process is discussed in Section 3 and is already quite interesting: it gives
rise to a †-binary idempotent. Conversely, a †-binary idempotent, which is “coring” and splits, gives rise
to a compaction into the “canonical” unitary core.

In CQM, quantum observables are characterized by certain †-Frobenius algebras [14] in †-monoidal
categories. Two such †-Frobenius algebras, (A, , , , ) and (A, , , , ) are said to be comple-
mentary [11] if (A, , , , ) and (A, , , , ) are Hopf algebras. An object which is a Frobenius
algebra is always self-dual. In an LDC, a linear monoid, A ◦ � � B, is a ⊗-monoid A together with a dual
B. Because B is dual to A — and A is a ⊗-monoid — it follows that B is a ⊕-comonoid. In contrast a
linear comonoid2, A ◦

� � B, is a ⊗-comonoid A together with a dual B: this means that B is a ⊕-monoid.
A linear monoid and a linear comonoid interact to produce a linear bialgebra: this has a ⊗-bialgebra on
A and a ⊕-bialgebra on B. In a MUC, the linear bialgebras in the unitary core are the base for defining
complimentary systems. These structures are presented in Section 4.

Section 5 describes the connection between the free exponential modalities and complimentary sys-
tems in a †-isomix setting. An LDC is said to have exponential modalities, if it has a monoidal comonad
(!,δ ,ε), a comonoidal monad (?,µ,η), and for all objects A (!A,∆A, A) is a natural commutative ⊗-

2Note that this is not the dual notion of a linear monoid as a linear monoid is a self-dual notion in an LDC.
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monoid and (?A,∇A, A) is a natural commutative ⊕-monoid. The modalities are said to be free if
(!A,∆A, A) is cofree and (?A,∇A, A) is free. The main result of this paper is that in a MUC, every †-
complementary system in the unitary core arises as the splitting of a †-binary idempotent on the †-linear
bialgebra induced on the free exponentials. This is an interesting result since it shows that complemen-
tary observables arise from compacting dual but distinct systems of arbitrary dimensions.

Notation: Diagrammatic order of composition is used: so f g should be read as f followed by g. Circuit
diagrams should be be read top to bottom: that is following the direction of gravity!

A full version of this article containing all proofs is available in arXiv [10].

2 Preliminaries

In this section, we recall the definitions of dagger isomix categories, unitary categories, and mixed unitary
categories from [6]. To achieve this we start by recalling the definitions of linearly distributive categories
and isomix categories.

A linearly distributive category (LDC) [8], (X,⊗,⊕), is a category with two tensor products — ⊗
called the tensor with unit >, and the ⊕ called the par with unit ⊥. The tensor and the par interact by
means of linear distributors which are natural transformations (which, in general, are not isomorphisms):

∂
L : A⊗ (B⊕C)→ (A⊗B)⊕C ∂

R : (B⊕C)⊗A→ B⊕ (C⊗A)

A symmetric LDC is an LDC in which both monoidal structures are symmetric, with symmetry maps
c⊗ : A⊗B−→ B⊗A and c⊕ : A⊕B−→ B⊕A, such that ∂ R = c⊗(1⊗ c⊕)∂ L(c⊗⊕1)c⊕. LDCs provide a
categorical semantics for linear logic, and are equipped with a graphical calculus; see [6, Section 2] and
[4].

A mix category is an LDC with a mix map, m : ⊥ −→>; when m is an isomorphism it is an isomix
category. The mix map gives a natural mixor map, mx : A⊗B −→ A⊕B, which, even if the mix map
is an isomorphism, is usually not an isomorphism. An isomix category in which every mixor map is an
isomorphism is a compact LDC. A compact LDC with m= 1 and mx= 1 is just a monoidal category.

The core, Core(X), of an isomix category X is the full subcategory given by the objects, U , such that
for all A ∈ X, the maps mxU,A : U ⊗A −→U ⊕A and mxA,U : A⊗U −→ A⊕U are isomorphisms. The
units, > and ⊥, are always in the core. The core Core(X) of an isomix category X is always a compact
LDC.

A †-linearly distributive category [6] is an LDC X with a functor ( )† : Xop −→X and the following
natural isomorphisms satisfying the coherence conditions which are described in [6].

tensor laxors: A†⊗B† λ⊗−−→ (A⊕B)† A†⊕B† λ⊕−−→ (A⊗B)†

unit laxors: > λ>−−→⊥† ⊥ λ⊥−−→>†

involutor: A ι−→ (A†)†

In a †-LDC, it is generally the case that A 6= A† because † swaps the tensor and the par. A †-mix
category is a †-LDC which has a mix map which satisfies, in addition the following commuting diagram:

[†-mix]
⊥ m //

λ⊥ ��

>
λ>��

>†
m†
// ⊥†
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If m is an isomorphism, then X is an †-isomix category. A compact †-LDC is a compact LDC
which is also a †-isomix category.

