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Behavioral Mereology: A Modal Logic for Passing
Constraints

Brendan Fong, David Jaz Myers, David I. Spivak

Mereology is the study of parts and the relationships that hold between them. We introduce a be-
havioral approach to mereology, in which systems and their parts are known only by the types of
behavior they can exhibit. Our discussion is formally topos-theoretic, and agnostic to the topos,
providing maximal generality; however, by using only its internal logic we can hide the details and
readers may assume a completely elementary set-theoretic discussion. We consider the relationship
between various parts of a whole in terms of how behavioral constraints are passed between them,
and give an inter-modal logic that generalizes the usual alethic modalities in the setting of symmetric
accessibility.

1 Introduction

Many thinkers, from Heidegger to Isham and Döring have asked “What is a thing?” [Hei68; DI10].
Heidegger for example says,

From the range of the basic questions of metaphysics we shall here ask this one question:
What is a thing? The question is quite old. What remains ever new about it is merely that it
must be asked again and again.

In this article, our way of asking about things is focused on the mereological aspect of things, i.e. the
relationship between parts and wholes. The point of departure is that, at the very least, a part affects a
whole: “when you pull on a part, the rest comes with.” For example, wherever my left hand is, my right
hand is not far away. A whole then, has the property that it coordinates constraints—or said another
way, it enables constraints to be passed—between parts. In this article, we present a logic for constraint
passing.

Our approach has roots in categorical logic, and in particular Lawvere’s observation that existential
and universal quantification can be characterized as adjoints to pullback, in any topos. In particular, a
system, or more evocatively a behavior type BS, will be a set which we imagine as the set of ways a
system can behave over time. If S is a dynamical system, then we may think of BS as the set of lawful
trajectories of this system.1 We are inspired here by Willem’s behavioral approach to control theory (see
[Wil98; Wil07; WP13]).

We work behavior-theoretically; to paraphrase Gump, “X is as X does”. We associate to a system S
its set BS of possible behaviors — BS is the behavior type of S. If P is a part of our system S, then if we
know the total behavior of S we also know the behavior of P; so, we have a function |P : BS→ BP which
we think of as “restricting” the behavior b ∈ BS of S to the behavior b|P ∈ BP of P. However, we are

1More generally, we may take a behavior type to be an object in any topos [MM92]. This allows behavior types which
where the behaviors may vary in time (or space). Since we don’t expect our audience to know any topos theory, and since all
the ideas we describe will make sense in any topos, we will use the language of sets through this paper, and leave experts to
make the topos-theoretic translation themselves.
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considering P as a part of S, so every behavior of P must come from some behavior of the whole system
S; so, the restriction map

∣∣
P : BS→ BP must be surjective.

We use this analysis of parthood to define a part of the system S to be a quotient of BS, i.e. a sur-
jection BS� BP from the behavior type. This surjection describes how a behavior of the entire system
determines a behavior of the part, and any behavior of the part qua part must extend to the behavior of
the whole: for any behavior of my hand, there exists at least one compatible behavior of my whole body.
Given a behavior on one part, we can consider all possible extensions to the whole, and subsequently ask
how those extensions restrict to behaviors of other parts. In this way one part may constrain another.

To describe the logic of these constraints, we introduce two new logical operators, or “inter-modalities”,
closely related to the classical “it is possible that” and “it is necessary that” modalities, known as the
alethic modalities [Kri63]. We view a constraint φ on a part P as a predicate on the behaviors of P — the
predicate “satisfies the constraint φ”. We may ask whether satisfying this predicate allows, or whether
it ensures, various behaviors on another part BQ: the constraint φ is passed in these two ways from P to
Q. To be a bit more explicit, the first new operator is called allows, written ♦P

Qφ . This describes the set
of behaviors in BQ for which there exists an extension in BS that restricts to some behavior satisfying φ .
The second is the operator ensures, written �P

Qφ . This describes the set of behaviors in BQ for which all
extensions to BS restrict to some behavior satisfying φ in BP. Our goal in this paper is to describe the
properties of these inter-modalities (“inter” because they go from one part to another), and to demonstrate
their utility with some elementary examples.

