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We define a categorical notion of cybernetic system as a dynamical realisation of a generalized open
game, along with a coherence condition. We show that this notion captures a wide class of cybernetic
systems in computational neuroscience and statistical machine learning, exposes their compositional
structure, and gives an abstract justification for the bidirectional structure empirically observed in cor-
tical circuits. Our construction is built on the observation that Bayesian updates compose optically, a
fact which we prove along the way, via a fibred category of state-dependent stochastic channels.

1 Introduction

Those systems that we might classify as living, adaptive, or somehow intelligent all display a fundamental
property: they resist or avoid perturbations that would result in their existence becoming unsustainable.
This means that they must somehow be able to sense their current state of affairs (perception) and re-
spond appropriately (action). In particular, an adaptive system should sense the relevant aspects of its
current environmental state, and form expectations about the consequences of that state. In general, the
interaction with the environment will be stochastic, and the statistically optimal method of ‘sensing’ and
prediction is Bayesian inference.

Typically, however, the system has no direct access to the external state, only to sense data that
indirectly have external causes. Moreover, sense data are often very high-dimensional, and predicting
their consequences is underdetermined. As a result, it is common to assume that successful organisms are
imbued with some kind of generative model of the process by which external causes generate their sense
data. They can then use this model to infer those actions will bring (their beliefs about) their current state
closer to those expectations: a process called active inference.

Systems such as these are inherently open, and often their internal models and beliefs are supposed to
be structured hierarchically—that is, compositionally. The processes of prediction and action sketched
here are naturally bidirectional, and indeed our first contribution in the present work is to show that
Bayesian inference is abstractly structured as a category of optics [21, 6], the emerging canonical for-
malism for (open) bidirectionally structured compositional systems.

The compositional framework of open games [2, 13] builds on categories of optics to describe sys-
tems of motivated interacting agents, but it is substantially more general than needed for classical game
theory: generalized open games naturally describe any bidirectionally structured open systems that can
be associated with a measure of fitness. Consequently, such generalized open games provide a natural
home for a compositional theory of interacting cybernetic systems, and using our notion of Bayesian
lens, we characterize a number of canonical statistical models as statistical games.

However, mere open games themselves supply no notion of dynamics mediating the interactions. We
therefore introduce the concept of dynamical realisation of an open game (Definition 4.7), as well as a
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coherence condition that ensures such a realisation behaves as we would expect from a cybernetic system
(Definition 4.8). We use these concepts to show that two prominent frameworks for active inference
instantiate such categories of cybernetic systems.
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2 Bayesian Updates Compose Optically

We begin by proving that Bayesian updates compose according to the ‘lens’ pattern [9] that sits at the
heart of categories of open games and other ‘bidirectional’ structures. We first show that Bayesian inver-
sions are ‘vertical’ maps in a fibred category of state-dependent channels. The Grothendieck construction
of this structure gives a category of lenses. Open games are commonly defined using the more general
‘optics’ pattern [2], and so we also show that, under the Yoneda embedding, our category of lenses is
equivalently a category of optics.

Throughout the paper, we work in a general category of stochastic channels; abstractly, this corre-
sponds to a Markov category [12] or copy-delete category [5]. Familiar examples of such categories
include K `(D), the Kleisli category of the finitely-supported distribution monad D , and, for ‘continu-
ous’ probabiliy, K `(G ), the Kleisli category of the Giry monad. We will write c†

π := c†
(·)(π) to indicate

the Bayesian inversion of the channel c with respect to a state π . Then, given some y ∈ Y , c†
π(y) is a

new ‘posterior’ distribution on X. We will call c†
π(y) the Bayesian update of π along c given y.

For a substantially expanded version of this section, including proofs and background exposition
with precise definitions of Bayesian inversion, see the author’s [25]. We will occasionally here refer to
definitions or results in that paper.

Definition 2.1 (State-indexed categories). Let (C ,⊗, I) be a monoidal category enriched in a Cartesian
closed category V. Define the C -state-indexed category Stat : C op→ V-Cat as follows.

Stat : C op → V-Cat

X 7→ Stat(X) :=


Stat(X)0 := C0
Stat(X)(A,B) := V(C (I,X),C (A,B))

idA : Stat(x)(A,A) :=
{
idA : C (I,X)→ C (A,A)

ρ 7→ idA

 (1)

f : C (Y,X) 7→


Stat( f ) : Stat(X) → Stat(Y )

Stat(X)0 = Stat(Y )0

V(C (I,X),C (A,B)) → V(C (I,Y ),C (A,B))
α 7→ f ∗α :

(
σ : C (I,Y )

)
7→
(

α( f •σ) : C (A,B)
)


Composition in each fibre Stat(X) is given by composition in C ; that is, by the left and right ac-
tions of the profunctor Stat(X)(−,=) : C op×C → V. Explicitly, given α : V(C (I,X),C (A,B)) and
β : V(C (I,X),C (B,C)), their composite is β ◦α : V(C (I,X),C (A,C)) := ρ 7→ β (ρ) •α(ρ). Since V
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is Cartesian, there is a canonical copier : x 7→ (x,x) on each object, so we can alternatively write
(β ◦α)(ρ) =

(
β (−)•α(−)