In a †-monoidal category a unitary isomorphism is an isomorphism f with f † = f . In a †-LDC, an
object, A, does not necessarily coincide with its dagger, A†: this means that describing unitary isomor-
phism for †-LDCs is more complicated. To accomplish this the notion of unitary structure which is
described in [6] is used. A pre-unitary object in a †-isomix category is an object A in the core with
an isomorphism ϕ : A −→ A† such that ϕ(ϕ−1)† = ι (where ι is the involutor). Unitary structure for a
†-isomix category is given by a family of pre-unitary objects satisfying certain closure and coherences
requirements.

A unitary category is a compact †-LDC equipped with unitary structure which makes every object
a (pre)unitary object. A †-monoidal category [19] is a unitary category with ⊗ = ⊕ and the unitary
structure given by the identity map. Conversely, every unitary category is †-linearly equivalent to a
†-monoidal category via the †-linear functor Mx↓ : (X,⊗,⊕)−→ (X,⊗,⊗), see [6, Prop. 5.11].

A mixed unitary category (MUC) [6] is a †-isomix category, C, equipped with a strong †-isomix
functor M : U−→ C from a unitary category U such that there are natural transformations:

mx′ : M(U)⊗X −→M(U)⊕X with mx mx′ = 1, mx′mx= 1

Thus, a mixed unitary category can be visualized schematically as:

A
ϕA−−→
'

A†

Unitary
category †-isomix

functor

†-isomix
category

B B†

Core

Within the unitary category, A ' A† by the means of the unitary structure map. However, outside the
unitary core, an object is not in general isomorphic to its dagger.

Given any †-isomix category X, the preunitary objects always form a unitary category, Unitary(X)
with a forgetful †-isomix functor U : Unitary(X) −→ X which produces a MUC. Unitary(X) satisfies
a couniversal property, see [6, Section 5.2], and is the “largest” possible unitary core for the †-isomix
category X. We shall call Unitary(X) the canonical unitary core of X.

3 Measurement

A measurement in a MUC can be broken into two steps: a compaction step into an object in the unitary
core followed by a demolition measurement within the unitary core.
Definition 3.1. Let M : U−→ C be a MUC. A compaction of an object A ∈ C to U ∈ U is a retraction,
r : A−→M(U). This means that there is a section s : M(U)−→ A such that sr = 1M(U). A compaction is
said to be canonical when U= Unitary(X) (so U is a preunitary object).

The compact object, M(U), has a unitary structure map which is an isomorphism between M(U) and
M(U)† given by composing the unitary structure map of U with the preservator ρ (see [6, Definition
3.17] for the complete definiton of a preservator):

ψ := M(U)
M(ϕ)−−−−→M(U†)

ρ−−→M(U)†
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Once one has reached M(U) by a compaction, one can follow with a classical demolition measurement

U w−−→ X to obtain an overall compaction A
rM(w)−−−−→M(X), which gives a (demolition) measurement in

a MUC.
We start by showing how a compaction gives rise to a binary idempotent:

Definition 3.2. A binary idempotent in any category is a pair of maps (u,v) with u : A−→ B, and v : B
−→ A such that uvu= u, and vuv = v.

A binary idempotent, (u,v) : A−→ B gives a pair of idempotents: eA := uv : A−→ A, and eB := vu : B
−→ B. We say the binary idempotent (u,v) splits in case the idempotents eA and eB split.
Lemma 3.3. In any category the following are equivalent:

(i) (u,v) : A−→ B is a binary idempotent which splits.

(ii) e : A−→ A, and d : B−→ B are a pair of idempotents which split through isomorphic objects.
Observe that a compaction of an object, say A, in any MUC, gives the following system of maps:

A
r // M(U)
s

oo
ψ:=M(ϕ)ρ// M(U)† r†

//

ψ−1
oo A†

s†
oo

Thus the compaction gives rise to a binary idempotent (u,v) : A −→ A† where u := rψr† and v :=
s†ψ−1s.