Our inter-modalities allow us to faithfully express concepts of the behavioral approach to control
theory as expressed in Willems’ Open Dynamical Systems and their Control [Wil98]. In particular:

• A time-invariant system S is controllable if and only if for any two behaviors b1 and b2, there is a
time delay D such that the behavior b1|<0 restricted to time before 0 and b2|>D restricted to time
after D are compatible in the sense of Definition 4.

• If b1 is a behavior of a part P of S and b2 a behavior of part Q of S, then b1 is observable from b2

if and only if b1 determines b2 in the sense of Definition 9.

• If C is the constraint a controller P places on the behavior of a plant Q, then the controlled behavior
is the constraint ♦P

QC of behaviors of Q which are allowed by C in the sense of Definition 14.

• The control problem is the problem of choosing a constraint C on P so that a constraint φ of the
plant Q is satisfied. The universal solution to this problem is given by the constraint �Q

P φ of
behaviors on P which ensure that Q behaves according to φ , in the sense of Definition 14.

We believe the logic for constraint passing presented in this paper can be a useful tool for formalizing
arguments in the behavioral approach to control theory.

2 Systems and Their Parts: Behavioral perspective

When we constrain a part of a system, we are constraining what it does. This suggests that we should
model a system by its type of possible behaviors, its behavior type.

2.1 Systems as behavior types

Luckily, we won’t need to settle on what precisely a behavior type is, so long as we can reason about it
logically. For this, we need the behavior type of our system and its parts to be objects in a topos; then,
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we can use the internal logic of the topos to reason about our behavior types. A topos can be understood
as a system of variable sets; in our case, this allows us the freedom to have sets varying in time, in space,
or according to different observers. We will just work in the topos of sets and functions, leaving it to the
experts to extend the theory to arbitrary toposes.

So, a behavior type is simply a set whose elements are regarded as possible behaviors of a system.
We can think of it as the “phase space” of our system, in a general sense. This terminology is inspired by
Willem’s behavioral approach to control theory [WP13], which describes a dynamical system as a subset
B⊆W T of lawful trajectories parameterized by time T in some value space W . The set B is the behavior
type of this system, where a behavior of the system is simply a lawful trajectory. Many of our examples
follow this general form.

Example 1. We will present a few running examples of systems considered in terms of their behavior
types. Let’s introduce them now.

• Consider a bicycle. The bicycle pedals might be moving at some speed p, and the bicycle wheels
might be moving at some speed w, both real numbers. If the pedal is pushing at a certain speed,
then the wheels are moving at a least a constant multiple of that speed. Therefore, we will take the
behavior type of our bicycle to be

BBicycle := {(p,w) ∈ R×R | w≥ rp}

for some fixed ratio r ∈ R.

• Consider a glass of water placed in a room of temperature R. The glass of water has temperature
Tt ∈ R for every time t ∈ N. By Newton’s principle, the temperature of the water satisfies the
following simple recurrence relation:

Tt+1 = Tt + k(R−Tt).

Therefore, the behavior type of this glass of water is

BWater := {T ∈ N→ R | Tt+1 = Tt + k(R−Tt)}.

• Consider an ecosystem consisting of foxes and rabbits. At any given time t ∈ N, there are ft foxes
and rt rabbits, where we mask our uncertainty about the precise population by allowing these to
be arbitrary real values, rather than integer values. The population of the species at time t + 1 is
determined by its population at time t, according to the relation Rt( f ,r) given by the following
standard recurrences:

ft+1 = (1−d f ) ft + c f rt ft , and

rt+1 = (1+br)rt − crrt ft .

