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Lenses encode protocols for synchronising systems. We continue the work begun by Chollet et al.

at the Applied Category Theory Adjoint School in 2020 to study the properties of the category of

small categories and asymmetric delta lenses. The forgetful functor from the category of lenses to

the category of functors is already known to reflect monos and epis and preserve epis; we show that

it preserves monos, and give a simpler proof that it preserves epis. Together this gives a complete

characterisation of the monic and epic lenses in terms of elementary properties of their get functors.

Next, we initiate the study of coequalisers of lenses. We observe that not all parallel pairs of

lenses have coequalisers, and that the forgetful functor from the category of lenses to the category of

functors neither preserves nor reflects all coequalisers. However, some coequalisers are reflected; we

study when this occurs, and then use what we learned to show that every epic lens is regular, and that

discrete opfibrations have pushouts along monic lenses. Corollaries include that every monic lens is

effective, every monic epic lens is an isomorphism, and the class of all epic lenses and the class of

all monic lenses form an orthogonal factorisation system.

1 Introduction

A bidirectional transformation between two systems is a specification of when the joint state of the two

systems should be regarded as consistent, together with a protocol for updating each system to restore

consistency in response to a change in the other [12]. The study of bidirectional transformations goes

back to as far as 1981 with Bancilhon and Spyrato’s work on the view-update problem for databases [2].

The view-update problem is about asymmetric bidirectional transformations; those where the state of

one of the systems, called the view, is completely determined by that of the other, called the source.

Bidirectional transformations also arise in many other contexts across computer science, such as when

programming with complex data structures and when linking user interfaces to data models.

An asymmetric state-based lens is a mathematical encoding of an asymmetric bidirectional transfor-

mation in which the consistency restoration updates to the source are assumed to be dependent only on

the old source state and the updated view state. If S is the set of source states and V is the set of view

states, such a lens consists of a get function S→ V and a put function S×V → S which, ideally, satisfy

certain laws. The earliest known account of asymmetric state-based lenses may be found in Oles’ PhD

thesis [18, Chapter VI], where they are called extensions of store shapes; they are a key ingredient in

Oles’ semantics for an imperative stack-based programming language with block-scoped variables be-

cause they capture the essential properties of a data store which changes shape as variables come into

and go out of scope. All recent notions of lens, including the name lens, may be traced back to the

work of Pierce et al. [10]; they proposed variants of asymmetric state-based lenses for modelling bidi-

rectional transformations on tree-structured data, and they also introduced the idea of building lenses

compositionally with a domain-specific language such as their lens combinators.

Diskin et al. highlighted the inadequacy of state-based lenses as a general mathematical model for

bidirectional transformations [8], providing several examples of situations in which consistency restora-

tion would benefit from knowing more about each change to the view than just the view’s new state. In
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an asymmetric delta lens, their proposed alternative, systems are modelled as categories of states and

transitions (deltas) rather than simply as sets of states. Also, the put operation takes as input specifically

which transition occurred in the view rather than just the end state of that transition.

Application of category theory to the study of lenses has already proved fruitful. Johnson and Rose-

brugh’s research program [13, 14, 15] has enabled a unified treatment of symmetric and asymmetric delta

lenses, with the perspective that a symmetric delta lens is an equivalence class of spans of asymmetric

delta lenses. Ahman and Uustalu’s observation that asymmetric delta lenses are compatible functor co-

functor pairs [1], and Clarke’s generalisation of these lenses to the internal category theory setting [6],

have enabled an abstract diagrammatic approach to proofs involving these lenses [7], in which we may

profit from the already well-developed theory of functors and opfibrations. Yet, until the work of Chollet

et al. [5], little was known about the category of asymmetric delta lenses. Building on their work, this

paper aims to further our understanding of this category.

Outline

Henceforth, we refer to asymmetric delta lenses simply as lenses, which we formally define in Section 2.

In Section 3, we prove the conjecture by Chollet et al. [5] that the forgetful functor from the category

of lenses to the category of functors preserves monos. Together with their result that it reflects monos,

we deduce that the monic lenses are the unique lenses on cosieves; these are equivalently the out-degree-

zero subcategory inclusion functors. We also provide a proof, simpler than the original one sketched by

Lack in an unpublished personal communication to Clarke, that the forgetful functor preserves epis.

In Section 4, we initiate the study of coequalisers of lenses. We begin with examples of how they

are not as well behaved as one might hope; specifically, not all parallel pairs of lenses have coequalisers,

and the forgetful functor neither preserves nor reflects all coequalisers. We then prove our main result,

Theorem 4.5, which is about the coequalisers that are actually reflected by the forgetful functor.

In Section 5, we use Theorem 4.5 to show that the category of lenses has pushouts of discrete opfi-

brations along monos. We then show that every monic lens is effective. It follows that the classes of all

monos, all effective monos, all regular monos, all strong monos and all extremal monos in the category

of lenses coincide, and thus also that all lenses which are both monic and epic are isomorphisms.

In Section 6, we use Theorem 4.5 again to show that every epic lens is regular. It follows that the

classes of all epis, all regular epis, all strong epis and all extremal epis in the category of lenses coincide.

It also follows that the class of all epic lenses is left orthogonal to the class of all monic lenses. Together

with other known results, this means that they form an orthogonal factorisation system.