Because U is a unitary object, we have that ϕ(ϕ−1†) = ι . The preservator, on the other hand, satisfies
ιρ† = M(ι)ρ (see after Definition 3.17 in [6]). Thus, ιρ† = M(ι)ρ = M(ϕϕ−1†)ρ = M(ϕ)ρM(ϕ−1)†

and hence ψ = M(ϕ)ρ = ιρ†M(ϕ)† = ι(M(ϕ)ρ)† = ιψ†. This allows us to observe:

ιu† = ι(rψr†)† = ιr††
ψ

†r† = rιψ
†r† = rψr† = u

v† = (s†
ψ
−1s)† = s†(ψ†)−1s†† = s†(ι−1

ψ)−1s†† = s†
ψ
−1

ιs†† = s†
ψ
−1sι = vι

This leads to the following definition:
Definition 3.4. A binary idempotent, (u,v) : A −→ A† in a †-LDC is a †-binary idempotent, written
†(u,v), if u= ιu† and v† = vι .

In a †-monoidal category, where A = A† and ι = 1A this makes u= u† and v = v†; thus uv = (vu)†.
This means that if we require uv = vu we obtain a dagger idempotent in the sense of [22].

Splitting a †-binary idempotent almost produces a preunitary object. In a †-LDC, we shall call an
object A with an isomorphism ϕ : A −→ A† such that ϕϕ†−1 = ι a weak preunitary object. Clearly, in
a †-isomix category, a weak preunitary object (A,ϕ) is a preunitary object when, in addition, A is in the
core. We next observe that dagger binary idempotent splits through weak preunitary objects:
Lemma 3.5. In a †-LDC with a †-binary idempotent †(u,v) : A−→ A†:

(i) eA† := vu= (uv)† =: (eA)
†;

(ii) if †(u,v) splits with eA = A r−→ E s−→ A then E is a weak preunitary object.
Thus, in a †-isomix category, an object which splits a †-binary idempotent is always weakly pre-

unitary. In order to ensure that the splitting of a †-binary idempotent is a preunitary object — and so a
canonical compaction — it remains to ensure that the splitting is in the core. This leads to the following
definition:
Definition 3.6. An idempotent A e−→ A in an isomix category, X, is a coring idempotent if it is equipped
with natural κL

X : X⊕A−→ X⊗A and κR
X : A⊕X −→ A⊗X such that the following diagrams commute:

X⊗A 1⊗e //

1⊗e �� [KL.1]

X⊗A
mx��

X⊗A X⊕A
κL

X

oo

X⊕A 1⊕e //

1⊕e �� [KL.2]

X⊕A
κL

X��
X⊕A X⊗Amx

oo

A⊗X e⊗1 //

e⊗1 �� [KR.1]

A⊗X
mx��

A⊗X A⊕X
κR

X

oo

A⊕X e⊕1 //

e⊕1 �� [KR.2]

A⊕X
κR

X��
A⊕X A⊗Xmx

oo
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For a coring idempotent A e−→ A, the transformations κX act on a splitting as the inverse of the mixor,
mx. Thus, a coring idempotent always splits through the core:
Lemma 3.7. In a mix category:

(i) An idempotent splits through the core if and only if it is coring;

(ii) If (u,v) is a binary idempotent then uv is coring if and only if vu is coring.
This allows:

Definition 3.8. A coring binary idempotent in a mix category is a binary idempotent, (u,v), for which
either uv or vu is a coring idempotent.

These observations can be summarized by the following:
Theorem 3.9. In the MUC M :Unitary(X)−→X, with †-isomix category X, an object U is a compaction
of A if and only if U is the splitting of a coring †-binary idempotent †(u,v) : A−→ A†.

Using this characterization of canonical compaction, we will show that, in the presence of free †-
exponential modalities, complementarity always arises as a canonical compaction of a †-linear bialgebra
on the free exponential modalities.

4 Complementarity

The objective of this section, is to describe strong complementarity within a †-isomix category. Strong
complementarity classically is, in a †-monoidal setting, between two special commutative †-Frobenius
algebras. In a linear setting with two distinct tensor products, Frobenius Algebras are generalized by
linear monoids [15, 7] which consist of a ⊗-monoid and a dual ⊕-comonoid. The directionality of the
linear distributor makes a bialgebraic interaction between two †-linear monoids impossible. However,
such an interaction is possible between a †-linear monoid and a †-linear comonoid, and this gives a †-
linear bialgebra. These †-linear bialgebras provide the basis for complementarity in a †-isomix category.
In a MUC, one can, furthermore, consider the effect of a compaction which preserves these structures to
arrive back at the classical CQM notion of a complementary system.