)
◦ ◦ρ . Note that we indicate composition in C by • and composition in

the fibres Stat(X) by ◦.
Example 2.2. Let V = Meas be a ‘convenient’ (i.e., Cartesian closed) category of measurable spaces,
such as the category of quasi-Borel spaces [14], let P : Meas→Meas be a probability monad defined
on this category, and let C =K `(P) be the Kleisli category of this monad. Its objects are the objects of
Meas, and its hom-spaces K `(P)(A,B) are the spaces Meas(A,PB) [12]. This C is a monoidal cate-
gory of stochastic channels, whose monoidal unit I is the space with a single point. Consequently, states
of X are just measures (distributions) in PX . That is, K `(P)(I,X)∼= Meas(1,PX). Instantiating Stat
in this setting, we obtain:

Stat : K `(P) op → V-Cat

X 7→ Stat(X) :=


Stat(X)0 := Meas0
Stat(X)(A,B) := Meas(PX ,Meas(A,PB))

idA : Stat(X)(A,A) :=
{
idA : PX →Meas(A,PA)

ρ 7→ ηA


(2)

c : K `(P)(Y,X) 7→ Stat(c) :=
Stat(c) : Stat(X) → Stat(Y )

Stat(X)0 = Stat(Y )0(
d† : PX →K `(P)(A,B)

π 7→ d†
π

)
7→

(
c∗d† : PY →K `(P)(A,B)

ρ 7→ d†
c•ρ

)


Each Stat(X) is a category of stochastic channels with respect to measures on the space X . We can

write morphisms d† : PX →K `(P)(A,B) in Stat(X) as d†
(·) : A

(·)−→• B, and think of them as generalized

Bayesian inversions: given a measure π on X , we obtain a channel d†
π : A π−→• B with respect to π . Given

a channel c : Y→• X in the base category of priors, we can pull d† back along c, to obtain a Y -dependent
channel in Stat(Y ), c∗d† : PY → K `(P)(A,B), which takes ρ : PY to the channel d†

c•ρ : A
c•ρ−−→• B

defined by pushing ρ through c and then applying d†.

Remark 2.3. Note that by taking Meas to be Cartesian closed, we have Meas(PX ,Meas(A,PB)) ∼=
Meas(PX ×A,PB) for each X , A and B, and so a morphism c† : PY →K `(P)(X ,Y ) equivalently
has the type PY ×X →PY . Paired with a channel c : Y →PX , we have something like a Cartesian
lens; and to compose such pairs, we can use the Grothendieck construction [20, 26].

Definition 2.4 (GrLensStat). Instantiating the category of Grothendieck F-lenses GrLensF (see [26])
with F = Stat : C op → V-Cat, we obtain the category GrLensStat whose objects are pairs (X ,A) of
objects of C and whose morphisms (X ,A) 7→ (Y,B) are elements of the set

GrLensStat
(
(X ,A),(Y,B)

)∼= C (X ,Y )×V
(
C (I,X),C (B,A)

)
. (3)

The identity Stat-lens on (Y,A) is (idY , idA), where by abuse of notation idA : C (I,Y )→ C (A,A) is the
constant map idA defined in (1) that takes any state on Y to the identity on A. The sequential composite of
(c,c†) : (X ,A) 7→ (Y,B) and (d,d†) : (Y,B) 7→ (Z,C) is the Stat-lens

(
(d•c),(c†◦c∗d†)

)
: (X ,A) 7→ (Z,C)

with (d • c) : C (X ,Z) and where (c† ◦ c∗d†) : V
(
C (I,X),C (C,A)

)
takes a state π : C (I,X) on X to the
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channel c†
π • d†

c•π . If we think of the notation (·)† as denoting the operation of forming the Bayesian
inverse of a channel (in the case where A = X , B = Y and C = Z), then the main result of this section is
to show that (d • c)†

π

d•c•π∼ c†
π •d†

c•π , where d•c•π∼ denotes (d • c•π)-almost-equality [25, Definition 2.5].

In order to give an optical form for GrLensStat, we need to find two M -actegories with a common
category of actions M . Let Ĉ and Č denote the categories Ĉ := V-Cat(C op,V) and Č := V-Cat(C ,V)
of presheaves and copresheaves on C , and consider the following natural isomorphisms.

GrLensStat
(
(X ,A),(Y,B)

)∼= C (X ,Y )×V
(
C (I,X),C (B,A)

)
∼=
∫ M :C

C (X ,Y )×C (X ,M)×V
(
C (I,M),C (B,A)

)
∼=
∫ M̂ : Ĉ

C (X ,Y )× M̂(X)×V
(
M̂(I),C (B,A)

)
(4)

The second isomorphism follows by Yoneda reduction [17, 23], and the third follows by the Yoneda
lemma. We take M to be M := Ĉ , and define an action � of Ĉ on Č as follows.

Definition 2.5 (�). We give only the action on objects; the action on morphisms is analogous.

� : Ĉ → V-Cat(Č , Č )

M̂ 7→
(

M̂�− : Č → Č
P 7→ V

(
M̂(I),P

)) (5)

Functoriality of � follows from the functoriality of copresheaves.

Proposition 2.6. � equips Č with a Ĉ -actegory structure: unitor isomorphisms λ
�
F : 1�F ∼−→ F and

associator isomorphisms a�
M̂,N̂,F

: (M̂× N̂)� F ∼−→ M̂� (N̂ � F) for each M̂, N̂ in Č , both natural in
F : V-Cat(C ,V).

We are now in a position to define the category of abstract Bayesian lenses, and show that this
category coincides with the category of Stat-lenses.