2 Background

Notation

Application of functions (functors, lenses, etc.) is written by juxtaposing the function name with its

argument. Application is right associative, so an expression like FGx parses as F(Gx) and not (FG)x.

Parentheses are only used when needed or for clarity. Binary operators like ◦ have lower precedence than

application, so an expression like Fa◦Fb parses as (Fa)◦ (Fb) and not F
(

(a◦F)b
)

.

Let Cat denote the category whose objects are small categories and whose morphisms are functors.

Categories with boldface names A, B, C, etc. are always small. We write |C| for the set of objects of a

small category C, and, for all X ,Y ∈ |C|, we write C(X ,Y) for the set of morphisms of C from X to Y .

For each X ∈ |C|, we write C(X ,∗) for the set
⊔

Y∈|C|C(X ,Y ) of all morphisms in C out of X . We write
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src f and tgt f for, respectively, the source and target of a morphism f . We also write f : X → Y to say

that X ,Y ∈ |C| and f ∈C(X ,Y ). The composite of morphisms f : X →Y and g : Y → Z is denoted g◦ f .

The category with a single object 0 and no non-identity morphisms, also known as the terminal

category, is denoted 1. The category with two objects 0 and 1 and a single non-identity morphism,

namely u : 0→ 1, also known as the interval category, is denoted 2. The category with two objects

0 and 1 and two non-identity morphisms, namely v : 0→ 1 and v−1 : 1→ 0, also known as the free

living isomorphism, is denoted I. We will identify objects and morphisms of a small category C with the

corresponding functors 1→ C and 2→ C respectively.

If the square

D B

A C

T

S G

F

(1)

in Cat is a pushout square and F ′ : A→ E and G′ : B→ E are functors for which F ′ ◦S = G′ ◦T , then

we write [F ′, G′] for the functor C→E induced from F ′ and G′ by the universal property of the pushout.

Similarly, if the square (1) in Cat is a pullback square and S′ : E→ A and T ′ : E→ B are functors for

which F ◦ S′ = G ◦ T ′, then we write 〈S′, T ′〉 for the functor E→ D induced from S′ and T ′ by the

universal property of the pullback. By our identification of objects with functors from 1 mentioned

above, if A ∈ |A| and B ∈ |B| are such that FA = GB, then 〈A, B〉 is the object of D selected by the

functor 1→D induced by the universal property of the pullback from the functors 1→A and 1→B that

respectively select the objects A and B.

Lenses and discrete opfibrations

First, we recall the definition of a (asymmetric delta) lens [8].

Definition 2.1. Given small categories A and B, a lens F : A→ B consists of

• a functor F : A→ B, called the get functor of F , and

• a function FA : B(FA,∗)→ A(A,∗) for each A ∈ |A|, collectively known as the put functions,

such that

• PutGet: FFAb = b for all A ∈ |A| and all b ∈ B(FA,∗),

• PutId: FA idFA = idA for all A ∈ |A|, and

• PutPut: FA(b′ ◦b) = FA′b′ ◦FAb for all A ∈ |A|, b ∈ B(FA,∗), b′ ∈ B(FA′,∗), where A′ = tgtFAb.

There is a category Lens whose objects are small categories and whose morphisms are lenses. The

composite G ◦F of lenses F : A→ B and G : B→ C has get functor which is the composite of the get

functors of G and F , and has (G◦F)Ac = FAGFAc for all A ∈ |A| and all c ∈ C(GFA,∗). There is also

an identity-on-objects forgetful functor U : Lens→ Cat that sends a lens to its get functor.

Definition 2.2. A functor F : A→ B is a discrete opfibration if, for each A ∈ |A| and each b ∈ B(FA,∗),
there is a unique a ∈ A(A,∗) such that Fa = b.

Remark 2.3. If F : A→ B is a discrete opfibration, then there is a unique lens mapped by U to F . We

will sometimes also use the name F to refer to this unique lens above F .

We also recall Johnson and Roseburgh’s “pullback” of a cospan of lenses [13], which we will refer

to as their proxy pullback, adopting the terminology of Bumpus and Kocsis [17].
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Definition 2.4. The proxy pullback of a lens cospan A
F
−→ C

G
←− B is a lens span A

G
←−D

F
−→ B where

• the get functors of F and G form a pullback square

D B

A C

UF

UG UG

UF

in Cat (this determines them up to isomorphism), and

• for each D ∈ |D|, each a ∈ A
(

GD,∗
)

, and each b ∈ B
(

FD,∗
)

,

FDb =
〈

FGDGb, b
〉

and GDa =
〈

a, GFDFa
〉

.

When F = G, the lenses F,G : D→ A are also called the proxy kernel pair of F .

3 Characterising monic and epic lenses

Monic lenses

We will study the monos in Lens via their relation to those in Cat, expressed as follows.

Theorem 3.1. The functor U preserves and reflects monos.

Reflection was proved and preservation conjectured by Chollet et al. [5]. Recalling that a morphism

is monic if and only if it has a kernel pair with both morphisms equal, we may prove preservation.

Proof that U preserves monos. Let M : A→B be a monic lens, and let P1,P2 : KerUM→A be its proxy

kernel pair in Lens. As M is monic and M ◦P1 = M ◦P2, actually P1 = P2, and so UP1 = UP2. But UP1

and UP2 are the (real) kernel pair of UM in Cat. Hence UM is a monic functor.