4.1 Duals

Definition 4.1. A dual in an LDC, (η ,ε) : A aa B, consists of maps, η :>−→ A⊕B, and ε : B⊗A−→⊥
such that the snake diagrams hold. A morphism of duals, ( f ,g) : (η ,ε) : A aa B −→ (τ,γ) : A′ aa B′, is
given by a pair of maps f : A−→ A′ and g : B′ −→ B such that:

(a)
τ

A′

B′

g

B

=
η

B

A

f
A′

(b)
γ

B′

A′

f
A

=
ε

A

B

g
B′

A self-duality is a dual (η ,ε) : A aa B in which A is isomorphic to B (or indeed A = B).
A morphism ( f ,g) of duals is determined by either of the maps, as f is dual to g: they are Australian

mates; see [7]. In a †-LDC, if A is dual to B, then B† is dual to A†:
A binary idempotent can implicitly express a morphism of duals, which becomes explicit when the

idempotent splits.
Definition 4.2. A binary idempotent (u,v) is retractional on a dual (η ,ε) : A aa B if equations (a) and
(b), below, hold. On the other hand (u,v) is sectional, if equations (c) and (d) hold:

(a)
eA

A B

=
eA

A B
eB

(b) eB

AB

= eA

AB
eB (c)

eB

BA

=
eA

A B
eB

(d) eA

B A

= eA

AB
eB

where eA := uv and eB := vu.



Robin Cockett, Priyaa Varshinee Srinivasan 213

The idempotent pair (eA,eB) is a morphism of duals only when the binary idempotent is both sectional
and retractional.

Lemma 4.3. In an LDC, a binary idempotent (u,v) on a dual (η ,ε) : A aa B, with splitting A r−→ E s−→ A

and B r′−−→ E ′ s′−−→ B is sectional (respectively retractional) if and only if the section (s,r′) (respectively
the retraction (r,s′)) is a morphism for (η(r⊕ r′),(s′⊗ s)ε) : E aa E ′.

Splitting binary idempotents which are either sectional or retractional on a dual produces a self-
duality.

We next observe that the dagger of a dual is itself a dual:

Lemma 4.4. Suppose X is a †-LDC, and (η ,ε) : A aa B is a dual in X. Then, (ε†,η†) : B† aa A† is a dual
where:

ε† :=> λ>−−→⊥† ε†

−−→ (B⊗A)† λ
−1
⊕−−−→ B†⊕A†

η† := A†⊗B† λ⊗−−→ (A⊕B)† η†

−−→>† λ
−1
⊥−−−→⊥

Definition 4.5. In a †-LDC, a †-dual, A
† � � A† is a dual (η ,ε) : A aa A† such that

(ιA,1A†) : (η ,ε) : A aa A† −→ (η†,ε†) : A†† aa A†

is an isomorphism of duals (see 4.5.1 (a), (b)). A self †-dual is a right †-dual with an isomorphism
α : A −→ A† such that αα−1† = ι . A morphism of †-duals consists of a pair of maps ( f , f †) : ((η ,ε) :

A
† � � A†)−→ ((η ′,ε ′) : B

† � � B†) which are morphism of duals.

(ιA,1A†) being an isomorphism of the duals means that the following equations hold:

(a)

η

A†† A†

ι
= ε

A†

A†† A†

A

(or equivalently) (b)

ε

A† A

= η

A†

AA†

A

ι

(4.5.1)

Lemma 4.3 can be lifted to †-idempotents on †-duals which †-splits to produce a self-†-dual [10,
Lemma 4.11].

4.2 Linear monoid

The simplest way to describe a linear monoid is as a ⊗-monoid on an object together with a dual for that
object. Their similarity to Frobenius algebras becomes more apparent when one regards a linear monoid
as a ⊗-monoid and a ⊕-comonoid with actions and coactions.

Definition 4.6. A linear monoid [7, 15], A ◦ � � B, in an LDC consists of a monoid (A,e : > −→ A,m :
A⊗A−→ A), a left dual (ηL,εL) : A aa B, and a right dual (ηR,εR) : B aa A such that:

BB

B

:=
B

B B

ηL

ηL

εL

=
B

BB

ηR

ηR

εR

B

:=
B

εL

=

B

εR

(4.6.1)

In a symmetric LDC, a linear monoid is symmetric when its duals are symmetric, i.e, ηR = ηLc⊕ and
εR = c⊗εL. A symmetric linear monoid is determined by a monoid (A,m,u) and a dual (η ,ε) : A aa B.
There is a more useful form for linear monoids in which their similarity to the usual description of
Frobenius algebras in CQM is evident:
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Proposition 4.7. A linear monoid, A ◦ � � B, in an LDC is equivalent to the following data:
• a monoid (A, : A⊗A−→ A, :>−→ A)