Definition 2.7 (Bayesian lenses). Denote by BayesLens the category of optics Optic×,� for the action of
the Cartesian product on presheaf categories× : Ĉ →V-Cat(Ĉ , Ĉ ) and the action� : Ĉ →V-Cat(Č , Č )
defined in (5). Its objects (X̂ ,Y̌ ) are pairs of a presheaf and a copresheaf on C , and its morphisms
(X̂ , Ǎ) 7→ (Ŷ , B̌) are abstract Bayesian lenses—elements of the type

Optic×,�
(
(X̂ , Ǎ),(Ŷ , B̌)

)
=
∫ M̂ : Ĉ

Ĉ (X̂ ,M̂× Ŷ )× Č (M̂� B̌, Ǎ) (6)

Given v : C (X ,Y ) and u : V(C (I,X),C (B,A)), we denote the corresponding element of this type by
〈v |u〉. A Bayesian lens (X̂ , X̌) 7→ (Ŷ ,Y̌ ) is called a simple Bayesian lens.

Proposition 2.8. BayesLens is a category of lenses; a definition is given in [25, §2.2.1].

Proposition 2.9 (Stat-lenses are Bayesian lenses). Let ˆ(·) : C ↪→ V-Cat(C op,V) denote the Yoneda
embedding and ˇ(·) : C ↪→ V-Cat(C ,V) the coYoneda embedding. Then

Optic×,�
(
(X̂ , Ǎ),(Ŷ , B̌)

)
∼= GrLensStat

(
(X ,A),(Y,B)

)
(7)

so that GrLensStat is equivalent to the full subcategory of Optic×,� on representable (co)presheaves.
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Remark 2.10. We will often abuse notation by indicating representable objects in BayesLens by their
representations in C . That is, we will write (X ,A) instead of (X̂ , Ǎ) where this would be unambiguous.

Proposition 2.11. BayesLens is a symmetric monoidal category. The monoidal product ⊗ is inherited
from C ; the unit object is the pair (I, I) where I is the unit object in C . For more details on the structure,
see [21] or [19].

Definition 2.12 (Exact and approximate Bayesian lens). Let
〈
c
∣∣ c†
〉

: (X ,X) 7→ (Y,Y ) be a simple
Bayesian lens. We say that

〈
c
∣∣ c†
〉

is exact if c admits Bayesian inversion and, for each π : I→• X such
that c •π has non-empty support, c†

π is the Bayesian inversion of c with respect to π . Simple Bayesian
lenses that are not exact are said to be approximate.

Lemma 2.13. Let
〈
c
∣∣ c†
〉

and
〈
d
∣∣d†
〉

be sequentially composable exact Bayesian lenses. Then the
contravariant component of the composite lens

〈
d
∣∣d†
〉
◦|
〈
c
∣∣ c†
〉 ∼= 〈d • c

∣∣ c† ◦ c∗d†
〉

is, up to d • c •
π-almost-equality, the Bayesian inversion of d •c with respect to any state π on the domain of c such that
c•π has non-empty support. That is to say, Bayesian updates compose optically: (d •c)†

π

d•c•π∼ c†
π •d†

c•π .

3 Open Games for General Optics

In this section, we supply mild generalizations of the structures underlying open games, building on
those in [2]; at first, then, we consider games over arbitrary categories of optics Optic R , L . Subsequently,
we use games over Bayesian lenses (in the category of optics BayesLens introduced above) to exemplify
a number of canonical statistical concepts, such as maximum likelihood estimation and the variational
autoencoder, and clarify their compositional structure using the notion of optimization game (Definition
3.21). Owing to space constraints, we omit most proofs in this section; they will appear in a full paper
expanding the present abstract, and can be supplied at the request of the reader.

Observation 3.1. In the graphical calculus for the compact closed bicategory of profunctors Prof [22],
the hom object Optic R , L ((X ,A),(Y,B)) has the depiction

X

A

R

L

Y

B

C

M

D

C

D

where the types on the wires are the 0-cells of Prof, the monoidal actions R and L are depicted as
(co)monoids, and the states and effects are (co)representable functors on the objects X ,A,Y,B, treated as
profunctors.

Definition 3.2 (Generalized context). The context functor C : Optic R , L
op×Optic R , L → Set takes the pair

of optical objects ((X ,A),(Y,B)) to the type with depiction

R

L

X Y

A B

R

L
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The triangles depict the (co)presheaves on the monoidal unit I in the underlying actegories. The action on
morphisms (i.e., optics) is by precomposition on the left and postcomposition on the right. Functoriality
follows accordingly.

We can compose a context with an optic to obtain a ‘closed’ system, as follows:

R

L

X Y

A B

R

L

X

A

R

L

Y

B

7→

R

L

R

L

R

L

Conjecture 3.3. It is easy to show that a context on ((X ,A),(Y,B)) is equivalently a state (I, I) 7→
((X ,A),(Y,B)) in the monoidal category of ‘double lenses’, LensOptic R , L

[2]. Rendering this graphically
leads us to the following conjecture: categories of double optics are instances of the doubling or CP
construction from categorical quantum mechanics (cf. [8, 7]).

Proposition 3.4. Let C and D be the (monoidal) actegories underlying Optic R , L , and denote their re-
spective monoidal units by IC and ID . If these unit objects are terminal in their respective categories,
then the contexts C((X ,A),(Y,B)) simplify to

X Y
B A

where we have depicted the representable presheaf on ID as to indicate that A is just discarded. Con-
sequently, in this case, a context is just an optic (I,B) 7→ (X ,Y ).

