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We extend our earlier work on the compositional structure of cybernetic systems in order to account

for the embodiment of such systems. All their interactions proceed through their bodies’ boundaries:

sensations impinge on their surfaces, and actions correspond to changes in their configurations. We

formalize this morphological perspective using polynomial functors. The ‘internal universes’ of

systems are shown to constitute an indexed category of statistical games over polynomials; their

dynamics form an indexed category of behaviours. We characterize active inference doctrines as

indexed functors between such categories, resolving a number of open problems in our earlier work,

and pointing to a formalization of the free energy principle as adjoint to such doctrines. We illustrate

our framework through fundamental examples from biology, including homeostasis, morphogenesis,

and autopoiesis, and suggest a formal connection between spatial navigation and the process of proof.

1 Introduction

In a submission to ACT 2020 [15], we presented some first steps towards a theory of categorical cyber-

netics, motivated by concerns about what gives physical systems life. We explained that perception and

action could both be described as processes of Bayesian inference: on the one hand, adjusting beliefs

about the world on the basis of observational evidence; on the other, adjusting the world itself in order

better to match beliefs. In each case, the system must instantiate a number of structures: a choice of

‘prior’ belief about the state of the world; a mechanism to generate predictions about sense-data on the

basis of that belief, called a ‘stochastic channel’; and a (typically approximate) Bayesian inversion of

that channel, by which to update those beliefs, in light of sensory observations.

The pairing of a prior with a stochastic channel corresponds to what is called in the informal litera-

ture a generative model, and it is common to suppose that these models are hierarchical: that is, that the

stochastic channel factors as some composite; one imagines that each factor corresponds to predictions

at some level of detail, cascading for example down from high-level abstractions to individual photore-

ceptors. In our earlier submission, we formalized this compositional structure using the bidirectional

‘lens’ pattern1 — since predictions and inversions are oppositely directed — and characterized a number

of approximate inference processes using a novel category of statistical games, whose best responses

correspond to optimal inferences. A cybernetic system was then defined as a ‘dynamical realisation’ of

such a game.

This formalism left some things to be desired: our notion of dynamical realisation was ill-defined,

and the notion of ‘action’ was overly abstract. In this submission, we resolve these issues, substantially

simplifying our presentation along the way. We explain that various recipes for performing approximate

inference, corresponding to our earlier informal notion of dynamical realisation, form functorial approx-

imate inference doctrines, between appropriate categories of statistical games and dynamical systems.

Then, to formalize a satisfactory notion of action, we note that any active system has a boundary defining

1See [14] for a pedagogical presentation of the fundamental structures.
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its morphology, and that it acts by changing the shape of this boundary; in order to act on another system,

it couples part of this boundary to that other system, so as to change the composite shape.

To formalize the shapes of systems and their interactions, we adopt polynomial functors: each poly-

nomial will encode the ‘phenotype’ (possible shapes or configurations) of a system, and the sensorium

possible in each configuration. To give such systems life, we construct categories of statistical games

and dynamical behaviours indexed by polynomials. An active inference doctrine is then an indexed

functor between such categories. This framework enables a number of possibilities: we can construct

a generative model for a corporation on the basis of models for its employees; we give compositional

descriptions of fundamental processes of life such as homeostasis and morphogenesis, and point towards

an account of autopoiesis; and we sketch the process by which living systems internalize the structures of

their environments, and navigate accordingly, noting that such navigation in abstract spaces corresponds

precisely to the process of proof.

The work presented here is work in progress, and owing to constraints of space and time, it has not

been possible to elaborate everything that we would have liked; this means that we defer proofs of the

main results to subsequent elaborations of this extended abstract. Two such elaborations are our series of

papers on compositional active inference, beginning with [16], and our work on open dynamical systems

with polynomial interfaces [18]. Notwithstanding these limitations, we believe the results here go some

of the way to answering the open questions, of elegance and interaction, sketched at the end of our earlier

submission. We see this work as making baby steps towards a theory of embodied cybernetics.

Acknowledgements We thank the members of the Topos Institute for stimulating discussions, and the

Foundational Questions Institute and Topos Institute for financial support.

2 Simpler Statistical Games

We begin by sketching a refinement of the statistical games formalism developed in [15]. For much more

detail, we refer the reader to [16]. First, we recall the bidirectional structure of Bayesian inversion.

2.1 Bayesian Lenses

Definition 2.1 ([11, Def. 3.3]). The category GrLensF of Grothendieck lenses for a pseudofunctor F :

C op→ Cat is the total category of the Grothendieck construction for the pointwise opposite of F .

Proposition 2.2 (GrLensF is a category). The objects (GrLensF)0 of GrLensF are (dependent) pairs

(C,X) with C : C and X : F(C), and its hom-sets GrLensF

(

(C,X),(C′,X ′)
)

are dependent sums

GrLensF

(

(C,X),(C′,X ′)
)

= ∑
f :C (C,C′)

F(C)
(

F( f )(X ′),X
)

so that a morphism (C,X) 7→ (C′,X ′) is a pair ( f , f †) of f : C (C,C′) and f † : F(C)
(

F( f )(X ′),X
)

. We

call such pairs Grothendieck lenses for F or F-lenses.

Proof sketch. The identity Grothendieck lens on (C,X) is id(C,X) = (idC, idX). Sequential composition

is as follows. Given ( f , f †) : (C,X) 7→ (C′,X ′) and (g,g†) : (C′,X ′) 7→ (D,Y ), their composite (g,g†) ◦|

( f , f †) is defined to be the lens
(

g ◦ f , f † ◦F( f )(g†)
)

: (C,X) 7→ (D,Y ). Associativity and unitality of

composition follow from the functoriality of F .
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Definition 2.3. Suppose F(C)0 = C0, with F : C op → Cat a pseudofunctor. Define SimpGrLensF to

be the full subcategory of GrLensF whose objects are duplicate pairs (C,C) of objects C in C . We call

SimpGrLensF the category of simple F-lenses. More generally, any lens between such duplicate pairs

will be called a simple lens. Since duplicating the objects in the pairs (C,C) is redundant, we will write

the objects simply as C.