• a comonoid (B, : B−→ B⊕B, : B−→⊥)
• actions, : A⊗B−→ B, : B⊗A−→ B, and coactions : A−→ B⊕A, : A−→ A⊕B,

such that the following axioms (and their ‘op’ and ‘co’ symmetric forms) hold:

(a)

B

=

B

(b)

A BA

B

=

A BA

(c)

A B A

=

ABA

(d)

A

B

A

A

B
=

A

B A

A

=

A

B A

A

If the linear monoid is symmetric, then:
A B

=

A B

In a linear bicategory, the structure described in Proposition 4.7 is called a linear monad [7]: here,
as we are in a simpler context, we use linear monoid. A linear monoid A ◦ � � B, in a monoidal category
gives a Frobenius algebra when it is a self-linear monoid that is A = B and the duality coincide with
the self-dual cup and cap. Note that while a Frobenius algebra is always on a self-dual object, a linear
monoid allows Frobenius interaction between distinct objects which are duals of one another.
Definition 4.8. A morphism of linear monoids is a pair of maps, ( f ,g) : (A ◦ � � B) −→ (A′ ◦ � � B′),
such that f : A −→ A′ is a monoid morphism (or equivalently g : B′ −→ B is a comonoid morphism), and
( f ,g) and (g, f ) preserve the left and the right duals respectively.

Note that a morphism of Frobenius algebras is usually given by a single monoid morphism which is
an isomorphism. However, in the case of a morphism of linear monoids, the comonoid morphism, g : B′

−→ B, is the cyclic mate of the monoid morphism, f : A−→ A′. This means that a linear monoid morphism
is not restricted to being an isomorphism.

Given an idempotent eA : A−→ A, and a monoid (A,m,u) in a monoidal category, eA is retractional
on the monoid if eAm = eAm(eA⊗ eA). eA is sectional on the monoid if m(eA⊗ eA) = eAm(eA⊗ eA) and
ueA = u.
Lemma 4.9. In a monoidal category, a split idempotent e : A−→ A on a monoid (A,m,u), with splitting A

r−→ E s−→ A, is sectional (respectively retractional) if and only if the section s (respectively the retraction
r) is a monoid morphism for (E,(s⊗ s)mr,ur).

A binary idempotent (u,v) is sectional (respectively retractional) on a linear monoid when eA = uv
and eB = vu satisfies the conditions in the following table:

(u, v) sectional on A ◦ � � B (u, v) retractional on A ◦ � � B
eA preserves (A,m,u) sectionally eA preserves (A,m,u) retractionally
(eA,eB) preserves (ηL,εL) : A aa B sectionally (eA,eB) preserves (ηL,εL) : A aa B retractionally
(eB,eA) preserves (ηR,εR) : B aa A retractionally (eB,eA) preserves (ηR,εR) : B aa A sectionally

Splitting a sectional/retractional binary idempotent on a linear monoid gives a self-linear monoid on
the splitting.

Definition 4.10. A †-linear monoid, (A, , )
†◦� � (A†, , ), in a †-LDC is a linear monoid such that

(ηL,εL) : A aa A† and (ηR,εR) : A† aa A are †-duals and:

A†

:=
A†

εL

=

A† A†A†

A†

:=
A†

A† A†

ηL

εL

=

A†

A†A†

(4.10.1)
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A morphism of †-linear monoids is a pair of maps ( f , f †) which are morphisms of underlying linear
monoids. Similar to duals, splitting sectional/retractional binary idempotents on a linear monoid induces
a self-linear monoid. In the presence of dagger, one gets a †-self-linear monoid [10, Lemma 5.8].

A †-linear monoid in a unitary category is equivalent to a †-Frobenius algebra under certain condi-
tions:

Lemma 4.11. In a compact LDC, a self-linear monoid A ◦ � � A′ with an isomorphism α : A −→ A′ pre-
cisely corresponds to a Frobenius algebra under the linear equivalence, Mx↓ if and only if the linear
monoid satisfies the equation below. In a unitary category, any †-linear monoid A † A† precisely cor-
responds to a †-Frobenius algebra under the same equivalence if and only if the †-linear monoid satisfies
the equation below for the unitary structure isomorphism ϕA : A−→ A†.

A′

α

A

=
α

A′

A

A′

ηL

=
α

A′

A

A′

ηR

(4.11.1)

The equation in the previous Lemma reminds us of involutive monoids [19, Theorem 5.28] in †-
monoidal categories.