Chollet et al. [5] also showed that the get functor of a lens is monic if and only if it is a cosieve.

Definition 3.2. A cosieve is an injective-on-objects discrete opfibration.

Corollary 3.3. The functor U restricts to a bijection between monic lenses and cosieves.

Proof. A cosieve is a discrete opfibration, so there is a unique lens above it; by reflection, this lens is

monic. Conversely, the get functor of a monic lens is, by preservation, monic, and so is a cosieve.

The above result says that monic lenses and cosieves are essentially the same. We continue to use

the term cosieve for functors when we wish to distinguish these from monic lenses.

Lens images and factorisation

The images of the object and morphism maps of a functor do not always form a subcategory of a functor’s

target category. The situation is nicer for the get functor of a lens F; in this case, the images actually form

an out-degree-zero subcategory ImF of the lens’ target category, which we will call the image of F . By

out-degree-zero subcategory, we mean one for which any morphism out of an object in the subcategory

belongs to the subcategory. As cosieves are exactly the out-degree-zero subcategory inclusion functors,

we obtain the following factorisation result.
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Proposition 3.4. Every lens F : A→ B has a factorisation

A ImF B
E

F

M

in Lens where M is monic and E is surjective on objects and morphisms.

Recall that a morphism e : A→ B is left orthogonal to a morphism m : C → D if, for all pairs of

morphisms f : A→C and g : B→D such that g◦e = m◦ f , there is a unique morphism h : B→C, called

the diagonal filler, such that f = h ◦ e and g = m ◦h. Also recall that classes E and M of morphisms

form an orthogonal factorisation system if E is the class of all morphisms that are left orthogonal to all

morphisms in M , and every morphism f factors as f = m◦e for some e ∈ E and some m ∈M .

Remark 3.5. The above factorisation is already known to Johnson and Roseburgh, who showed that

the surjective-on-objects lenses and the injective-on-objects-and-morphisms lenses form an orthogonal

factorisation system on Lens [16]. Our addition is that this is actually an epi-mono factorisation system;

we have already shown that the injective-on-objects-and-morphisms lenses are exactly the monic lenses,

and we will show in the next section that the surjective-on-objects lenses are exactly the epic lenses. In

Section 6, we will also deduce the orthogonality without explicitly constructing the diagonal fillers.

Epic lenses

We may also study the epis in Lens via their relation to those in Cat.

Theorem 3.6. The functor U preserves and reflects epis.

Again, reflection was proved and preservation conjectured by Chollet et al. [5]. The first proof of

preservation was sketched by Lack in an unpublished personal communication to Clarke; we present a

new, simpler proof below. First, we recall some preliminary results about epic functors and epic lenses.

Proposition 3.7. Every epic functor is surjective on objects. Every functor that is surjective both on

objects and on morphisms is epic.

Recall that not all epic functors are surjective on morphisms.

Example 3.8. Let J : 2→ I be the functor that sends the non-identity morphism u of the interval cate-

gory 2 to the morphism v of the free living isomorphism I. Then J is epic because any two functors out

of I which agree on v must also agree on v−1. However, the morphism v−1 is not in the image of J.

Proposition 3.9. Let F : A→ B be a lens, and let J1,J2 : B→C be the cokernel pair of UF. Then J1

and J2 are cosieves, and the unique lenses J1 and J2 above J1 and J2 satisfy J1 ◦F = J2 ◦F.

Proof. Let F = M ◦E be the factorisation of F given in Proposition 3.4. By Proposition 3.7, UE is an

epic functor. As J1 ◦UM ◦UE = J1 ◦UF = J2 ◦UF = J2 ◦UM ◦UE , actually J1 ◦UM = J2 ◦UM. It

follows that J1 and J2 are also the cokernel pair of UM. As cosieves are pushout stable and UM is a

cosieve, so are J1 and J2. As there is a unique lens above the discrete opfibration J1 ◦UM = J2 ◦UM, we

must have that J1 ◦M = J2 ◦M.

Remark 3.10. Later, we will see that J1 and J2 are actually a cokernel pair of F in Lens.

Proof that U preserves epis. Let E : A→ B be an epic lens, and J1 and J2 the unique lenses above the

cokernel pair of UE from Proposition 3.9. As J1 ◦E = J2 ◦E and E is epic, actually J1 = J2, and so

UJ1 = UJ2. But UJ1 and UJ2 are the cokernel pair of UE , so UE is also epic.
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Corollary 3.11. Let F be a lens. Then the following are equivalent:

(1) F is epic,

(2) UF is surjective on objects,

(3) UF is surjective on morphisms.

Proof. Chollet et al. [5] showed that (2) and (3) are equivalent, and imply (1). Suppose that F is epic.

As U preserves epis (Theorem 3.6), so is UF . By Proposition 3.7, UF is surjective on objects.

4 Coequalisers of lenses

Given morphisms f1, f2 : A→ B, we say that a morphism e : B→C coforks f1 and f2 if e ◦ f1 = e ◦ f2.

Some authors would use the verb coequalise where we use the verb cofork. Unlike those authors, we say

that e coequalises f1 and f2 only when e is universal among coforks of f1 and f2.

Non-existence, non-preservation and non-reflection of coequalisers

Recall that Cat has all coequalisers. Shortly, we will construct several counterexamples to the well-

behavedness of coequalisers in Lens, at least with respect to those in Cat. To do this, we will use the

following proposition, which gives necessary conditions for a cofork of lenses to be a coequaliser.