This is known as the Lotka–Volterra predator–prey model, but we could use any model. Here
d f is the death rate of the foxes, br is the birth rate of rabbits, and c f and cr are rates at which
the consumption of rabbits by foxes affect their respective populations. From here, we take the
behavior type of this ecosystem to be

BEco := {( f ,r) : N→ R×R | ∀t.Rt( f ,r)}.
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2.2 Parts as quotients of behavior type

If we know a whole system S (say, my body) is behaving like b, then we also know how any part P of S
(say, my hand) is behaving: we just look at what P is doing while S does b. In other words, there should
be a restriction function, which we denote

∣∣
P : BS→ BP, from the behavior type of the whole system to

the behavior type of the part.
Moreover, every behavior of a part P will arise from some behavior of the whole system: how could

a part of the system do something if the system as a whole had no behaviors in which P was doing that
thing? Remember, we are considering the part P as a part of the system S, not on its own: my hand, not
a severed hand. If we sever P from the system S, it may be able to behave in ways that have no extension
to S. But as a part of the system S, every behavior of the P must be restricted from a behavior of S. We
will give examples below, but first a definition.

Definition 2. The behavior type of a part of a system S is a surjection
∣∣
P : BS→ BP out of BS which we

call the “restriction from S to P”. We define the category of parts of BS to have as objects the parts of S
and as morphisms the commuting triangles

BS

BP BQ

|P |Q

|Q

Note that if such a map BP→ BQ exists, then it will be unique and a surjection. If there is such a map,
we write P ≥ Q and say that Q is a part of P. This gives a preorder on parts, which we refer to as the
lattice of parts of S.2

For example, suppose that a system S is divided into a plant P and a controller C. For example,
BS might be {α : R→ Rp+c | L (α)} a set of p+ c real variables satisfying a dynamical law f , the
first p of which concern the plant P and the last c of which concern the controller C. Then BP would
be {ρ : R→ Rp | ∃γ : R→ Rc . L (ρ,γ)} of p real variables for which there is some extension of c
variables (the behavior of the controller) which is valid according to the dynamical law. The projection
map Rp+c→Rp gives a surjection from BS� BP, witnessing that the plant is a part of the whole system.

In practice, we may have certain parts of S in mind, and so we may consider a sublattice of that
defined in Definition 2.

Remark 1. Definition 2 may look a little backwards. Usually a “part” is a subset; here we have defined
a part to be a quotient. What we have defined to be a part is often called a partition (of BS).

What is happening here is a well-known “space/function” duality: we are not considering the system
S as some sort of object in space, but rather its type of behaviors BS. Often, the behaviors BS of a system
S may be realized as functions on some sort of space S; this gives us a contravariance in S, which we see
in the definition of part Q is part of P if there is a map “going the other way,” BP→ BQ.

Example 3. Here are some examples of parts.

• The two parts of the bicycle under consideration are the pedal and the wheel. Explicitly, the
behavior types of these parts of the bicycle are the types of all possible behaviors which arise as

2We will see in Section 2.4 that it is indeed a lattice.
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some behavior of the whole bicycle:

BPedal := {p ∈ R | ∃w.(p,w) ∈ BBicycle},
BWheel := {w ∈ R | ∃p.(p,w) ∈ BBicycle}.

In this case, every real number is a possible speed of the pedal, and every real number a possible
speed of the wheel.

• In the system Water of the cup of water sitting in the room, there is just one thing we are consid-
ering the behavior of: the cup. But, we can see this behavior at many different times. For every
time t ∈ N, we get a part Watert of the cup at time t with behaviors

BWateri := {x ∈ R | ∃T ∈ BWater.Tt = x}.

In fact, for any set D⊆ N of times, we get the behavior type of the cup during D:

BWaterD := {x ∈ D→ R | ∃T ∈ BWater.∀d ∈ D.Td = xd}.

• The ecosystem consisting of foxes and rabbits is more complicated than the cup, but the principle
is the same. We can consider the system at different times, and restrict our attention to just foxes
or rabbits as we please. In particular, we let Foxt be the system of foxes at time t, and Rabbitt be
the system of rabbits at time t. These have behavior types

BFoxt := {x ∈ R | ∃( f ,r) ∈ BEco. ft = x},
BRabbitt := {x ∈ R | ∃( f ,r) ∈ BEco.rt = x}.