One can get Frobenius algebras by splitting binary idempotents on linear monoids:

Lemma 4.12. In an isomix category X, let E • � � E ′ be a self-linear monoid in Core(X) given by splitting
a coring sectional or retractional binary idempotent (u,v) on linear monoid A ◦ � � B. Let α : E −→ E ′

be the isomorphism. Then, E is a Frobenius Algebra under the linear equivalence Mx↓ if and only if the
binary idempotent satisfies the following equation:

u

A

B

=
u

B

E

B

ηL

eA

eB

eA

=
u

B

E

B

ηR

eA

eB

eA

(4.12.1)

where eA = uv and eB = vu.

In a †-isomix category, splitting a sectional or retractional †-coring binary idempotent on a †-linear
monoid gives a †-self-linear monoid on a pre-unitary object. If the binary idempotent satisfies equation
4.12.1, then, by using Lemmas 4.11 and 4.12, one gets a †-Frobenius algebra on the splitting.

4.3 Linear comonoid

The bialgebra law is a central ingredient of a complimentary system. The directionality of the linear
distributors in an LDC forbids a bialgebraic interaction between two linear monoids. A linear monoid,
however, can interact bialgebraically with a linear comonoid.

Definition 4.13. A linear comonoid, A ◦
� � B, in an LDC consists of a⊗-comonoid, (A, , ), and a left

and a right dual, (τL,γL) : A aa B, and (τR,γR) : B aa A, such that:

(a)

B

B⊕B

:=
A

B

B⊕B

τL

γL

=
A

B

B⊕B

τR

γR

(b)
B

⊥

:=
A

B
⊥

τL

=
A

B
⊥

τR

(4.13.1)
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Note that while a linear monoid has a ⊗-monoid and a ⊕-comonoid, a linear comonoid has a ⊗-
comonoid and an ⊕-monoid.

A morphism of linear comonoids, ( f ,g) : (A ◦
� � B)−→ (A′ ◦

� � B′), consists of a pair of maps, f : A
−→ A′ and g : B′ −→ B, such that f is a comonoid morphism, and ( f ,g) and (g, f ) are morphisms of the
left and the right duals respectively.

In a monoidal category, an idempotent e : A −→ A is sectional (respectively retractional) on a
comonoid (A,d,k) if ed = ed(e⊗ e) (respectively if d(e⊗ e) = ed(e⊗ e) and ek = k). In an LDC, a
binary idempotent (u,v) is sectional (respectively retractional) on a linear monoid when eA = uv and
eB = vu satisfies the conditions in the table below.

(u, v) sectional on A ◦
� � B (u,v) retractional on A ◦

� � B

eA preserves (A,d,k) sectionally eA preserves (A,d,k) retractionally
(eA,eB) preserves (ηL,εL) : A aa B sectionally (eA,eB) preserves (ηL,εL) : A aa B retractionally
(eB,eA) preserves (ηR,εR) : B aa A retractionally (eB,eA) preserves (ηR,εR) : B aa A sectionally

Splitting a sectional or retractional binary idempotent on a linear comonoid gives a self-linear comonoid.

Definition 4.14. A †-linear comonoid A † A† in a †-LDC is a linear comonoid A ◦
� � A† such that

(τL,γL) : A aa A† and (τR,γR) : A† aa A are †-duals, and:

A†

⊥

:=
A

A†

⊥

=

A† ⊥
A†

A†⊕A†

:=
A

A†

A†⊕A†

=

A†

A†⊕A†

(4.14.1)

A †-self-linear comonoid consists of an isomorphism α : A−→ A† such that αα−1† = ι . A morphism of
†-linear comonoids is a pair ( f , f †) such that ( f , f †) is a morphism of the underlying linear comonoids.

In a †-LDC, splitting a †-binary idempotent on a †-linear comonoid gives a †-self-linear comonoid
when the binary idempotent is either sectional or retractional. In the next section, we discuss linear
bialgebras which are given by an interacting linear monoid and linear comonoid.

4.4 Linear bialgebras

All the results concerning bialgebras are necessarily set in symmetric LDCs and we shall assume that
linear monoids and the linear comonoids are symmetric.

Definition 4.15. A linear bialgebra, (a,b)
(a′,b′) : A B, in an LDC consists of a linear monoid, (a,b) :

A ◦ � � B and a linear comonoid, (a′,b′) : A B such that (A, , , , ) and and (B, , , , ) are
⊗- and ⊕-bialgebras respectively. A morphism of linear bialgebras is a morphism both of the linear
monoids and linear comonoids.