Definition 3.5 (Generalized open game). Let (X ,A) and (Y,B) be objects in any symmetric monoidal
category of optics Optic R , L . Let Σ be a U -category, for any base of enrichment U such that U -Prof is

compact closed. An open game from (X ,A) to (Y,B) with strategies in Σ, denoted G : (X ,A) Σ−→ (Y,B),
is given by:

(a) a play function P : Σ0→Optic R , L ((X ,A),(Y,B)); and

(b) a best response function B : C((X ,A),(Y,B))→U -Prof(Σ,Σ).

Given a strategy σ : Σ, we will often write 〈v |u〉
σ

or similar to denote its image under P. A strategy is
an equilibrium in a context 〈π | k〉 if it is a fixed point of B(〈π | k〉).

Roughly speaking, the ‘best responses’ to a strategy σ in a context is are those strategies τ such that
choosing τ would result in performance at the game at least as good as choosing σ ; equilibrium strategies
are those for which such deviation would not improve performance.

Remark 3.6. Note: whereas classic open games use a best-response relation, we categorify that here
to a best-response relator (in the terminology of [17]; i.e., a ‘proof-relevant’ relation), so that we can
describe the trajectories witnessing the computation of equilibria, rather than their mere existence.

Proposition 3.7. Generalized open games over the symmetric monoidal category of optics Optic R , L with
strategies enriched in U form a symmetric monoidal category denoted Game(U , R , L ).



114 Cyber Kittens

Since our games are only a mild generalization of those of [2], we refer the reader to §3.10 of
that paper for an idea of the proof of the foregoing proposition, which goes through analogously. The
sequential composition of games is given by the sequential composition of optics, with the best response
to the composite being the product of the best responses to the factors. Similarly, parallel composition is
given by the monoidal product of optics, and the best response to the composite is again the product of
the best responses to the factors.

We now consider some games over BayesLens that supply the building blocks of the archetypal
cybernetic systems to be considered in §4. For now, we will take the strategies simply to be discrete
categories (i.e., sets), as in the standard formulation of open games. Consequently, we will take the
codomain of the best response function to be Set(Σ,Set(Σ,2)), for each strategy type Σ. We assume the
ambient category of stochastic channels is semicartesian, so that the monoidal unit is the terminal object.
Remark 3.8. All the games we will consider henceforth will have play functions whose codomains
restrict to the representable subcategory GrLensStat of BayesLens; in this work, we do not use the extra
generality afforded by BayesLens, except insofar as it grants us the use of string diagrams in Prof, which
we find helpful for reasoning intuitively about these systems. The generality of optics is however used
in the ‘game-theoretic’ games of [2], and in future work we hope to relate the cybernetic systems of this
paper to the game-theoretic setting of that earlier work.
Remark 3.9. All the statistical games considered in this paper will be ‘atomic’ in the sense of [2]: in
particular, the best response functions we consider will be constant, meaning that, in any context, the
set of best strategies does not depend on the ‘current’ choice of strategy. Permitting such dependence
will be important in future work, however, when we consider how cybernetic systems interact, and hence
respond to each other.
Example 3.10. A Bayesian lens of the form (I, I) 7→ (X ,X) is fully specified by a state π : I→• X . A
context for such a lens is given by a lens 〈! | k〉 : (I,X) 7→ (X ,X) where ! : I→• I is the unique map and
k : X→• X is any endochannel on X . A maximum likelihood game is any game whose play function
has codomain in Bayesian lenses of this form (I, I) 7→ (X ,X) for any X : C , and whose best response
function is isomorphic to

B(〈! | k〉) = 〈ρ | !〉
σ
7→
{
〈π | !〉

τ

∣∣∣∣π ∈ argmax
π:I→• X

E
k•π

[π]

}
where E is the canonical expectation operator (i.e. algebra evaluation) associated to states in C , and
where we have written 〈ρ | !〉

σ
and 〈π | !〉

τ
to denote the images of the strategies σ and τ under the play

function. Intuitively, then, the best response is given by the strategy that maximises the likelihood of the
state obtained from the context k.
Remark 3.11. In what follows, we assume that the underlying category C of stochastic channels ad-
mits density functions. Informally, a density function for a stochastic channel c : X→• Y is a measurable
function pc : Y ×X → [0,1] whose values are the probabilities (or probability densities) pc(y|x) at each
pair (y,x) : Y ×X . We say that the value pc(y|x) is the probability (or probability density) of y given
x. In a category such as K `(D≤1), whose objects are sets and whose morphisms X→• Y are functions
X →D(Y +1), a density function for c : X→• Y is a morphism Y ⊗X→• I; note that in K `(D≤1), I is not
terminal. In the finitely-supported case, density functions are effectively equivalent to channels, but this
is not the case in the continuous setting, where they are of most use. For more on this, see [25, §2.1.4].

A natural first generalization of maximum likelihood games takes us from states I→• X to channels
Z→• X ; that is, from ‘elements’ to ‘generalized elements’ in the covariant (forwards) part of the lens. Un-
like Bayesian lenses (I, I) 7→ (X ,X), lenses (Z,Z) 7→ (X ,X) admit nontrivial contravariant components,
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which we think of as generalized Bayesian inversions. Consequently, our first generalization is a notion
of ‘Bayesian inference game’. A context 〈π | k〉 : (I,X) 7→ (Z,X) for a Bayesian lens (Z,Z) 7→ (X ,X)
then constitutes a ‘prior’ state π : I→• Z and a ‘continuation’ channel k : X→• X which together witness the
closure of the otherwise open system.