A surjection
∣∣
P : BS → BP out of a set may equally be presented by its kernel pair, the equivalence

relation on BS where b ∼P b′ iff b
∣∣
P = b′

∣∣
P. We may call this relation observational equivalence; the

behaviors b,b′ with b ∼P b′ are observationally equivalent relative to P. This is clearest when thinking
of P as some measuring device in a larger system; two behaviors of the whole system are observationally
equivalent relative to our measuring device when it measures them to be the same. Two behaviors of
my body are hand-equivalent if they are indistinguishable by looking at my hand; and two times are
clock-equivalent when they read the same on the clock face.

There is essentially (i.e. up to isomorphism) no distinciton between a quotient of BS and an equiva-
lence relation on BS. Thus we are defining parts of S to be equivalence relations on S-behaviors. This
seems to be a novel approach to mereology, though we cannot claim to know the literature well enough
to be sure.

2.3 Compatibility

Now we turn our attention to how behaviors of various parts of the system relate to one another. The most
basic relation between behaviors of two parts is that of being simultaneously realizable by a behavior of
the whole system. We call this relation compatibility.
Definition 4. If P and Q are parts of S, then we say behaviors a∈ BP and b∈ BQ are compatible, denoted
c(a,b), if there is a behavior s ∈ BS of the whole system that restricts to both a and b, i.e.

c(a,b) :≡ ∃s ∈ S.a = s
∣∣
P ∧ s

∣∣
Q = b.

Generally, if ai ∈ Pi is some family of behaviors indexed by a set I, then this family is said to be
compatible if there is an s ∈ S such that s

∣∣
Pi
= ai for all i ∈ I.
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In other words, two behaviors (one on each of two parts) are compatible if there is a behavior of the
whole system that restricts to both of them.
Example 5. Examples of compatible behaviors are easily obtained by restricting a single system behav-
ior to two parts.

• In the bicycle example, we see that a speed p of the pedal is compatible with a speed w of the
wheel if and only if w≥ rp:

c(p,w) = w≥ rp.

• In the cup of water example, a temperature T 0 ∈ BWatert at time t is compatible with a temperature
T 1 ∈ BWatert′ at a later time t ′ are compatible if and only if T 1 follows from T 0 via the recurrence
relation. In particular, if t ′ = t +1, then

c(T 0,T 1) = (T 1 = T 0 + k(R−T 0)).

• In the ecosystem example, we have a number a different comparisons to choose from. A fox
population f 0 ∈ BFoxt at time t is compatible with f 1 ∈ BFoxt+1 at time t +1 if and only if there is
simultaneous rabbit population r0 so that f 1 = (1−d f ) f 0 + c f r0 f 0.
Two simultaneous fox and rabbit populations are compatible if and only if there is some history of
the ecosystem which achieves those population at that time. In particular, any two populations of
foxes and rabbits at time 0 are compatible.

2.4 Compatibility and the lattice of parts

We can express some of the parts-lattice operations in terms of the compatibility relation.
Proposition 6. The meet P∩Q of parts P and Q of S has behavior type given by the following pushout.

BS

BP BQ

BP∩Q

q

In other words, a behavior of P∩Q is either a behavior of P or a behavior of Q, where these are considered
equal if they are compatible.

BP∩Q ∼=
BP +BQ

c
.

Here, BP +BQ is the disjoint union of these two sets, and we are quotienting out by the smallest
equivalence relation for which p∼ q whenever c(p,q).

Dually, the join P∪Q has behaviors given by the image factorization of the induced map BS →
BP×BQ.

BS

BP BP∪Q BQ

BP×BQ
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In other words, a behavior of P∪Q is a pair of compatible behaviors from P and from Q.

BP∪Q ∼= {(a,b) ∈ BP×BQ|c(a,b)}.

Furthermore, the largest part > is S, and the smallest part ⊥ is empty if S is empty and a singleton
otherwise.

Definition 7. A part P is strongly disjoint from a part Q if every behavior of P is compatible with every
behavior of Q. The two parts P and Q are disjoint if their intersection P∩Q is the minimal part. Strongly
disjoint parts are disjoint:

∀a ∈ BP.∀b ∈ BQ.c(a,b) ⇒ BP∩Q =⊥

In general, we will be more interested in joins than in meets because joins are easier to work with
(being subsets of a product, rather than quotients of a disjoint union by a non-transitive relation).