A linear bialgebra is commutative if the ⊕-monoid and ⊗-monoid are commutative. A self-linear
bialgebra is a linear bialgebra in which there is an isomorphism A α−−→ B (so essentially the algebra is
on one object).

A binary idempotent on a linear bialgebra is sectional (respectively retractional) if it is sectional
(respectively retractional) on the linear monoid, and the linear comonoid. In an LDC, splitting a sectional
or retractional binary idempotent on a linear bialgebra induces a self-linear bialgebra on the splitting.
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Definition 4.16. A †-linear bialgebra, (a,b)
(a′,b′) : A † A†, is a linear bialgebra with a †-linear monoid

and a †-linear comonoid. A †-self-linear bialgebra is †-linear bialgebra which is also a self-linear
bialgebra such that the isomorphism, α : A−→ A†, satisfies αα−1† = ι .

Note that A is a weak preunitary object: if it was in the core as well, it would be a preunitary object.
In a †-LDC, splitting a †-binary idempotent on a †-linear bialgebra gives a †-self-linear bialgebra if the
idempotent is either a sectional or retractional.

4.5 Complementary systems

In quantum mechanics, two quantum observables are complementary [18] if measuring one observable
increases the uncertainty regarding the value of the other. Complementarity is a key feature distin-
guishing classical from quantum mechanics. In CQM, the complimentarity principle is described using
interacting commutative †-Frobenius algebras. This section describes complementarity in isomix cate-
gories:
Definition 4.17. A complementary system in an isomix category, X, is a commutative and cocommuta-
tive self-linear bialgebra, (a,b)

(a′,b′) : A A such that the following equations (with their ‘op’ symmetries)
hold:

[comp.1] = [comp.2] = [comp.3] =

A †-complementary system in a †-isomix category is a †-self-linear bialgebra which is also a comple-
mentary system.

Notice that we are using the alternative presentation of linear monoids by actions and coactions (see
Proposition 4.7). Thus, [comp.1] requires that the counit of the linear comonoid to be dual to the counit
via the linear monoid dual, while [comp.2] requires that the unit of the linear monoid to be dual to the
counit via dual of the linear comonoid. Finally, [comp.3] requires that the coaction map of the linear
monoid duplicates the unit of †-linear comonoid. The ‘co’ symmetry of the equations are immediate
from the commutativity and cocommutativity of the linear bialgebra. The ‘op’ symmetry of equations
holds automatically for a †-complimentary system.
Lemma 4.18. If A A is a complementary system in an isomix category, then A is a ⊗-bialgebra with
antipode given by (a) and a ⊕-bialgebra with antipode given by (b):

(a) (b)

Proof. Given a complementary system we show the⊗-bialgebra has an antipode so is a⊗-Hopf algebra:

s := = = =
[comp.3]
=

[comp.2]
=

[comp.1]
=

Similarly, the ⊕-bialgebra has an antipode using the ‘op’ versions of [comp.1] to [comp.3].

A †-complimentary system in a unitary category corresponds to the usual notion of interacting com-
mutative †-Frobenius algebras [11] when its linear monoid and linear comonoid satisfy condition 4.11.1.
Splitting binary idempotents on a linear bialgebra produces a complimentary system under the following
conditions:
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Lemma 4.19. In an isomix category, a self linear bialgebra given by splitting a coring binary idempotent
(u,v) on a commutative and cocommutative linear bialgebra A B is a complimentary system if and
only if the binary idempotent satisfies the following conditions (and their ‘op’ symmetric forms):

(a)

A

B

eB

B

eB

eA

=

A

eA (b)

v
B

u

A

eA

A

=

A

eA (c)
v

BB

B

u

A

eB

=
v

u

v

B

B

A

u
(4.19.1)

where eA = uv, and eB = vu.
In the next section, we provide an example of the previous Lemma using exponential modalities.

5 Exponential modalities

An LDC has exponential modalities if it is equipped with a linear comonad ((!,?),(ε,η),(δ ,µ)) [3].
The linearity of the functors in a (!,?)-LDC means that (!,δ ,ε) is a monoidal comonad while (?,µ,η)
is a comonoidal monad, and (!(A),∆A, A) is a natural cocommutative comonoid while (?(A),∇A, A) is
a natural commutative monoid. A †-(!,?)-LDC is a (!,?)-LDC in which all the functors and natural
transformations are †-linear (see [6]).