Definition 2.4. Let (C ,⊗, I) be a monoidal category enriched in a Cartesian closed category V. Define
the C -state-indexed category Stat : C op→ V-Cat as follows.

Stat : C
op → V-Cat

X 7→ Stat(X) :=









Stat(X)0 := C0

Stat(X)(A,B) := V(C (I,X),C (A,B))

idA : Stat(X)(A,A) :=

{

idA : C (I,X)→ C (A,A)
ρ 7→ idA









(1)

f : C (Y,X) 7→













Stat( f ) : Stat(X) → Stat(Y )

Stat(X)0 = Stat(Y )0

V(C (I,X),C (A,B)) → V(C (I,Y ),C (A,B))

α 7→ f ∗α :
(

σ : C (I,Y )
)

7→
(

α( f •σ) : C (A,B)
)













Composition in each fibre Stat(X) is as in C . Explicitly, indicating morphisms C (I,X)→ C (A,B)

in Stat(X) by A
X
−→• B, and given α : A

X
−→• B and β : B

X
−→• C, their composite is β ◦α : A

X
−→• C := ρ 7→

β (ρ)•α(ρ), where here we indicate composition in C by • and composition in the fibres Stat(X) by ◦.
Given f : Y→• X in C , the induced functor Stat( f ) : Stat(X)→ Stat(Y ) acts by pullback.

Example 2.5. Typically, a choice of C above will be the Kleisli category K ℓ(P) of a probability monad,

such as the Giry monad G : Meas→Meas on measurable spaces; and V will either be Set or (better)

some ‘nice’ category of measurable spaces. However, the category Meas of general measurable spaces

is not Cartesian closed, as there is no general way to make the evaluation maps Meas(X ,Y )×X →
Y measurable, meaning that if we take C = K ℓ(G ) above, then we are forced to take V = Set. In

turn, this makes the inversion maps c† : K ℓ(G )(1,X)→ K ℓ(G )(Y,X) into mere functions. We can

salvage measurability by working instead with K ℓ(Q), where Q : QBS→QBS is the analogue of the

Giry monad for quasi-Borel spaces [10]. The category QBS is indeed Cartesian closed, and K ℓ(Q)
is enriched in QBS, so that we can instantiate Stat there, and the corresponding inversion maps are

accordingly measurable.

We define the category of Bayesian lenses in C to be the category of Stat-lenses.

Definition 2.6. The category BayesLensC of Bayesian lenses in C is the category GrLensStat of

Grothendieck lenses for the functor Stat. A Bayesian lens is a morphism in BayesLensC . Where the

category C is evident from the context, we will just write BayesLens.

Unpacking this definition, we find that the objects of BayesLensC are pairs (X ,A) of objects of

C . Morphisms (that is, Bayesian lenses) (X ,A) 7→ (Y,B) are pairs (c,c†) of a channel c : X→• Y and a

“generalized Bayesian inversion” c† : B
X
−→• A; that is, elements of the hom objects

BayesLensC

(

(X ,A),(Y,B)
)

: = GrLensStat
(

(X ,A),(Y,B)
)

∼= C (X ,Y )×V
(

C (I,X),C (B,A)
)

.
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The identity Bayesian lens on (X ,A) is (idX , idA), where by abuse of notation idA : C (I,Y )→ C (A,A) is

the constant map idA defined in equation (1) that takes any state on Y to the identity on A.

The sequential composite (d,d†) ◦| (c,c†) of (c,c†) : (X ,A) 7→ (Y,B) and (d,d†) : (Y,B) 7→ (Z,C) is

the Bayesian lens
(

(d •c),(c† ◦c∗d†)
)

: (X ,A) 7→ (Z,C) where (c† ◦c∗d†) : C
X
−→• A takes a state π : I→• X

to the channel c
†
π •d†

c•π : C→• A.

Definition 2.7. Given a Bayesian lens (c,c′) : (X ,A) 7→ (Y,B), we will call c its forwards or prediction

channel and c′ its backwards or update channel (even though c′ is really a family of channels).

Definition 2.8 (Bayesian inversion). We say that a channel c : X→• Y admits Bayesian inversion with

respect to π : I→• X if there exists a channel c
†
π : Y→• X , called the Bayesian inversion of c with respect

to π , satisfying the following equation [6, eq. 5] in the graphical calculus of C :

c

π

X Y

=

c
†
π

π

c

X Y

(2)

We say that c admits Bayesian inversion tout court if c admits Bayesian inversion with respect to all states

π : I→• X such that c•π has non-empty support. We say that a category C admits Bayesian inversion if

all its morphisms admit Bayesian inversion tout court.

Definition 2.9. We call the pairing (π,c) of a state π : I→• X with a channel c : X→• Y a generative model

X→• Y . It induces a joint distribution ω(π,c) := (idX ⊗c)• X •π : I→• X⊗Y .

Definition 2.10. Let (c,c†) : (X ,X) 7→ (Y,Y ) be a Bayesian lens. We say that (c,c†) is exact if c admits

Bayesian inversion and, for each π : I→• X such that c • π has non-empty support, c and c
†
π together

satisfy equation (2). Bayesian lenses that are not exact are said to be approximate.