Example 3.12. Fix a channel c : Z→• X with associated density function pc : X×Z→R+ and a measure
of divergence between states on Z, D : C (I,Z)×C (I,Z)→ R. A corresponding (generalized) simple
Bayesian inference game is any game whose play function has codomain BayesLens((Z,Z),(X ,X))
and whose best response function is isomorphic to

B(〈π | k〉) =
〈
d
∣∣d′〉

σ
7→

{〈
c
∣∣ c′〉

τ

∣∣∣∣c′ ∈ argmin
c′:V(C (I,Z),C (X ,Z))

E
x∼k•c•π

[
E

z∼c′π (x)
[− log pc(x|z)]+D(c′π(x),π)

]}

=
〈
d
∣∣d′〉

σ
7→

{〈
c
∣∣ c′〉

τ

∣∣∣∣c′ ∈ argmin
c′:V(C (I,Z),C (X ,Z))

(
E

z∼c′π•k•c•π

[
−
∫

X
log pc(dk • c•π|z)

]

+D(c′π • k • c•π,π)

)}
where π : I→• Z and k : X→• X , and where the notation z ∼ π means “z distributed according to the state
π”. Note that the second line follows from the first by linearity of expectation.

Proposition 3.13 ([16, Thm. 1]). When D is chosen to be the Kullback-Leibler divergence DKL, mini-
mizing the objective function defining a simple Bayesian inference game is equivalent to computing an
(exact) Bayesian inversion.

Corollary 3.14. Given two Bayesian inference games G : (Z,Z) 7→ (Y,Y ) and H : (Y,Y ) 7→ (X ,X), we can
compose them sequentially to obtain a game H ◦| G : (Z,Z) 7→ (X ,X), which we will call a hierarchical
Bayesian inference game. It is then an immediate consequence of Lemma 2.13 that, in any given
context for which the forwards channels admit Bayesian inversion, the best response to the composite
game H ◦| G (that is, the optimal inversion of the composite channel) is given simply by (the composition
of) the best responses to the factors H and G. Consequently, Bayesian inference games are closed under
composition.

Similarly, given a channel c : Z⊗Y→• X , we can consider the marginal Bayesian inference game in
which the objective is to compute the inversion of the channel onto just one of the factors Z or Y in the
domain.

Example 3.15 (Variational autoencoder game). Fix a family F ↪→ C (Z,X) of forward channels and a
family P ↪→ C (X ,Z) of backward channels such that each c : F admits a density function pc : X⊗Z→
R+ and each d : P admits a density function q : Z⊗X → R+; think of these families as determining
parameterizations of the channels. We take our strategy type to be Σ = F ×P . A simple variational
autoencoder game (Z,Z) Σ−→ (X ,X) is any game with play function P : Σ→ BayesLens((Z,Z),(X ,X))
and whose best response function is isomorphic to

B(〈π | k〉) =
〈
d
∣∣d′〉

σ
7→

{〈
c
∣∣ c′〉

τ

∣∣∣∣∣(c,c′) ∈ argmin
c∈F ,

c′∈V(C (I,Z),P)

E
x∼k•c•π

E
z∼c′π (x)

[
log

q(z|x)
pc(x|z)pπ(z)

]}

where π : I→• Z admits a density function pπ : Z→ R+, q : Z⊗X → R+ is a density function associated
to c′π , and k has type X→• X .
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Proposition 3.16. A best response to a variational autoencoder game is a stochastic channel c : F that
maximises the likelihood of the state observed through the continuation k under the assumption that
the generative process is in F , along with an inverse channel c′π : P that best approximates the exact
Bayesian inverse c†

π under the constraint of being in P .

Proposition 3.17. Variational autoencoder games generalize inference games for the Kullback-Leibler
divergence. More precisely, the objective function defining autoencoder games is of the same form as
that defining inference games (3.12) when D = DKL.

This prompts the following generalization:

Example 3.18 (Generalized autoencoder game). Fix two families of channels F ,P and a strategy type
Σ as in Example 3.15. Then a (generalized) simple autoencoder game (Z,Z) Σ−→ (X ,X) is any game with
play function P : Σ→ BayesLens((Z,Z),(X ,X)) and whose best response function is isomorphic to

B(〈π | k〉) =
〈
d
∣∣d′〉

σ
7→

{〈
c
∣∣ c′〉

τ

∣∣∣∣∣(c,c′) ∈ argmin
c∈F ,

c′∈V(C (I,Z),P)

(
E

z∼c′π•k•c•π

[
−
∫

X
log pc(dk • c•π|z)

]

+D(c′π • k • c•π,π)

)}
where π and k have respective types I→• Z and X→• X , and D is any measure of divergence between states.

As with Bayesian inference games, we can generalize simple autoencoder games to hierarchical and
marginal autoencoder games via the corresponding sequential and parallel compositions.

The foregoing games have been purely statistically formulated, without capturing the motivating
feature of an open system as something in interaction with an external environment. Nonetheless, we
can model a simple open system of hierarchical active inference that receives stochastic inputs from an
environment and emits actions stochastically into the environment, as follows.