Proposition 4.1. Let F1,F2 : A→ B be lenses with coequaliser E : B→ C in Lens. Then

(1) for each cofork G : B→D of F1 and F2, GBd = EBEGBd for all B∈ |B| and all d ∈D(GB,∗); and

(2) in particular, E is the unique lens above UE that coforks F1 and F2.

Proof. For (1), if G : B→ D coforks F1 and F2, then there is a lens H : C→ D such that G = H ◦E , and

so GBd = (H ◦E)Bd = EBHEBd = EBEEBHEBd = EBE(H ◦E)Bd = EBEGBd. For (2), if G : B→ C is

a lens above UE that coforks F1 and F2, then GBc = EBEGBc = EBGGBc = EBc for each B ∈ |B| and

each c ∈ C(EB,∗), and so G = E .

The first example shows that Lens does not have all coequalisers, nor does U reflect them.

Example 4.2. Let A and B be the preordered sets generated respectively by the following graphs.

Y1 X Y2

Y

f1 f2

f

Y ′1 X ′ Y ′2
f ′1 f ′2

Let F1,F2 : A→ B be the unique lenses that both send X to X ′, Y1 to Y ′1, Y2 to Y ′2, and such that F1Y =Y ′1,

F1
X f ′1 = f1, F2Y = Y ′2, and F2

X f ′2 = f2. Let G : B→ 2 be the unique functor that sends X ′ to 0, and both

Y ′1 and Y ′2 to 1; G coequalises UF1 and UF2 in Cat. There are only two lens structures on G that cofork

F1 and F2 in Lens; one is determined by G1
X ′u = f ′1 and the other by G2

X ′u = f ′2. By Proposition 4.1,

neither G1 nor G2 coequalises F1 and F2. Thus U does not reflect the coequaliser G of UF1 and UF2.

Actually F1 and F2 do not have a coequaliser in Lens. Assume that E : B→ C is such a coequaliser.

Then E f ′1 = EF1 f = EF2 f = E f ′2. As G1 coforks F1 and F2, there is a lens H : C→ 2 such that G1 =
H ◦E . As HEX ′ = G1X ′ 6= G1Y

′
1 = HEY ′1, we must have EX ′ 6= EY ′1. Hence EX ′ and EY ′1 are distinct
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objects of the image of E , and idEX ′ , E f ′1 and idEY ′1
are distinct morphisms of the image of E . As E is a

coequaliser, it is epi, and so, by Corollary 3.11, its image is all of C. Thus UH is an isomorphism in Cat,

and so H is an isomorphism in Lens. Hence G1 also coequalises F1 and F2, which is a contradiction.

There are even parallel pairs of lenses for which the coequaliser of their get functors has a unique

lens structure that coforks them, and yet does not coequalise them.

Example 4.3. Let A, B and C be the preordered sets generated respectively by the following graphs.

Z1 X Y Z2

Z

h
h2

fh1 g
Z′1 X ′ Y ′ Z′2

h′2

f ′h′1 g′

X ′′ Y ′′ Z′′

h′′

f ′′ g′′

Let F1,F2 : A→ B be the unique lenses that both send X to X ′, Y to Y ′, Z1 to Z′1, Z2 to Z′2, and such that

F1Z = Z′1, F1
X h′1 = h1 and F2Z = Z′2. Let E : B→ C be the unique lens that sends X ′ to X ′′, Y ′ to Y ′′,

and both Z′1 and Z′2 to Z′′. Then UE coequalises UF1 and UF2 in Cat, and E coforks F1 and F2 in Lens.

However, E does not coequalise F1 and F2 in Lens. Indeed, if G : B→ 2 is the unique lens that sends X ′ to

0, all of Y ′, Z′1 and Z′2 to 1, and for which GX ′u= h′1, then EX ′EGX ′u=EX ′Eh′1 =EX ′h′′= h′2 6= h′1 =GX ′u.

The final example shows that U does not preserve coequalisers. It also shows that there are parallel

pairs of lenses for which the coequaliser of their get functors has no lens structure that coforks them.

Example 4.4. Let A be the preordered set generated by the graph

Y1 X Y2
f1 f2

Let I : A→ A denote the identity lens, and let S : A→ A be the unique lens that maps X to X , Y1 to Y2

and Y2 to Y1. The coequaliser of UI and US in Cat is the unique functor E : A→ 2 that sends X to 0 and

both Y1 and Y2 to 1. Recall that 1 is terminal in Lens [5]. We claim that the coequaliser of I and S in

Lens is the unique lens E : A→ 1. Let G : A→ C be a lens that coforks I and S in Lens. Let f = G f1.

Then f = G f1 = GI f1 = GS f1 = G f2. As GX f ∈A(X ,∗), it is one of f1, f2 and idX . If GX f = f1, then

f1 = IX f1 = IX GX f = (G◦ I)X f = (G◦S)X f = SX GX f = SX f1 = f2,

which is a contradiction. We get a similar contradiction if GX f = f2. By elimination, GX f = idX , and

so f = GGX f = G idX = idGX . The image of G thus consists of the object GX and the morphism idGX .

If H : 1→ C is a lens such that G = H ◦E , then H must send 0 to GX , and this uniquely determines H .