Definition 2.11 (Almost-equality). Given a state π : I→• X , we say that two parallel channels c,d : X→• Y

are π-almost-equal, denoted c
π
∼ d, if the joint distributions of the two generative models (π,c) and (π,d)

are equal; that is, if (id⊗c)• •π = (id⊗d)• •π .

Theorem 2.12 ([14]). Let (c,c†) and (d,d†) be sequentially composable exact Bayesian lenses. Then

the contravariant component of the composite lens (d,d†)◦| (c,c†) = (d • c,c† ◦ c∗d†) is, up to d • c•π-

almost-equality, the Bayesian inversion of d • c with respect to any state π on the domain of c such that

c•π has non-empty support.

2.2 Statistical Games

The performance of a statistical or cybernetic system depends upon its interaction with its environment,

and the prior beliefs that it started with. We will therefore define a statistical game to be a Bayesian lens

paired with a fitness function measuring performance in context; and for this we need a notion of context.

For this notion, we take inspiration from compositional game theory [2].
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Definition 2.13. A context for a Bayesian lens is an element of the profunctor BayesLensC defined by

BayesLensC × BayesLensC
op → V

− × = 7→ BayesLensC ((I, I),−)×BayesLensC (=,(I, I))

where I is the monoidal unit in C , BayesLensC ((I, I),−) : BayesLensC → V is the representable

copresheaf on (I, I), and BayesLensC (=,(I, I)) : BayesLensC
op → V is the representable presheaf.

Hence a context for a lens (X ,A) 7→ (Y,B) is an element of

BayesLensC

(

(X ,A),(Y,B)
)

:= BayesLensC

(

(I, I),(X ,A))×BayesLensC ((Y,B),(I, I)
)

.

Proposition 2.14. When I is terminal in C and the base V of enrichment of C is well pointed (as when

V = Set), we have BayesLensC

(

(X ,A),(Y,B)
)

∼= C (I,X)×V
(

C (I,B),C (I,Y )
)

.

Proof. A straightforward calculation which we omit: use that X
c
−→Y

!
−→ I = X

!
−→ I for any c : X→Y .

Proposition 2.15. Given a context (π,k) : BayesLensC

(

(X ,A),(Z,C)
)

for a composite lens (X ,A)
f
7→

(Y,B)
g
7→ (Z,C), we obtain contexts for the factors:

BayesLensC

(

(X ,A),g
)

(π,k) = (π,k ◦| g) : BayesLensC

(

(X ,A),(Y,B)
)

,

BayesLensC

(

f ,(Z,C)
)

(π,k) = ( f ◦| π,k) : BayesLensC

(

(Y,B),(Z,C)
)

.

We are now in a position to define the category of statistical games over C .

Proposition 2.16. Let C be a V-category admitting Bayesian inversion and let (R,+,0) be a monoid

in V. Then there is a category SGame[R]C whose objects are the objects of BayesLensC and whose

morphisms (X ,A)→ (Y,B) are statistical games: pairs ( f ,φ) of a lens f : BayesLensC

(

(X ,A),(Y,B)
)

and a fitness function φ : BayesLensC

(

(X ,A),(Y,B)
)

→ R. When R is the monoid of reals R, then we

just denote the category by SGameC .

Proof. Suppose given statistical games ( f ,φ) : (X ,A)→ (Y,B) and (g,ψ) : (Y,B)→ (Z,C). We seek a

composite game (g,ψ)◦ ( f ,φ) := (g f ,ψφ) : (X ,A)→ (Z,C). We have g f = g◦| f by lens composition.

Propositon 2.15 gives us a family of functions localCtx with signature

BayesLensC

(

(X ,A),(Z,C)
)

×BayesLensC

(

(X ,A),(Y,B)
)

×BayesLensC

(

(Y,B),(Z,C)
)

→ BayesLensC

(

(X ,A),(Y,B)
)

×BayesLensC

(

(Y,B),(Z,C)
)

.

We therefore identify the composite fitness function ψφ as

ψφ :=+◦ (φ ,ψ)◦ localCtx(−, f ,g)

where + : R×R→ R is the monoid operation. The identity game (X ,A)→ (X ,A) is given by (id,0),
the pairing of the identity lens on (X ,A) with the unit 0 of the monoid R. Associativity and unitality are

immediate from lens composition and the monoid laws.

Definition 2.17. We will write SimpSGameC →֒ SGameC for the full subcategory of SGameC defined

on simple Bayesian lenses (X ,X) 7→ (Y,Y ). As in the case of simple lenses (Definition 2.3), we will

eschew redundancy by writing the objects (X ,X) simply as X .

We now present some key examples of statistical games.
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Example 2.18 (Bayesian inference). Let D : C (I,X)×C (I,X)→R be a measure of divergence between

states on X . Then a (simple) D-Bayesian inference game is a statistical game (X ,X)→ (Y,Y ) with fitness

function φ : BayesLensC

(

(X ,X),(Y,Y )
)

→ R given by φ(π,k) = Ey∼k•c•π

[

D
(

c′π(y),c
†
π (y)

)]

, where

(c,c′) constitutes the lens part of the game and c
†
π is the exact inversion of c with respect to π .

Note that we say that D is a “measure of divergence between states on X”. By this we mean any

function of the given type with the semantical interpretation that it acts like a distance measure between

states. But this is not to say that D is a metric or even pseudometric. One usually requires that D(π,π ′) =
0 ⇐⇒ π = π ′, but typical choices do not also satisfy symmetry nor subadditivity. An important such

typical choice is the relative entropy or Kullback-Leibler divergence, denoted DKL.