Example 3.19 (Active inference game). Let {Si}i be set of spaces of sensory data indexed by hierarchical
levels of abstraction i (for instance, the levels of abstraction might range from representations of whole
objects to fine details about their texture); similarly, let {Ai}i be a set of spaces of possible actions simi-
larly hierarchically organized. Consider the marginal autoencoder games (Si+1⊗Ai,Si+1) 7→ (Si+1,Si+1)
and (Ai+1⊗Si,Ai+1) 7→ (Ai+1,Ai+1) coupled via the symmetric monoidal structure ⊗ of C :

Si+1Si+1

×�

SiSi

⊗ Ai

Ai+1Ai+1

×�

AiAi

⊗ Si

7→

Si+1Si+1

×�

SiSi

⊗

Ai+1 Ai+1

× �

Ai Ai

⊗

⊗ ⊗

giving a composite game (Si+1⊗Ai+1,Si+1×Ai+1) 7→ (Si⊗Ai,Si×Ai). Recall from [2, §§3.7-3.8] that a
composite game is given by the (sequential and parallel) composition of optics, with best-response given
by the product of the best-responses of the factors.
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Note that the Bayesian posterior inferred by such a game has independent factors on Si+1 and Ai+1.
This is not merely a diagrammatic convenience, but coincides with a common ‘mean field’ simplification
in the modelling literature [3, 15]. The dashed box is a functorial box [18] depicting the Yoneda embed-
ding; recall that optics in BayesLens were defined over (co)presheaves, and so here we needed to lift the
monoidal product on C into a diagram over its presheaf category Cat(C op,Set).

Next, compose these games along the hierarchy indexed by i, to obtain a game (SN⊗AN ,SN×AN) 7→
(S0⊗A0,S0×A0), such as an element of the following object:

S3

S3

×

�

⊗

A3

A3

×

�

⊗

×

�

×

�

×

�

S0

S0

×

�

A0

A0⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

Given a context with a strong prior about expected sensory states and a continuation that responds to
an action of type A0 by feeding back a state on S0, the best response can be shown to be that which
selects actions that, under the current state, maximize the likelihood of obtaining the expected ‘goal’
state [3, 11].

Remark 3.20. We have framed each of these statistical procedures as optimization problems not only to
suggest a link to the utility-maximising agents of game theory, but also because it suggests the use of iter-
ative methods to compute best responses; note that computational tractability is an important motivation
in the proof of Proposition 3.16.

The question of providing such dynamical or, thinking of game composition as an algebra for build-
ing complex systems, ‘coalgebraic’ semantics for (generalized) optimization games is the topic of the
next section. We first formalize this notion.

Definition 3.21. An optimization game is any open game whose best response function can be defined
by a function of the form Σ×C π−→M

ϕ−→ P, where Σ is a strategy type, C a context type, M any space,
and P a poset. We call ϕ the fitness function, and think of π as projecting systems into a space whose
points can be assigned a fitness. The best response function of an optimization game can then be defined
by giving the subset of strategies contextually maximizing fitness, for each context c : C.

4 Cybernetic Systems and Dynamical Realisation

In this section, we begin to answer the question of precisely how the optimization games of the previous
section may be realized in physical systems, such as brains or computers. More formally, this means
we seek open dynamical systems whose input and output types correspond to the domain and codomain
types of the foregoing games, such that there is a correspondence between the behaviours of the abstract
games and their dynamical realisations, and such that the evolutions of the internal states of the dynamical
systems correspond to strategic improvements in game-playing: by concentrating on optimization games,
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a natural measure of such improvement is encoded in the fitness function underlying the best-response
relator.

We do not require that there is a correspondence between internal states of the realisations and strate-
gies for the corresponding games, but we do require that the fitness functions extend to the the total state
spaces of the closure of a realisation induced by the context. When there is a correspondence between
internal states and strategies, we can take advantage of Definition 3.5 and interpret trajectories over the
state space as trajectories over strategies witnessing the strategic improvement.

We begin by sketching categories of dynamical games, and then use these ideas to define preliminary
notions of open cybernetic systems and categories thereof. We consider principally single systems whose
underlying games are atomic (in the sense of Remark 3.9), and leave the study of the behaviour of
interacting cybernetic systems to future work. Once more, we omit proofs in this section; they will
appear in a paper to follow.

Definition 4.1 (Discrete-time dynamical system over C ; after [24, 6]). A discrete-time dynamical
system over C with state space S : C , input type A : C and output type B : C is a lens (S,S) 7→ (B,A)
over C , i.e. in the following optical hom object:

∫ M:C
Comon(C )(S,M⊗B)×C (M⊗A,S)∼= Comon(C )(S,B)×C (S⊗A,S)

where the isomorphism follows by Yoneda reduction. Note that this requires that the ‘output’ map of the
dynamical system is a comonoid homomorphism in C and hence deterministic in a category of stochastic
channels.

Definition 4.2 (Category of discrete-time dynamical systems). We define a category DynC whose objects
are the objects of C and whose morphisms, denoted A S−→ B, are discrete-time dynamical systems; the
symbol above the arrow denotes the internal state space. Hom objects are given by

DynC (A,B) = ∑
S:C

Comon(C )(S,B)×C (S⊗A,S) .

Identity dynamical systems on each A : C are the ‘no-op’ dynamical systems A A−→ A given by identity
optics idA : (A,A) 7→ (A,A). Associativity and unitality of composition is inherited from the category of
optics underlying Definition 4.1; a symmetric monoidal structure is similarly inherited.

