Limits and Colimits in a Category of Lenses

Emma Chollet
Bryce Clarke
Michael Johnson
Maurine Songa
Vincent Wang
Gioele Zardini

Lenses are an important tool in applied category theory. While individual lenses have been widely used in applications, many of the mathematical properties of the corresponding categories of lenses have remained unknown. In this paper, we study the category of small categories and asymmetric delta lenses, and prove that it has several good exactness properties. These properties include the existence of certain limits and colimits, as well as so-called imported limits, such as imported products and imported pullbacks, which have arisen previously in applications. The category is also shown to be extensive, and it has an image factorisation system.

In Kohei Kishida: Proceedings of the Fourth International Conference on Applied Category Theory (ACT 2021), Cambridge, United Kingdom, 12-16th July 2021, Electronic Proceedings in Theoretical Computer Science 372, pp. 164–177.
Published: 3rd November 2022.

ArXived at: http://dx.doi.org/10.4204/EPTCS.372.12 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org