As the image of any lens, in particular G, is an out-degree-zero subcategory of its target category, this

definition of H does indeed give a lens, and G = H ◦E . Of course, the factorisation G = H ◦E is really

the image factorisation of G from Remark 3.5.

Coequalisers which are reflected

Although the counterexamples above suggest that coequalisers in Lens have little relation to those in

Cat, we will see in Theorem 5.4 and Corollary 6.4 two classes of coequalisers in Lens which do lie over

coequalisers in Cat. The following theorem, a partial converse to Proposition 4.1, reduces checking the

coequaliser property in these cases to checking that Equation (2) below always holds.
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Theorem 4.5. Let F1,F2 : A→B be lenses. Let E : B→C be a cofork of F1 and F2 in Lens, and suppose

that UE coequalises UF1 and UF2 in Cat. Then E coequalises F1 and F2 in Lens if and only if for all

lenses G : B→ D that cofork F1 and F2 in Lens, all B ∈ |B| and all d ∈ D(GB,∗), we have

GBd = EBEGBd. (2)

In the proof of the following lemma and again, later, in the proof of Lemma 5.3, we use the induction

principle for the equivalence relation ≃ on a set S generated by a binary relation R on S, that is,

∀P x0 y0.

















x0 ≃ y0

∧ ∀x y. x R y =⇒ P(x,y)

∧ ∀x. P(x,x)

∧ ∀x y. [x≃ y ∧ P(x,y)] =⇒ P(y,x)

∧ ∀x y z. [x≃ y ∧ P(x,y) ∧ y≃ z ∧ P(y,z)] =⇒ P(x,z)

















=⇒ P(x0,y0). (3)

Lemma 4.6. Let F1,F2 : A→ B be lenses. Let E : B→ C be a cofork of F1 and F2 in Lens, and suppose

that UE coequalises UF1 and UF2 in Cat. Let G : B→ D be a lens that coforks F1 and F2 in Lens, and

let H : C→ D be the unique functor such that UG = H ◦UE. Then there is a unique lens structure on H

that, for all B ∈ |B| and all d ∈ D(GB,∗), satisfies the equation

HEBd = EGBd. (4)

Proof. For each C ∈ |C|, as UE is epic, there is a B ∈ |B| such that EB =C. Hence, we may define HC

using Equation (4), so long as, for all B1,B2 ∈ |B|, if EB1 = EB2 then, for all d ∈ D(EB1,∗), we have

EGB1d = EGB2d. Let ≃ be the smallest equivalence relation on |B| such that F1A≃ F2A for all A ∈ |A|.
As UE coequalises UF1 and UF2 in Cat, we have [3, Proposition 4.1], for all B1,B2 ∈ |B|, that EB1 = EB2

if and only if B1 ≃ B2. We proceed using the induction principle in Equation (3). The proof obligations

from the reflexivity, symmetry and transitivity axioms for ≃ hold as = is an equivalence relation. For the

remaining one, for all A ∈ |A| and all d ∈ D(F1A,∗), we have

EGF1Ad = EF1F1
AGF1Ad = (E ◦F1)(G◦F1)

Ad = (E ◦F2)(G◦F2)
Ad = EF2F2

AGF2Ad = EGF2Ad.

Define HC using Equation (4). It remains to check that the lens laws hold for H . For all C ∈ |C|,
there is a B ∈ |B| such that EB =C, and HC idHC = EGB idGB = E idB = idC; hence PutId holds. For all

C ∈ |C|, all d ∈D(HC,∗) and all d′ ∈D(tgtd,∗), there is a B ∈ |B| such that EB =C, and

HC(d′ ◦d) = EGB(d′ ◦d) = E
(

GB′d′ ◦GBd
)

= EGB′d′ ◦EGBd = HC′d′ ◦HCd,

where B′ = tgtGBd and C′ = EB′; hence PutPut holds. Finally, for all C ∈ |C| and all d ∈D(HC,∗), there

is a B ∈ |B| such that EB =C, and HHCd = HEGBd = GGBd = d; hence PutGet holds.

Proof of Theorem 4.5. We proved the only if direction in Proposition 4.1. For the if direction, suppose,

for all lenses G : B→D that cofork F1 and F2, that Equation (2) always holds. We must show that E is the

universal cofork of F1 and F2 in Lens. Let G : B→ D be another cofork of F1 and F2 in Lens. Suppose

that there is a lens H : C→D such that G= H ◦E . Then UG=UH ◦UE , and so UH is the unique functor

that composes with UE to give UG. Let C ∈ |C| and d ∈ D(HC,∗). As UE is epic, there is a B ∈ |B|
such that EB = C. Then HCd = EEBHCd = E(H ◦E)Bd = EGBd. Hence H is uniquely determined.

Now let H : C→ D be the lens defined as in Lemma 4.6. For all B ∈ |B| and all d ∈ D(GB,∗), we have

GBd = EBEGBd = EBHEBd = (H ◦E)Bd, and so G = H ◦E .
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Corollary 4.7. Let F1,F2 : A→ B be lenses. Let E : B→ C be a cofork of F1 and F2 in Lens, and

suppose that UE coequalises UF1 and UF2. If UE is a discrete opfibration then E coequalises F1 and F2.

Proof. Let G : B→ D be a lens that coforks F1 and F2, let B ∈ |B| and let d ∈ D(GB,∗). Then GBd and

EBEGBd are both elements of B(B,∗) which are sent by E to the same morphism EGBd of C. If UE is a

discrete opfibration, then EGBd has a unique lift to B(B,∗), and so GBd and EBEGBd must be equal.