Definition 2.19. The Kullback-Leibler divergence DKL : C (I,X)×C (I,X)→ R is defined by

DKL(α ,β ) := E
x∼α

[log p(x)]− E
x∼α

[logq(x)]

where p and q are density functions corresponding to the states α and β .

Typically, computing DKL(c
′
π(x),c

†
π (x)) is computationally difficult, so one resorts to optimizing an

upper bound; a prominent choice is the free energy [8].

Definition 2.20 (D-free energy). Let (π,c) be a generative model with c : X→• Y . Let pc : Y ×X → R+

and pπ : X → R+ be density functions corresponding to c and π . Let pc•π : Y → R+ be a density

function for the composite c•π . Let c′π be a channel Y→• X that we take to be an approximation of the

Bayesian inversion of c with respect to π and that admits a density function q : X×Y → R+. Finally, let

D : C (I,X)×C (I,X)→ R be a measure of divergence between states on X . Then the D-free energy of

c′π with respect to the generative model given an observation y : Y is the quantity

F D(c
′
π ,c,π,y) := E

x∼c′π (y)
[− log pc(y|x)]+D

(

c′π(y),π
)

. (3)

We will elide the dependence on the model when it is clear from the context, writing only F D(y).

The D-free energy is an upper bound on D when D is the relative entropy DKL.

Proposition 2.21 (Evidence upper bound). The DKL-free energy satisfies the following equality:

F DKL
(y) = DKL

[

c′π(y),c
†
π (y)

]

− log pc•π(y) = E
x∼c′π (y)

[

log
q(x|y)

pc(y|x) · pπ (x)

]

Since log pc•π(y) is always negative, the free energy is an upper bound on DKL

[

c′π(y),c
†
π(y)

]

, where c
†
π

is the exact Bayesian inversion of the channel c with respect to the prior π . Similarly, the free energy is

an upper bound on the negative log-likelihood − log pc•π(y). Thinking of this latter quantity as a measure

of the “model evidence” gives us the alternative name evidence upper bound for the DKL-free energy.

Any system that performs (approximate) Bayesian inversion can thus be seen as minimizing some

free energy. The free energy principle says that all it means to be an adaptive system is to embody a

process of approximate inference in this way. We therefore define free energy games:

Example 2.22 (Free energy game). Let D : C (I,X)×C (I,X)→ R be a measure of divergence between

states on X . Then a simple D-free energy game is a simple statistical game (X ,X)→ (Y,Y ) with fit-

ness function φ : BayesLensC

(

(X ,X),(Y,Y )
)

→ R given by φ(π,k) = Ey∼k•c•π [F D (c′π ,c,π,y)] where

(c,c′) : (X ,X) 7→ (Y,Y ) constitutes the lens part of the game.
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Remark 2.23. It is also often of interest to consider parameterized channels, for which we can use the

Para construction [13]. This acts by adjoining an object of parameters to the domain of the category

at hand (such as the category of Bayesian lenses), and tensoring parameters of composite morphisms.

Formally, this corresponds to a generalization of the indexed category of state-dependent morphisms,

and forms the subject of another paper in these proceedings [4]. The parameters might represent the

‘weights’ of a neural network, or encode some structure about the possible predictions. Lacking the

space to do justice to this structure here, we nonetheless leave it at that, and refer the reader to our paper

[16] for more details.

3 Systems Within Interfaces; Worlds Within Worlds

In this section, we develop the structures required for extending the formalism of statistical games to

embodied systems.

3.1 Polynomials for Embodiment and Interaction

Each system in our universe inhabits some interface or boundary. It receives signals from its environ-

ments through this boundary, and can act by changing its shape (and, as we will see later, its position).

As a system changes its shape, the set of possible immanent signals might change accordingly: consider

a hedgehog rolling itself into a ball, thereby protecting its soft underbelly from harm (amongst other

immanent signals). A system may also change its shape by coupling itself to some other system, such as

when we pick up chalk to work through a problem. And shapes can be abstract: we change our ‘shapes’

when we enter an online video conference, or move within a virtual reality. We describe all of these

interactions formally using polynomial functors, drawing on the work of [12].

Definition 3.1. Let E be a locally Cartesian closed category, and denote by yA the representable co-

presheaf yA := E (A,−) : E → E . A polynomial functor p is a coproduct of representable functors, writ-

ten p := ∑i:p(1) ypi , where p(1) : E is the indexing object. The category of polynomial functors in E is the

full subcategory PolyE →֒ [E ,E ] of the E -copresheaf category spanned by coproducts of representables.

A morphism of polynomials is therefore a natural transformation.

Remark 3.2. Every polynomial functor P : E → E corresponds to a bundle p : E → B in E , for which

B = P(1) and for each i : P(1), the fibre pi is P(i). We will henceforth elide the distinction between a

copresheaf P and its corresponding bundle p, writing p(1) := B and p[i] := pi, where E = ∑i p[i]. A

natural transformation f : p→ q between copresheaves therefore corresponds to a map of bundles. In the

case of polynomials, by the Yoneda lemma, this map is given by a ‘forwards’ map f1 : p(1)→ q(1) and

a family of ‘backwards’ maps f # : q[ f1(-)]→ p[-] indexed by p(1), as in the left diagram below. Given

f : p→ q and g : q→ r, their composite g◦ f : p→ r is as in the right diagram below.

E f ∗F F

B B C

f #

qp

f1

y

E f ∗g∗G G

B B D

(g f )#

rp

g1◦ f1

y

Here, (g f )# is given by the p(1)-indexed family of composite maps r[g1( f1(-))]
f ∗g#

−−→ q[ f1(-)]
f #

−→ p[-].