Example 8. Let’s consider some examples of joins and meets of parts.

• In the example of the bicycle, note that we have

BBicycle = BPedal∪Wheel,

since a behavior of the bicycle was defined precisely to be a behavior of a pedal and a wheel
satisfying a compatibility constraint.

• In the example of the cup of water, the behaviors BCupD
over a duration D ⊂ N of times are the

union of the behaviors BCupd
for each time d ∈ D:

BCupD
= B⋃Cupd

.

• Similarly, in the ecosystem example, the parts of the ecosystem at various times are the join of
parts at particular times. More interestingly, recall that every behavior of Fox0 (starting population
of foxes) is compatible with every behavior of Rabbit0 (starting population of rabbits). Therefore,

BFox0∩Rabbit0 =⊥

This witnesses the fact that the parts Fox0 and Rabbit0 do not at all mutually constrain each other,
and so have no shared sub-parts.

2.5 Determination recovers the order of parts

Definition 9. If P and Q are parts of S, and a ∈ BP and b ∈ BQ, then a determines b if every behavior s
of the whole system S which restricts to a also restricts to b.

d(a,b) :≡ ∀s ∈ S.s
∣∣
P = a⇒ s

∣∣
Q = b.

We say that a part P determines a part Q if every behavior a ∈ BP, determines some behavior b ∈ BQ.

This is a much stronger notion than compatibility, and we shall show in Section 11 that it can be used
to recover the original order relation ≥ on parts.
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Lemma 10. A behavior always determines uniquely: if d(a,b) and d(a,b′), then b = b′.

Proof. We know there is some s ∈ S which restricts to a. Since a determines b and b′, s restricts to both
b and b′; but then b = b′.

Proposition 11. For parts P and Q of S, the following are equivalent:

1. Q is a part of P, i.e. there is a surjection BP� BQ under BS.

2. P c-determines Q, in the sense that for every a ∈ BP there is a unique b ∈ BQ such that a is
compatible with b. In other words, ∀a ∈ BP.∃!b ∈ BQ.c(a,b).

3. P d-determines Q, in the sense that for every a ∈ BP there is a b ∈ BQ such that a determines b. In
other words, ∀a ∈ BP.∃b ∈ BQ.d(a,b).

4. For all a ∈ BP and b ∈ BQ, if a is compatible with b, then a determines b.

3 Constraints, Allowance, and Ensurance

In this section, we introduce our new logical operators, ♦ and �, and prove some basic properties about
them. We shall see in Section 3.2 that these two operators pass constraints between parts. But first, what
is a constraint?

3.1 Constraints as predicates

We will identify a constraint φ on a part P with the predicate “satisfies φ” on behaviors BP of P. In other
words, we have the following definition.

Let Prop be the two element set {true,false} of truth values. We think of functions φ : X → Prop
as predicates concerning the elements of X — applied to x ∈ X , φ gives a truth value φ(x) which says
whether or not x satisfies the predicate φ .

Definition 12. A constraint on a part P is a map φ : BP→ Prop. The type of constraints on P is PropP.
We write

φ ` ψ

to mean that φ entails ψ , that is, if φ(b) = true, then ψ(b) = true.

For parts P≥ Q, we get an adjoint triple that allows us to transform constraints on P to those on Q,
and vice versa, given by the logical quantifiers:

PropBP PropBQ

∃P
Q

∀P
Q

∆
Q
P

⇒

⇐

These functors are defined logically as follows:

∃P
Qφ(q) := ∃p ∈ BP.

(
(p
∣∣
Q = q)∧φ(p)

)
∆

Q
P ψ(p) := ψ(p

∣∣
Q)

∀P
Qφ(q) := ∀p ∈ BP.