5 Pushouts of discrete opfibrations along monos

In the proof that U preserves epis (Theorem 3.6), we used the well-known result that cosieves are pushout

stable to explain why the pushout in Cat of the get functors of a span of monic lenses lifts uniquely to

a commutative square in Lens; this lifted square is actually a pushout square in Lens. In this section,

we will show, more generally, that Lens has pushouts of discrete opfibrations along monics, and that U

creates these pushouts. In what follows, we use square brackets for equivalence classes of elements.

Fritsch and Latch [11, Proposition 5.2] explicitly construct the pushout in Cat of a functor along a full

monic functor. Specialising to when the full monic functor is a cosieve, and recalling that the image of a

cosieve is out-degree-zero, we obtain the following simplification of Fritsch and Latch’s construction.

Proposition 5.1. Let F : A→ C be a functor and J : A→ B be a cosieve. Then

A B

C D

J

F F

J

is a pushout square in Cat and J is a cosieve, where D, F and J are defined as follows:

• Object set:

|D|= |C|⊔
(

|B| \ |A|
)

• Hom-sets: for all C1,C2 ∈ |C| and all B1,B2 ∈ |B| \ |A|,

D(C1,C2) = C(C1,C2) D(C1,B2) = /0

D(B1,B2) = B(B1,B2) D(B1,C2) =
(

∐

A∈|A|

C(FA,C2)×B(B1,A)
)/

∼

where ∼ is the equivalence relation on
∐

A∈|A|C(FA,C2)×B(B1,A) generated by (c,a ◦ b) ∼
(c◦Fa,b) for all A1,A2 ∈ |A|, all b ∈ B(B1,A1), all a ∈A(A1,A2) and all c ∈ C(FA2,C2).

• Composition: for all B1,B2,B3 ∈ |B| \ |A|, all A ∈ |A|, all C1,C2,C3 ∈ |C|, all b1 ∈ D(B1,B2), all

b2 ∈D(B2,B3), all a ∈ D(B2,A), all c ∈ D(FA,C2), all c1 ∈D(C1,C2) and all c2 ∈D(C2,C3),

b2 ◦D b1 = b2 ◦B b1 [(c,a)]◦D b1 = [(c,a◦B b1)]

c2 ◦D c1 = c2 ◦C c1 c2 ◦D [(c,a)] = [(c2 ◦C c,a)]

• Identity morphisms: same as in B and C.
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• Injections: the functor J : C→ D is the obvious inclusion of C as a full subcategory of D; the

functor F : B→D is defined, for all B,B′ ∈ |B|\|A|, all A,A′ ∈ |A|, all b∈B(B,B′), all b′ ∈B(B,A)
and all a ∈ B(A,A′), as follows:

FB = B FA = FA

Fb = b Fb′ = [(idFA,b
′)] Fa = Fa

Theorem 5.2. The pushout in Cat of a discrete opfibration along a cosieve is a discrete opfibration.

Lemma 5.3. Let F : A→ C be a discrete opfibration, let J : A→ B be a cosieve, let B ∈ |B| \ |A| and

let C ∈ |C|. Then, for all A1,A2 ∈ A, all b1 ∈ B(B,A1), all b2 ∈ B(B,A2), all c1 ∈ C(FA1,C) and all

c2 ∈ C(FA2,C), if (c1,b1)∼ (c2,b2) then FA1c1 ◦b1 = FA2c2 ◦b2.

Proof. We proceed by induction, using the induction principle for ∼ in Equation (3). The proof obli-

gations from the reflexivity, symmetry and transitivity axioms for ∼ hold because = is an equivalence

relation. For the remaining proof obligation, for all A1,A2 ∈ |A|, all b ∈ B(B,A1), all a ∈ A(A1,A2) and

all c ∈ C(FA2,C), we have FA1Fa = a as F is a discrete opfibration, and so

FA2c◦ (a◦b) = FA2c◦FA1Fa◦b = FA1(c◦Fa)◦b.

Proof of Theorem 5.2. Using the notation of Proposition 5.1, suppose that F is a discrete opfibration. We

must show that F is also a discrete opfibration. Let B ∈ |B| and d ∈D(FB,∗).
Suppose that B ∈ |A|. Then FB = FB, and d ∈ C(FB,∗). As F is a discrete opfibration, there is a

unique a ∈ A(B,∗) such that d = Fa. But A(B,∗) = B(B,∗) as A is out-degree-zero in B; also Fa = Fa

for each a ∈ B(B,∗). Hence there is a unique a ∈ B(B,∗) such that d = Fa.

Suppose that B ∈ |B| \ |A| and tgtd ∈ |B| \ |A|. Then FB = B, d ∈ B(B,∗) and Fd = d. As F is

injective on the morphisms of B not in A, d is the unique morphism in B(B,∗) mapped by F to d.

Otherwise, B∈ |B|\|A| and tgtd ∈ |C|. Then FB=B, and d = [(c1,b1)] for some A1 ∈ |A|, some b1 ∈
B(B,A1) and some c1 ∈ C(FA1,C), where C = tgtd. For uniqueness of lifts, suppose that b2 ∈ B(B,∗)
is such that d = Fb2. Let A2 = tgtb2. Then A2 ∈ |A| as FA2 = tgtd = C, and so Fb2 = [(idC,b2)]. As

d = Fb2, we have (idC,b2)∼ (c1,b1). By Lemma 5.3, b2 = FA2 idC ◦b2 = FA1c1 ◦b1; this determines b2.