Definition 4.3 (Lenses over dynamical systems; after [21]). The category of (monoidal) lenses over
C -dynamical systems has as objects pairs (X ,A) of objects in C and as morphisms, dynamical lenses
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(X ,A) 7→ (Y,B), elements of the type

X

A

Y

B∫ M:C
DynC (X ,M⊗Y )×DynC (M⊗B,A)

∼=

∑
P,Q:C

∫ M:C
C (P⊗X ,P)×Comon(C )(P,M⊗Y )×C (Q⊗M⊗B,Q)×Comon(C )(Q,A)

∑
P,Q:C

X

A

P

Q

P

Q

Y

B

P

Q

.

That is, a dynamical lens is a pair of dynamical systems coupled along some ‘residual’ type.
Remark 4.4. At this point we begin to run into sizes issues. However, for the purposes of this paper, we
will simply assume that a satisfactory resolution of these matters is at hand; for instance, that there is a
hierarchy of Grothendieck universes such that the coends over (‘large’) sums in the preceding definition
constitute accessible objects.

We now expand the definition of context in the dynamical setting. We will see that a dynamical
context is simply a closure of an open dynamical system: that is, a ‘larger’ system into which a ‘smaller’
open dynamical system can plug such that the composite is a closed (but still uninitialized) system.
Proposition 4.5. If I is terminal in C , a context for a dynamical lens (X ,A) 7→ (Y,B) is an element of
the following type, denoted C̃

(
(X ,A),(Y,B)

)
:

∑
P,Q :C

X Y
P Q AP P Q B

Q

Interpreting this diagram, a context for a dynamical lens (X ,A) 7→ (Y,B) amounts to an autonomous
dynamical system with output type of the form X ⊗M (for some residual type M), coupled along the
residual M to an open dynamical system with input type Y ⊗M and output type B; and the A type is
discarded. This is precisely what we should expect from a dynamical analogue of Proposition 3.4.
Definition 4.6. A dynamical game is just a generalized open game (3.5) over the category of dynamical

lenses. We write (X ,A)
Σ̃,S−−→ (Y,B) to indicate both the strategy type Σ̃ and state space S. Dynamical

games form a symmetric monoidal category in the corresponding way. For notational clarity, we will
write G̃ for a dynamical game, P̃ for its play function, and B̃ for its best response function.
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Definition 4.7 (Dynamical realisation of an open game). Let G : (X ,A) Σ−→ (Y,B) be an open game
with X ,A,Y,B all objects of some symmetric monoidal category C . A dynamical realisation of G

is a choice of dynamical game G̃ : (X ,A)
Σ̃,S−−→ (Y,B) on the same objects, along with a function J·K :

C((X ,A),(Y,B))→ C̃((X ,A),(Y,B)) lifting static contexts to dynamical contexts. Given a context 〈π | k〉 :
C((X ,A),(Y,B)), we choose a representative 〈JπK | JkK〉 ∼= J〈π | k〉K : C̃((X ,A),(Y,B)) for its realisation.

A ‘dynamical context’ is an element of the type given in Proposition 4.5: a context for a dynamical
lens. A ‘static context’ is simply a context for the ‘static’ game that is being dynamically realized. At
this stage, we impose no particular requirements on the context realisation function J·K, except to say that
in the intended semantics, J〈π | k〉K is a (coupled, open) dynamical system that constantly emits the state
π and (by some mechanism) realizes the channel k. We call such a context stationary as neither π nor k
vary in time; future work will generalize the results of this section to non-stationary contexts.

Definition 4.8 (Open cybernetic systems). An open cybernetic system is defined by the data:

• an open optimization game (Def. 3.21) G : (X ,A) Σ−→ (Y,B) with X ,A,Y,B all objects of some
symmetric monoidal category C ,

• a fitness function ϕG : Σ×C→M
ϕ−→ F where C =C ((X ,A),(Y,B)),

• a dynamical realisation
(
G̃ : (X ,A)

Σ̃,S−−→ (Y,B),J·K : C((X ,A),(Y,B))→ C̃((X ,A),(Y,B))
)

of G,

satisfying the following condition for each context 〈π | k〉 : C((X ,A),(Y,B)):

• there exists a dynamical strategy σ̃ : Σ̃, such that

• writing Z for the total state space of the autonomous dynamical system J〈π | k〉K◦| P̃(σ̃) induced by
the context, there exists a function ν : Z→M projecting Z into the ‘fitness landscape’ M, such that

• there exists a fitness-maximising fixed point ζ ∗ : Z, in the sense that

• for some equilibrium strategy of the static system σ∗ : fix B(〈π | k〉), ϕ(ν(ζ ∗))≤ ϕG(σ
∗,〈π | k〉).

A category of open cybernetic systems is a category of (generalized) open games such that each game
is an open cybernetic system with dynamics realised in the same category C , and such that the composite
of games is a cybernetic system whose fitness-maximising fixed point projects onto fitness-maximising
fixed points of each of the factors in their corresponding local contexts. (See [2, §3.7] for the definition
of local context.)