(
(p
∣∣
Q = q)⇒ φ(p)

)
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The fact that they are adjoint means that

∃P
Qφ ` ψ ⇐⇒ φ ` ∆

Q
P ψ

∆
Q
P ψ ` ξ ⇐⇒ ψ ` ∀P

Qξ

We will write ∃P, ∆P, and ∀P for ∃S
P, ∆P

S and ∀S
P respectively. As mentioned, these operations are

functorial, meaning that ∃P
P(φ) = ∆P

P(φ) = ∀P
P(φ) = φ and for R≤ Q≤ P,

∃Q
R∃

P
Q = ∃P

R,

∆
R
Q∆

Q
P = ∆

R
P,

∀Q
R∀

P
Q = ∀P

R.

Lemma 13. Recall that for part P of system S we write s ∼P s′ for the relation s
∣∣
P = s′

∣∣
P on BS. Then

for any predicate φ on S we have:

1. ∆P∃Pφ(s) = ∃s′.(s∼P s′)∧φ(s′)

2. ∆P∀Pφ(s) = ∀s′.(s∼P s′)⇒ φ(s′)

3. φ ` ∆P∃Pφ and ∆P∀Pφ ` φ

Thinking again of P as a way to observe behaviors, ∆P∃Pφ is the set of system behaviors s that our
observer says plausibly satisfy φ : there is something P-equivalent to s that satisfies φ . And ∆P∀Pφ is the
set of system behaviors that our observer can guarantee satisfy φ .

3.2 The allowance and ensurance operators

Now we turn to the question of how constraints on the behavior of some part of the system constrain the
behavior of other parts. We discuss two ways to pass constraints between parts.

Definition 14. A constraint φ on a part P induces a constraint on a part Q (of the same system S) in two
universal ways:

• “Allows φ”: ♦P
Qφ := ∃Q∆Pφ

♦P
Qφ(q) = ∃s ∈ BS.(s

∣∣
Q = q)∧φ(s

∣∣
P)

= ∃p ∈ BP.c(p,q)∧φ(p).

• “Ensures φ”: �P
Qφ := ∀Q∆Pφ

�P
Qφ(q) = ∀s ∈ BS.(s

∣∣
Q = q)⇒ φ(s

∣∣
P)

= ∀p ∈ Bp.c(p,q)⇒ φ(p).

A behavior q of Q allows a constraint φ on P if Q can be doing q while P is satisfying φ ; we write
this as ♦P

Qφ(q). A behavior q of Q ensures φ on P if whenever Q does q, P must satisfy φ ; we write this
as �P

Qφ(q).
These symbols are chosen due to their relation to the usual modalities of possibility (♦) and necessity

(�) [Kri63]; a behavior q allows φ if it is possible that P satisfies φ while Q does q, and a behavior q
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ensures φ if it is necessary that P satisfies φ while Q does q. Indeed, in the case that the accessibility
relation in the Kripke frame is an equivalence relation, we will be able to recover the usual possibility
and necessity modalities from our allowance and ensurance operators (see Section 3.3).

Note that compatibility and determination appear as particular, pointwise cases of the allowance and
ensurance operators. For any p ∈ BP and q ∈ BQ, we have

c(p,q) = ♦P
Q(= p)(q) = ♦Q

P (= q)(p)

d(p,q) =�Q
P (= q)(p)

We write (= p) for the map BP→ Prop that sends p′ to true if and only if p = p′.

Example 15. We return to our running examples to see our new operators in action.

• In the example of the bicycle with gear ratio of r, we can ask what behavior of the pedal is ensured
by the wheels moving slower than w = 2 mph. We have �Pedal

Wheel(≤ 2) is the constraint p≤ 2
r .

• If the cup of water has temperature T 0 ∈Water0 at time 0, then it cannot have a temperature further
away from the ambient room temperature R at a later time. Therefore,

|R−T t |> |R−T 0| ` ¬♦Water0
Watert

(= T 0)(T t).