In our morphological semantics, we will call a polynomial p a phenotype, its base type p(1) its

morphology and the total space ∑i p[i] its sensorium. We will call elements of the morphology shapes or

configurations, and elements of the sensorium immanent signals.
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Proposition 3.3 ([12]). There is a monoidal structure (PolyE ,⊗,y) that we interpret as “putting systems

in parallel”. Given p : ∑i p[i]→ p(1) and q : ∑ j q[ j]→ q(1), we have p⊗q = ∑i ∑ j p[i]×q[ j]→ p(1)×
q(1). y : 1→ 1 is then clearly unital.

Proposition 3.4 ([12]). The monoidal structure (PolyE ,⊗,y) is closed, with corresponding internal hom

denoted [−,−].

We interpret morphisms ( f1, f #) of polynomials as encoding interaction patterns; in particular, such

morphisms encode how composite systems act as unities. For example, a morphism f : p⊗q→ r speci-

fies how the systems p and q come together to form a system r: the map f1 encodes how r-configurations

are constructed from configurations of p and q; and the map f # encodes how immanent signals on p and

q result from signals on r or from the interaction of p and q. For intuition, consider two people engaging

in a handshake, or an enzyme acting on a protein to form a complex. The internal hom [o, p] encodes all

the possible ways that an o-phenotype system can “plug into” a p-phenotype system.

Remark 3.5. In the literature on active inference and the free energy principle, there is much debate

about the concept and role of ‘Markov blankets’, which are sometimes conceived to represent the bound-

ary of an adaptive system. We believe that the algebra of polynomials will help to make such thinking

precise, where it departs from the established usage of Markov blankets in Bayesian networks.

3.2 Dynamical Systems on Polynomial Interfaces

Although some dynamical systems can be modelled within PolyE itself, we prefer to take a fibrational

perspective, following the idea that polynomials represent the boundaries of systems, separating ‘inter-

nal’ states from ‘external’. We will therefore adopt a pattern of indexing categories by polynomials: in

the case of dynamics, the fibre over a polynomial will be a category of possible internal systems, whose

projection forgets the internal structure. We can only sketch the relevant structures here, and so refer

the reader to our subsequent paper [18] where we give a general account of open dynamical systems as

coalgebras for polynomial functors.

Definition 3.6. Let P : E → E be a probability monad on the category E , and let p : PolyE be a

polynomial in E . Let (T,+,0) be a monoid in E , representing time. Then an open Markov process on

the interface p with time T consists in a triple ϑ := (S,ϑo,ϑu) of a state space S : E and two morphisms

ϑo : T×S→ p(1) and ϑu : ∑t:T ∑s:S p[ϑo(t,s)]→P S, such that for any section σ : p(1)→ ∑i:p(1) p[i]
of p, the maps ϑσ : T×S→P S given by

∑
t:T

S
ϑ o(−)∗σ
−−−−−→∑

t:T
∑
s:S

p[ϑo(−,s)]
ϑ u

−→P S

constitute an object in the functor category Cat
(

BT,K ℓ(P)
)

, where BT is the delooping of T and

K ℓ(P) is the Kleisli category of P . We call ϑσ the closure of ϑ by σ .

Proposition 3.7. Open Markov processes over p with time T form a category, denoted MrkProcT
P
(p).

Its morphisms are defined as follows. Let ϑ := (X ,ϑo,ϑu) and ψ := (Y,ψo,ψu) be two Markov pro-

cesses over p. A morphism f : ϑ → ψ consists in a morphism f : X → Y such that, for any time t : T

and global section σ : p(1)→ ∑
i:p(1)

p[i] of p, we have a natural transformation ϑσ → ψσ between the

closures. The identity morphism idϑ on the open Markov process ϑ is given by the identity morphism

idX on its state space X . Composition of morphisms of open Markov processes is given by composition

of the morphisms of the state spaces.
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Proposition 3.8. MrkProcT
P

extends to an indexed category, MrkProcT
P

: PolyE → Cat. Suppose

ϕ : p→ q is a morphism of polynomials. We define the functor MrkProcT
P
(ϕ) : MrkProcT

P
(p)→

MrkProcT
P
(q) as follows. Suppose (X ,ϑo,ϑu) is an object (open Markov process) in MrkProcT

P
(p).

Then MrkProcT
P
(ϕ)(X ,ϑo,ϑu) is defined as the triple (X ,ϕ1 ◦ϑo,ϑu ◦ϑo∗ϕ#) : MrkProcT

P
(q). On

morphisms, MrkProcT
P
(ϕ)( f ) : MrkProcT

P
(ϕ)(X ,ϑo,ϑu)→ MrkProcT

P
(ϕ)(Y,ψo,ψu) is given by

the same underlying map f : X →Y of state spaces.

Remark 3.9 (Closed Markov chains and Markov processes). A closed Markov chain is given by a

map X → P X , where P : E → E is a probability monad on E ; this is equivalently an object in

MrkProcT
P
(y), and (again equivalently) an object in Cat

(

BN,K ℓ(P)
)

. With more general time T,

one obtains closed Markov processes: objects in Cat
(

BT,K ℓ(P)
)

. More explicitly, a closed Markov

process is a time-indexed family of Markov kernels; that is, a morphism ϑ : T×X→P X such that, for

all times s, t : T, ϑs+t = ϑs •ϑt as a morphism in K ℓ(P). Note that composition • in K ℓ(P) is given

by the Chapman-Kolmogorov equation, so this means that

ϑs+t(y|x) =

∫

x′:X
ϑs(y|x

′)ϑt(dx′|x) .

We will need to convert our fibration of Markov processes into an ordinary category, in order to

supply ‘dynamical semantics’ for statistical games. We can do so, with objects being appropriately

typed pairs and morphisms representing appropriately ‘bidirectional’ dynamical systems, by using the

following structure.