For existence of lifts, note that F(FA1c1 ◦b1) = [(idC,F
A1c1 ◦b1)] = [(FFA1c1,b1)] = [(c1,b1)] = d.

Theorem 5.4. The functor U creates pushouts of monic lenses with discrete opfibrations.

Proof. Using the notation of Proposition 5.1, suppose that F is a discrete opfibration. Then F is also a

discrete opfibration (Theorem 5.2). Let JB : B→ B⊔C and JC : C→ B⊔C be the coproduct injection

functors. Coproduct injections in Cat are always discrete opfibrations, as is the coproduct copairing of

any two discrete opfibrations. Hence JB, JC and [J, F] are all discrete opfibrations. As the composite of

two discrete opfibrations is a discrete opfibration, so are JB ◦ J and JC ◦F . So far, we know that [J, F] is

the coequaliser in Cat of JB ◦ J and JC ◦F , all of these functors have canonical lens structures as they are

discrete opfibrations, and [J, F] coforks JB ◦ J and JC ◦F in Lens. As [J, F] is a discrete opfibration, the

conditions of Theorem 4.5 are satisfied, and so [J, F] coequalises JB ◦J and JC ◦F in Lens. As U creates

coproducts [5], it follows that J and F exhibit D as the pushout of J and F in Lens.

One might hope that the above result generalises to pushouts of two discrete opfibrations, or of arbi-

trary lenses along monics; this is not the case. The following is an example of two discrete opfibrations

whose pushout injection functors have no lens structures that give a commutative square of lenses.
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Example 5.5. Let A and B be the preordered sets generated respectively by the following graphs.

Y ′1 X ′ Y ′2

Y ′′1 X ′′ Y ′′2

f ′1 f ′2

f ′′1 f ′′2

Y1 X Y2
f1 f2

Let F : A→ B be the unique functor that sends both X ′ and X ′′ to X , both Y ′1 and Y ′′1 to Y1, and both

Y ′2 and Y ′′2 to Y2. Let G : A→ B be the unique functor that sends both X ′ and X ′′ to X , both Y ′1 and Y ′′2
to Y1, and both Y ′2 and Y ′′1 to Y2. Both F and G are discrete opfibrations. Their pushout in Cat is 2; the

pushout injections F,G : B→ 2 are both the unique functor that sends X to 0, and both Y1 and Y2 to 1.

There are two different lens structures on this functor; one lifts the unique morphism u of 2 to f1, the

other lifts it to f2. This gives four different combinations of lens structures on F and G. Assume, for

a contradiction, that one of these combinations satisfies FG = GF in Lens. As GX ′FX u = FX ′GX u, we

must have FX u = GX u. If FX u = f1, then GX ′′FX u = GX ′′ f1 = f ′2 and FX ′′GX u = FX ′′ f1 = f ′1 6= f ′2, which

is a contradiction. If FX u = f2, we obtain a similar contradiction.

Next is an example of a lens and a cosieve where the pushout of the get functor of the lens along the

cosieve does not have a lens structure (incidentally this lens and cosieve do not have a pushout in Lens).

Example 5.6. Let B and D be the preordered sets generated respectively by the following graphs.

X W Y

Z2 Z1 Z3

s

f g

t

X ′ W ′ Y ′

Z′
s′

f ′ g′

t ′

Let A be the out-degree-zero subcategory of B on the objects Z1, Z2 and Z3, and let J : A  B be the

inclusion lens. As 1 is terminal in Lens [5], there is a unique lens F : A→ 1. By Proposition 5.1, the

pushout of UF along UJ in Cat is the unique functor F : B→D that maps W to W ′, X to X ′, Y to Y ′, and

all of Z1, Z2 and Z3 to Z′. The functor F has no lens structure, otherwise we could derive the contradiction

s◦ f = FX s′ ◦FW f ′ = FW (s′ ◦ f ′) = FW (t ′ ◦g′) = FY t ′ ◦FW g′ = t ◦g.

From Theorem 5.4, every monic lens has a cokernel pair. Actually, using the epi-mono factorisation,

every lens has a cokernel pair, namely, the cokernel pair of its mono factor.

Proposition 5.7. Every monic lens is effective (i.e. equalises its cokernel pair).

Proof. Let M : A→ B be a monic lens, and let J1,J2 : B→ CokerM be its cokernel pair. Based on

Proposition 5.1, if B ∈ |B| is such that J1B = J2B, then B ∈ |A|; and similarly for morphisms of B. In

particular, the image of any lens which forks J1 and J2 is contained in A, and thus its corestriction to A

is the unique comparison lens.

Corollary 5.8. In Lens, the classes of all monos, effective monos, regular monos, strong monos and

extremal monos coincide.

Corollary 5.9. Every lens that is both epic and monic is an isomorphism.
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6 Regular epic lenses

In this section, we show that all epis in Lens are regular. This gives us another class of coequalisers in

Lens, namely, the epic lenses. For contrast, recall that not all epis in Cat are regular.

Example 6.1. In Example 3.8, we saw that the functor J : 2→ I is epic. It is, however, not a regular epi.