The idea here is that, by using the fitness function of the underlying optimization game, the cybernetic
condition forces the behaviour of the dynamical realisation to coincide with the process of iteratively
improving the strategies deployed by the system in playing the game. We summarize the condition in the
diagram

Σ×C M F

Σ̃×C̃ Z

J·K

ϕ

fix

though this is in general ill-defined: we do not require a function J·K : Σ→ Σ̃, and nor do we require that
the best response to G̃ coincides in any way with the best reponse to G. Investigating such conditions
is the subject of future work; for instance, we may be interested in nested cybernetic systems, such as
characterize evolution by natural selection, and how their fitness functions constrain one another. For
similar reasons, we are also interested in the case where the fitness function is itself non-stationary.
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Remark 4.9. The codomain category of the cybernetic realisation functor is in general much larger
than the domain category of static games, and often it makes sense to consider dynamical games in this
codomain category as if they were dynamical realisations of static games, even if in fact there is no static
game to which they could correspond. For instance, adaptive systems in physical environments are in
general not realisations of static games because their contexts are irreducibly dynamical and thus not
the dynamical realisation of a static context; but over short time intervals, it can be productive to treat
such systems as realisations of static games. In continuous time (not treated here), it is even possible
to consider dynamical games that are indeed realisations of games that are static when represented in a
smoothly varying coordinate system. The free-energy framework of Theorem 4.10 is an example of a
category of cybernetic systems with a rich underlying category of dynamic games.

A classic category of open cybernetic systems is found in the computational neuroscience literature,
as summarized in the following theorem.

Theorem 4.10. Consider the subcategory of BayesLens spanned by finite-dimensional Euclidean spaces,
with morphisms generated (under sequential and parallel composition) by the (variational) autoencoder
and inference games whose forwards and backwards channels emit Gaussian measures with high-precision.
The (discrete-time) free-energy framework for action and perception [3] instantiates a category of open
cybernetic systems realising games over this subcategory.

Remark 4.11. Typical presentations of ‘active inference’ under the free-energy principle are excessively
complicated by the lack of attention paid to compositionality. Because the free-energy framework in-
stantiates a category of open cybernetic systems, a radically simplified compositional presentation is
possible. Such a presentation forms a companion to the present work.

Corollary 4.12. The free-energy framework has been used to supply a computational explanation for
the pervasive bidirectionality of cortical circuits in the mammalian brain [1, 10]. A corollary of Theorem
4.10 is that this bidirectionality is furthermore justified by the abstract structure of Bayesian inference
and its dynamical realisation: because Bayesian updates compose optically, a cybernetic system realising
Bayesian inference compositionally must instantiate this structure. We note also that the parallel inter-
acting bidirectional structure of the active inference game (Example 3.19) is reproduced in the cortex.

The free-energy framework realisation of autoencoder games is not unique; an alternative is found in
machine learning.

Theorem 4.13. Consider the subcategory of BayesLens spanned by finite-dimensional Euclidean spaces,
with morphisms generated (under sequential and parallel composition) by the (variational) autoencoder
and inference games whose forwards and backwards channels emit exponential-family measures. The
deep (variational) autoencoder framework [15] instantiates a category of open cybernetic systems realis-
ing games over this subcategory.

Increasingly, the variational autoencoder framework is used to model complete agents in machine
learning, rather than merely dynamically realise static inference or learning problems. Indeed, thinking of
the ‘free-energy framework’ as a collection of cybernetic realisations of autoencoder and active-inference
games, the demonstration of the following corollary of Theorem 4.13 is unsurprising:

Corollary 4.14. The “deep active inference agent” [27] is a cybernetic system realising an active infer-
ence game in the variational autoencoder framework.

We have heretofore concentrated on ‘variational Bayesian’ realisations of the games introduced in
§3, as they most strikingly fit the language of optimization used there. But we expect any other family
of approximate inference methods to supply a corresponding category of cybernetic systems. We thus
make the following conjecture.
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Conjecture 4.15. Consider the subcategory of BayesLens spanned by finite-dimensional smooth mani-
folds, with morphisms generated (under sequential and parallel composition) by the generalized autoen-
coder and inference games. We expect sampling algorithms, such as Markov chain Monte Carlo, to
supply a corresponding category of open cybernetic systems of interest.

Finally, we provide further justification for Remark 3.6.

Observation 4.16. Consider a variational autoencoder, realised as in Theorem 4.13. By choosing the
parameterizations F ,P of the forwards and backwards channels to coincide with the state spaces of
their dynamical realisations, and the (static) play function P to take a parameter vector to the correspond-
ing channel, the dynamical realisation induces a trajectory over the strategy space. Such trajectories
organize into sheaf whose sections are trajectories of arbitrary length [24], spans of which are again
just (generalized) dynamical systems; these spans are equivalently profunctors [4]. We can thus define
a best-response function valued in profunctors whose elements are trajectories witnessing deviations of
strategies to ‘better’ strategies, and whose dynamical equilibria correspond precisely to the equilibria of
the ‘static’ best response function.

On-going and Future Work The structures sketched in this paper are merely first steps towards a cat-
egorical theory of cybernetics. In particular, since the first draft of this work was written, we have come
to believe that the preliminary notions presented here of dynamical realisation, and by extension of open
cybernetic system, are substantially less elegant than they could be. On-going work is focusing on this
issue. We hope that a consequence of this refinement will be that the treatment of interacting cybernetic
systems is simplified. In this new setting, we will also treat non-stationary systems in dynamical contexts
and in continuous time, thereby supplying a general compositional treatment of (amongst other things)
the ‘free-energy’ framework.

Finally, with respect to applications, we are interested in using these tools to realise game-theoretic
games and to investigate the connections between repeated games and dynamical realisation. There are
deep links with reinforcement learning to be explored, and we seek a setting for the study of nested and
mutli-agent (‘ecological’) systems.
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