Proposition 3.10. Let D : PolyE → Cat be an indexed category over polynomials. Then there is a

category of hierarchical bidirectional D-systems, denoted HiBi(D), and defined as follows. The objects

of HiBi(D) are pairs (X ,A) of objects in E . Morphisms (X ,A)→ (Y,B) are functors D(XyA)→D(Y yB).
The composition rule is just composition of the corresponding functors, and identity morphisms id(X ,A) :

(X ,A)→ (X ,A) are given by the identity functor idD(XyA) : D(XyA)→ D(XyA).

Proof. Immediate from the associativity and unitality of composition of functors.

In particular, we can take D= MrkProcT
P

to obtain “hierarchical bidirectional Markov systems”.

3.3 Nested Systems and Dependent Polynomials

The foregoing formalism suffices to describe systems’ shapes, and behaviours of those shapes that de-

pend on their sensoria. But in our world, a system has a position as well as a shape! Indeed, one might

want to consider systems nested within systems, such that the outer systems constitute the ‘universes’

of the inner systems; in this way, inner shapes may depend on outer shapes, and inner sensoria on outer

sensoria.2 We can model this situation polynomially.

Recall that an object in PolyE corresponds to a bundle E → B, equivalently a diagram 1← E
p
−→

B→ 1, and note that the unit polynomial y corresponds to a bundle 1→ 1. We can then think of PolyE

as the category of “polynomials in one variable”, or “polynomials over y”. This presents a natural

generalization, to polynomials in many variables, corresponding to diagrams J ← E → B→ I; these

diagrams form the objects of a category PolyE (J, I). When J is a (polynomial) bundle β over I, then we

can take the subcategory of PolyE (J, I) whose objects are commuting squares and whose morphisms are

prisms as follows; the commutativity ensures that inner and outer sensoria are compatible.

2We might even consider the outer shapes explicitly as positions in some world-space, and the outer sensorium as determined

by possible paths between positions, in agreement with the perspective of [12] on polynomials.
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Proposition 3.11. There is an indexed category of nested polynomials which by abuse of notation we

will call PolyE (−) : PolyE →Cat. Given β : J→ I, the category PolyE (β ) has commuting squares as on

the left below as objects and prisms as on the right as morphisms. Its action on polynomial morphisms

β → γ is given by composition.

E J

B I

E J

B f ∗F

B F

I C

Remark 3.12. This construction can be repeatedly iterated, modelling systems within systems within

systems. We leave the consideration of the structure of this iteration to future work, though we expect

it to have an opetopic shape equivalent to that obtained by iterating the Para construction (cf. Remark

2.23).

Observation 3.13. Our polynomially indexed categories of dynamical behaviours and statistical games

(Prop. 4.9) generalize to the case of nested polynomials, giving a doubly-indexed structure. For more

information on the former case, we refer the reader to our preprint [17].

4 Theories of Approximate and Active Inference

We now start to bring together the structures of the previous sections, in order to breathe life into poly-

nomials. We begin by sketching approximate inference doctrines, which characterize dynamical systems

that optimize their performance at statistical games, without reference to morphology. In this paper, we

do not concentrate on the detailed structure of these doctrines, leaving their exposition and comparison

to future work, in which we will also be interested in morphisms between doctrines.

4.1 Approximate Inference Doctrines

An approximate inference doctrine will be a monoidal functor from a category of statistical games into

an appropriate category of dynamical systems, taking games to systems that ‘play’ those games, typically

by implementing an optimization process. In the free-energy literature (e.g., [3]), these systems have a

hierarchical structure in which the realization of a game has access to the dynamics realizing the prior,

mirroring the context-dependence of the games themselves, and it is for this reason that we use the

category of hierarchical bidirectional systems defined above.

Proposition 4.1. Let P : E → E be a probability monad on E , and let C be a category that admits

Bayesian inversion, equipped with a functor F : C →K ℓ(P). Since SGameC is a Grothendieck fibra-

tion, it is equipped with a canonical projection functor SGameC →C . Suppose that G is a subcategory of

SGameC . Then there is a functor FG : G →֒ SGameC → C
F
−→K ℓ(P) whose image imFG in K ℓ(P)

consists of the forwards maps of G realized as stochastic channels in K ℓ(P).
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Definition 4.2. Suppose p : PolyE and that C is a subcategory of K ℓ(P). Denote by MrkProcT
P
(p)|C

the subcategory of MrkProcT
P
(p) whose objects (Θ,θo,θu) satisfy the condition that, for all t : T, the

following composite belongs to C :

∑
t:T

∑
x:Θ

p[θo(t,x)]
θ u(t)
−−−→P Θ

P θ o(t)
−−−−→P p(1) .

Note that MrkProcT
P
(−)|C does not in general define an indexed category.

Definition 4.3. Suppose C is a subcategory of K ℓ(P). Denote by HiBi
(

MrkProcT
P

)

|C the re-

striction of HiBi
(

MrkProcT
P

)

defined as follows. The objects of HiBi
(

MrkProcT
P

)

|C are the ob-

jects of HiBi
(

MrkProcT
P

)

, but morphisms (X ,A)→ (Y,B) are now functors MrkProcT
P
|C (XyA)→

MrkProcT
P
|C (Y yB). Composition and identities are defined as for HiBi

(

MrkProcT
P

)

.

We are now in a position to define approximate inference doctrines.

Definition 4.4. Let P : E → E be a probability monad on E and let G be a subcategory of SGameK ℓ(P).

An approximate inference doctrine in G with time T is a functor from G to HiBi
(

MrkProcT
P

)

|imFG
,

where FG is defined as in Proposition 4.1.