Indeed, if J coforks F1,F2 : A→ 2, then F1 = F2 as J is monic, and so id2 is the coequaliser of F1 and F2,

but 2 and I are not isomorphic.

Proposition 6.2. The get functor of every epic lens is an effective epi in Cat.

A functor E : B→ C is surjective on composable pairs if for each composable pair (c,c′) of C,

there is a composable pair (b,b′) of B such that Eb = c and Eb′ = c′; such functors are necessarily also

surjective on objects and morphisms. If E : B→ C is an epic lens, then UE is surjective on composable

pairs; indeed, if (c,c′) is a composable pair of C, then there is a B ∈ |B| such that EB = srcc, and

(EBc,E tgt EBcc′) is a composable pair above (c,c′). Hence it suffices to prove the following lemma.

Lemma 6.3. All functors that are surjective on composable pairs are effective epis in Cat.

Proof. Let E : B → C be a functor that is surjective on composable pairs, and let its kernel pair be

F1,F2 : KerE → B. We must show that E coequalises F1 and F2. Let G : B→ D cofork F1 and F2.

Suppose that there is a functor H : C→ D such that G = H ◦E . As E is surjective on objects, for all

C ∈ |C| there is a B ∈ |B| such that EB = C, and so HC = HEB = GB; this equation determines H on

objects. As E is surjective on morphisms, a similar equation determines H on morphisms.

To define H : C→ D with these equations, the values of GB and Gb should be independent of the

choice of B above C and b above c. For all C ∈ |C| and all B,B′ ∈ |B| such that EB = EB′ =C, we have

GB = GF1〈B, B′〉= GF2〈B, B′〉= GB′, where 〈B, B′〉 ∈ |KerE| comes from the pullback property; hence

the object map of H is well defined. Its morphism map is similarly also well defined.

Define H with the above equations. By construction, G = H ◦E . We must show that H is a functor.

For all C ∈ |C|, there is a B ∈ |B| such that EB =C, and H idC = G idB = idGB = idHC; thus H preserves

identities. For all composable pairs c and c′ of C, there is a composable pair b and b′ of B such that

Eb = c and Eb′ = c′, and H(c′ ◦c) = G(b′ ◦b) = Gb′ ◦Gb = Hc′ ◦Hc; thus H preserves composites.

Corollary 6.4. Every epic lens coequalises its proxy kernel pair, and so is regular.

Proof. Let E : B→ C be an epic lens. Let F1,F2 : KerUE → B be the proxy kernel pair of E in Lens.

By Proposition 6.2, UE coequalises UF1 and UF2 in Cat. Let G : B→ D be a lens that coforks F1 and

F2, let B ∈ |B|, let d ∈D(GB,∗), and let C = EB. Then (G◦F1)
〈B,B〉d = F1

〈B,B〉GBd =
〈

GBd, EBEGBd
〉

,

and similarly (G◦F2)
〈B,B〉d =

〈

EBEGBd, GBd
〉

. As G coforks F1 and F2, we have GBd = EBEGBd. By

Theorem 4.5, E coequalises F1 and F2 in Lens.

Corollary 6.5. In Lens, the classes of all epis, regular epis, strong epis and extremal epis coincide.

Corollary 6.6. In Lens, the class of all morphisms that are left orthogonal to the class of all monos is

the class of all epis.

Proof. As Lens has equalisers [5], every morphism that is left orthogonal to the class of all monos is an

epi. Conversely, we have already shown that every epi is a strong epi.

Remark 6.7. As every lens factors as an epi followed by a mono (Remark 3.5), it follows that the class

of all epis and the class of all monos together form an orthogonal factorisation system on Lens.
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7 Conclusion

In this article, we have seen a number of results which advance our understanding of the category Lens

of (asymmetric delta) lenses. We now have a complete elementary characterisation of the monos and

epis in Lens, the monos being the unique lenses on cosieves and the epis being the surjective-on-objects

lenses; from this, we see that Johnson and Roseburgh’s factorisation system on Lens [16] is actually an

epi-mono factorisation system. We have also initiated a study of the coequalisers in Lens. Despite Lens

not having all coequalisers, nor the forgetful functor from Lens to Cat preserving or reflecting them, we

have two interesting positive results. First, every epic lens coequalises its proxy kernel pair. Second,

Lens has pushouts of discrete opfibrations along cosieves. Our characterisation of the epic lenses played

a central role in the proof of both of these results, and hopefully will enable future work to completely

characterise the coequalisers in Lens.

That every epic lens coequalises its proxy kernel pair is yet another result that emphasises the paral-

lels between proxy pullbacks in Lens and real pullbacks in other categories. An interesting question for

future work is whether there is an axiomatisation of the notion of proxy pullback from which one may

prove interesting general results which also apply to other categories. Existing work in this direction

include Bumpus and Kocsis’ proxy pushout [17], which inspired our use of the name proxy pullback,

as well as Böhm’s relative pullbacks [4] and Simpson’s local independent products [19]. One potential

use for such an axiomatised proxy pullback would be to give a generalised notion of regular category;

the category Lens is an obvious candidate example from which to draw inspiration. This notion of a

proxy regular category may even be helpful for understanding symmetric lenses, which are known to be

equivalence classes of spans of asymmetric ones, as some kind of relations in Lens, although this is as

yet merely speculation.
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