In a (!,?)-LDC, any dual, (α,β ) : A aa B, induces a dual, (α!,β?) :!A aa ?B (see the below diagrams),
on the exponential modalities using the linearity of (!,?). This means that any dual induces a linear
comonoid, (α!,β?) :!A ◦

� � ?B, where the comonoid structure is given by the modalities.

α! :=
α

!

!A ?B

= m>(!α)ν⊗ β? :=
β ?

!A?B

= ν⊕(?ε)n⊥ mF⊗ := F⊗

F⊗(A) F⊗(A)

F⊗(A)

= m⊗F⊗(m)

Any linear functor (F⊗,F⊕) applied to a linear monoid (α,β ) : A ◦ � � B always produces a linear
monoid (αF ,βF) : F⊗(A) F⊕(B) with multplication mF as shown in the right diagram above. This
simple observation when applied to the exponential modalities has a striking effect:
Lemma 5.1. In any (!,?)-LDC any linear monoid (a,b) : A ◦ � � B and an arbitrary dual (a′,b′) : A aa B
give a linear bialgebra (a!,b!)

(a′!,b
′
?)

:!A ?B using the natural cocommutative comonoid (!A,∆A, ).
The bialgebra structure results from the naturality of ∆ and over the functorially induced monoid

structure.
A (!,?)-LDC has free exponential modalities if, for any object A, (!A,∆A, A) is a cofree cocommu-

tative comonoid, and (?(A),∇A, A) is a free commutative monoid [20]. An example of a †-LDC with
free (†-)exponential modalites is finiteness matrices over the complex numbers, FMat(C). Moreover,
FMat(C), is a †-isomix category and gives a key example of a MUC as discussed in [6] (although expo-
nentials are not discussed). The universal property of free exponential modalities in a (!,?)-LDC implies
the following:
Lemma 5.2. If ( f ,g) is a morphism of duals, then the unique map ( f [,g]) induced by the universal
property of the free exponential is a morphism of linear comonoids.

This is illustrated by the commuting diagram (a), below.

(a) (x,y) : X Y

( f [,g])
��

( f ,g)

))
(a!,b?) :!A ?B

(ε,η)
// (a,b) :AaaB

(b) (x,y)
(x′,y′) : X Y

( f [,g])
��

( f ,g)

**
(a!,b?)
(a′!,b

′
?)

:!A ?B
(ε,η)

// (a,b) :A B;(a′,b′) :A aa B
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The results discussed so far can be combined to give, as shown in diagram (b) above, a more complicated
observation:

Proposition 5.3. In a (!,?)-LDC with free exponential modalities, let (x,y)
(x′,y′) : X Y be a linear bialge-

bra, (a,b) : A B a linear monoid, and (a′,b′) : A aa B a dual, then

( f [,g]) :
(

(x,y)
(x′,y′)

: X Y
)
−→

(
(a!,b?)

(a′!,b
′
?)

:!A ?B
)

is a morphism of bialgebras, whenever f : (X , , )−→ (A, , ) is a morphism of monoids, and ( f ,g)
is a morphism of both duals:

( f ,g) : ((x,y) : X ◦ � � Y )−→ ((a,b) : A ◦ � � B) and ( f ,g) : ((x′,y′) : X aa Y )−→ ((a′,b′) : A aa B)

Corollary 5.4. In a (!,?)-LDC with free exponential modalities, if A B is a linear bialgebra then
(1[,1]) : (A B)−→ (!A ?A) is a morphism of bialgebras, making A B a retract of !A ?A.

The corollary shows that every self-linear bialgebra in a (!,?)-LDC, with free exponential modalities,
induces a sectional binary idempotent on the induced linear bialgebra on the exponential modalities:

!A
ε // A' B

η //

1[
oo ?B

1]
oo

Combining Corollary 5.4 and Lemma 4.19, we get:

Theorem 5.5. In a (!,?)-isomix category with free exponential modalities, every complimentary system
arises as a splitting of a sectional binary idempotent on the free exponential modalities.

The above results extend directly to †-linear bialgebras in †-LDCs with free exponential modalities
due to the †-linearity of (!,?), (η ,ε), (∆,∇), and ( , ).

6 Conclusion

Bohr’s principle of complementarity [18] states that, due to the wave and particle nature of matter, phys-
ical properties occur in complimentary pairs. In the formulation of measurements in a MUC, a measure-
ment on A induces a measurement on A†, and vice versa. A measurement transfers the structures of A
and A† — and the interactions between these — onto a single compact object. Our main result displays a
complementary system as the result of a measurement of a †-linear bialgebra in which two distinct dual
structures have been “compacted” into one structure. This provides an interesting perspective on Bohr’s
principle.
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