Many informal approximate inference schemes—including Markov chain Monte Carlo, variational

Bayes, expectation-maximization, particle filtering—give rise to approximate inference doctrines; func-

toriality typically follows from Theorem 2.12. Here we note one explicitly, for later reference; a detailed

presentation will appear in an upcoming paper.

Definition 4.5. We say that f : X→• Y in K ℓ(P) is Gaussian if, for any x : X , the state f (x) : PY is

Gaussian. Note that Gaussian morphisms are not themselves closed under composition, though we can

consider the subcategory of morphisms generated by Gaussian morphisms.

Lemma 4.6 (Laplace approximation). Suppose:

(a) Gauss is the subcategory of channels generated by Gaussian morphisms between finite-dimensional

Euclidean spaces in K ℓ(P);
(b) (γ ,ρ ,φ) : X → Y is a simple DKL-free energy game with Gaussian channels;

(c) for all priors π : P X , the statistical parameters of ρπ : Y →P X are denoted by (µρπ ,Σρπ ) : Y →
R
|X |×R

|X |×|X |, where |X | is the dimension of X ; and

(d) for all y : Y , the eigenvalues of Σρπ (y) are small.

Then the loss function φ : BayesLensGauss((X ,X),(Y,Y ))→ R can be approximated by

φ(π,k) = E
y∼k•γ•π

[

F (y)
]

≈ E
y∼k•γ•π

[

F
L(y)

]

where

F
L(y) = E(π,γ)

(

µρπ (y),y
)

−SX [ρπ(y)] (4)

=− log pγ (y|µρπ (y))− log pπ(µρπ (y))−SX [ρπ(y)]

and where Sx[ρπ(y)] = Ex∼ρπ (y)[− log pρπ (x|y)] is the Shannon entropy of ρπ(y), and pγ : Y ×X → [0,1],
pπ : X → [0,1], and pρπ : X×Y → [0,1] are density functions for γ , π , and ρπ respectively. The approx-

imation is valid when Σρπ satisfies

Σρπ (y) =
(

∂ 2
x E(π,γ)

)(

µρπ (y),y
)−1

. (5)
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Theorem 4.7. Suppose:

(a) Gauss is the subcategory of channels generated by Gaussian morphisms between finite-dimensional

Euclidean spaces in K ℓ(P);
(b) SimpSGameGauss →֒ SGameK ℓ(P) is the subcategory of simple statistical games over K ℓ(P)

with channels in Gauss; and

(c) G is the subcategory of DKL-Bayesian inference games in SimpSGameGauss.

Then the discrete-time free-energy principle under the Laplace approximation induces an approximate

inference doctrine in G with time N, Laplace : G →HiBi
(

MrkProcT
P

)

|imFG
.

4.2 Statistical Games over Polynomials

Approximate inference doctrines of the foregoing type do not supply a satisfactory model of active

systems. One piece of structure is still missing, with which we can describe action and interaction

faithfully: an indexed category of statistical games over polynomials. In order to construct this, we first

define categories of “games on interfaces”: this is simpler than slicing the category of statistical games,

as we do not require games between games.

Definition 4.8. Let P : E → E be a probability monad on E . Let X : E be an object in E . Define a

category of simple statistical games on the interface X , denoted by IntGameP(X), as follows. Its

objects are simple statistical games with codomain X ; that is, points of ∑A:E SimpSGameK ℓ(P)(A,X).
Let (γ ,ρ ,φ) : A→ X and (δ ,σ ,χ) : B→ X be two such simple statistical games. Then a morphism

(γ ,ρ ,φ)→ (δ ,σ ,χ) is a deterministic function f : A→ B—that is, a point of E (A,B)—such that γ =
δ ◦ f . Unitality and associativity follow immediately from those properties in E /P X .

We then use this to construct games over polynomials. The intuition here is that ‘inside’ a system

with a polynomial phenotype is a statistical model of the system’s sensorium. This involves an object

representing the space of possible causes of observations, and a simple statistical game from this object

onto the sensorium; by its nature, this model induces predictions about the system’s configurations, as

well as about the immanent signals. By sampling from these predicted configurations, the system can act;

by observing its actual configuration and the corresponding immanent signals, it can update its internal

beliefs, and any parameters of the model. Later, we will equip this process with (random) dynamics,

thereby giving the systems life.

Proposition 4.9. Let P : E → E be a probability monad on a locally Cartesian closed category E . There

is a polynomially indexed category of statistical games PSGameP : PolyE →Cat, defined on objects

p as IntGameP

(

∑i:p(1) p[i]
)

.

Example 4.10. To understand the action of PSGameP(ϕ) on statistical games, it may help to consider

the example of a corporation. Such a system is composed of a number of active systems, which instantiate

statistical games and interact according to some pattern formalized by the polynomial map ϕ . Given such

a collection of games, PSGameP(ϕ) tells us how to construct a game for the corporation as a whole:

in particular, we obtain a stochastic channel generating predictions for the (exposed) sensorium of the

corporation, and an inversion updating the constituent systems’ beliefs accordingly.

4.3 Active Inference

We are now ready to define active inference doctrines; given all the foregoing structure, this proves

relatively simple.
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Definition 4.11. Let P : E → E be a probablity monad, and let T be a time monoid. An active inference

doctrine is a monoidal indexed functor from PSGameP to MrkProcT
P

.

Proposition 4.12. The Laplace doctrine lifts from approximate to active inference. The functors on each

fibre are as before on games (here, objects), and on morphisms between games they are given merely

by lifting the corresponding maps to maps between state spaces. One then checks that morphisms of

polynomials correspond to natural transformations between these functors.

Remark 4.13. It would be desirable to incorporate the compositional structure of the games themselves,

rather than treat them opaquely as objects. This suggests a double-categorical structure the investigation

of which we leave to future work. Similarly, we do not here elaborate the extension of these indexed

categories to the dependent-polynomial case.

5 Polynomial Life and Embodied Cognition

Finally, we sketch how a number of classic biological processes can be modelled as processes of active

inference over polynomials. The key insight is that, by fixing the prior of an ‘active’ free-energy game to

encode high-precision (low-variance) beliefs about the external state, we can induce the system to prefer

acting (i.e., reifying those beliefs) over perceiving (i.e., updating the beliefs to match perceptions). In

doing so, one can induce volition or goal-directedness in the system. A key feature of these examples is

that they demonstrate ‘embodied’ cognition, in which a system’s form and interactions become part of

its cognitive apparatus.

Remark 5.1. Of course, one must be careful not to choose a prior with excessively high precision (such

as a Dirac delta distribution), as this would cause the system to forego any belief-updating, thereby

rendering its actions independent of the ‘actual’ external state.

Example 5.2. Suppose that the system’s sensorium includes a key parameter such as ambient tempera-

ture or blood pH. Suppose that by adjusting its configuration, the system can move around in order to

sample this parameter. And suppose that the prior encodes a high-precision distribution centred on the

acceptable range of this parameter. Then it is straightforward to show that the system, by minimizing the

free energy, will attempt to configure itself so as to remain within the acceptable parameter range. We

can consider this as a simple model of homeostasis.

Example 5.3. We can extend the previous example to a system with multiple (polynomial) components,

each equipped with a “homeostasis game”, in order to model morphogenesis. Suppose the environmen-

tal parameter in the sensorium is the local concentration of some signalling molecule, and suppose the

polynomial morphism forming the composite system encodes the pattern of signalling molecule concen-

trations in the neighbourhood of each system, as a result of their mutual configurations. Suppose then

that the target state encoded in the prior of each system corresponds to the system being positioned in a

particular way relative to the systems around it, as represented by the signal concentrations. Free-energy

minimization then induces the systems to arrange themselves in order to obtain the target pattern.

Remark 5.4. The foregoing examples begin to point towards a compositional theory of autopoiesis:

here, one might expect the target state to encode the proposition “maintain my morphology”, which ap-

pears self-referential. The most elegant way of encoding this proposition in the prior is not immediately

clear, although a number of possibilities present themselves (such as avoiding some undesirable con-

figuration representing dissolution). We expect a satisfactory answer to this to be related to “Bayesian

mechanics” (see §6).
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Remark 5.5. It has been shown informally that, given a finite time horizon Markov decision problem,

active inference can recover the Bellman-optimal policy traditionally obtained by backward induction

[7]. Ongoing work by the present author is directed at formalizing the structure of this relationship. In

particular, the result rests on encoding directly into the prior the expectation of the loss function given

a policy and a goal, which strikes us as a large amount of information to push into an unstructured

distribution over numbers.

Example 5.6. The examples need not be restricted to simple biological cases. For instance, we can model

spatial navigation quite generally: we can use parameterized statistical games to encode uncertainty

about the structure of the ‘external space’ (for instance: which points or neighbourhoods are connected to

which, and by which paths). By setting a high-precision prior at some location, the system will attempt to

reach that location, learning the spatial structure along the way; reducing the precision of the prior causes

the system to prefer “mere exploration”. One can attach sense-data to each location using the natural

polynomial bundle structure. Moreover, the ‘external space’ need not be a simple topological space:

it may be something more structured. For instance, categories and sites can themselves be modelled

polynomially. One can think of “taking an action” as precisely analogous to “following a morphism”:

thus, in a topos-theoretic setting, one can consider the structure of the ‘external space’ to be a type-

theoretic context, and positions in the world to be objects in the corresponding topos. One could then

encode in the prior a target proposition, and free-energy minimization would cause the system then to

explore the ‘space’ (learning its structure), and seek a path to the target. But such a path is precisely a

proof! There is increasing evidence that the neural mechanisms underlying spatial and abstract navigation

are the same [1], and a line of thinking as sketched here may supply a mathematical justification.

6 Future Directions

Besides expanding the examples above in detail, there are many future directions to pursue. Our last

example points towards a ‘well-typed’ theory of cognition, finding type-theoretic analogues of cognitive

processes (such as action, planning, or navigation). By formalizing the connection between polynomial

statistical games and Markov decision processes, we hope finally to relate our ‘statistical’ account of

cybernetics with the account emerging from research in compositional game theory. In particular, we

believe that the hierarchical/nested structure of our polynomial systems is structurally similar to that of

(parameterized) players in open games. Along similar lines, we expect a connection between statistical

games and ‘learners’ [13] implementing backprop.

In a more physical direction, there is a controversy in the informal literature about whether one

should expect any system with a boundary (and hence any system on a polynomial) to admit a canon-

ical statistical-game description; the typical suggestion is that such a description should obtain at non-

equilibrium steady state, through a manipulation of the corresponding Fokker-Planck equation; this is

the notion of “Bayesian mechanics” [9]. Our results suggest that such a canonical description should

form a left adjoint to some active inference doctrine; this is a matter of ongoing research by the author.

Working topos-theoretically points further in a metaphysical direction: a Bayesian perspective lends

itself to subjectivism, but considering the “internal universe” of a navigating system to be a topos in

some context also points to a subjective realism. It seems likely then that composite systems need not in

general agree about their observations. We should therefore expect to find evidence of contextuality and

disagreement in multi-agent systems, and to investigate this using cohomological tools (e.g., [5]).
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