• Suppose that in the ecosystem example, one was given the goal of introducing a fox population at
time 0 in order to keep the rabbit population in check after a given deadline d. Let’s say that being
kept in check means being between two fixed bounds,

rt 7→ inCheck(rt) := k1 < rt < k2

so that inCheck : BRabbitt → Prop is a constraint on rabbits at time t. The constraint of being kept
in check for all times after the deadline d is the constraint

r 7→ ∀t ≥ d. inCheck(rt)

on the join
∨

t≥d Rabbitt . The goal may then be expressed as finding a starting fox population f0

which ensures that the rabbit population is kept in check at all times after the deadline:

�
∨

t≥d Rabbitt
Fox0

(∀t ≥ d. inCheck)( f0).

Example 16. We can see a higher-order ensurance in the ecosystem example. If there are any rabbits
at time 0, and if the rabbit population is bounded independent of time, then the rabbits must ensure that
there are foxes, and that the foxes ensure there are rabbits:

r0 ≥ 0∧r < k `�F
R( f > 0∧�R

F(r > 0)).

If there are no foxes, then the rabbit population is unbounded, and if there are foxes, then there must
be rabbits for them to eat. We see that this ecosystem model exhibits a rudimentary form of symbiosis;
though the foxes eat the rabbits, they counter-intuitively must ensure that the rabbits do not go extinct,
lest they themselves go extinct.

Assuming the law of excluded middle, our operators are inter-definable by conjugating with negation.



286 Behavioral Mereology

Proposition 17. Assuming Boolean logic, allowance and ensurance are de Morgan duals. That is,
¬♦P

Q¬=�P
Q.

Proof. The proof uses the law of excluded middle twice:

¬♦P
Q¬φ(q) = ¬∃p.c(p,q)∧¬φ(p)

= ∀p.¬(c(p,q)∧¬φ(p))

= ∀p.¬c(p,q)∨¬¬φ(p)

= ∀p.c(p,q)⇒ φ(p).

Note that Proposition 17 does not generalize to arbitrary toposes, where the variation of the sets (in
time or in space) means that one must reason constructively in general.

3.3 Allowance and ensurance, possibility and necessity

Finally, we describe the manner in which our intermodalities generalize the classical alethic modalities
of possibility and necessity.

Proposition 18. Let P and Q be parts of the system S and φ a constraint on P. Then:

1. If a constraint φ entails ψ , then allowing φ entails allowing ψ , and ensuring φ entails ensuring φ .
That is, ♦P

Q and �P
Q are monotone.

2. If q ensures that P does φ , then q allows P doing φ . That is, �P
Qφ ` ♦P

Qφ .

3. Allowing φ entails ψ if and only if φ entails ensuring ψ . That is, ♦P
Q is left adjoint to �Q

P .

4. ♦P
Q commutes with ∨ and ∃, and �P

Q commutes with ∧ and ∀.

Fix a part P. Then for any part Q, we obtain two modalities on P by composing our intermodalities
from P to Q with their corresponding intermodality from Q to P.

Proposition 19. The operators ♦Q
P♦

P
Q and �Q

P�
P
Q are a pair of adjoint modalities on PropBP . They are

the identity modality if and only if P≤ Q.

Proof. By Proposition 18 item 3, these two modalities are the composites of adjoint pairs of operators,
and hence are adjoint themselves. Moreover, ♦Q

P♦
P
Q is the identity if and only if ♦Q

P♦
P
Qφ ` φ for all φ ,

which occurs if and only if ♦P
Qφ `�P

Qφ for all φ , which occurs if and only if P≤ Q.

These modalities describe constraints on P as seen through the part Q. To obtain a description of
possibility and necessity, assume that BS is inhabted — that there is some behavior of the system. We
let Q =⊥ be the system whose behavior type BQ = ∗ consists of just a single element. Then the adjoint
modalities

♦⊥P♦
P
⊥ left adjoint to �⊥P�

P
⊥

describe possibility and necessity on BP.
For example, for any constraint ϕ on BP, the constraint ♦⊥P♦

P
⊥(ϕ) maps all elements of BP to true if

there is some behavior p that satisfies ϕ , and maps all elements to false otherwise. Thus the modality
detects whether ϕ is possible: that is, whether there is some behavior that satisfies ϕ .
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On the other hand, �⊥P�
P
⊥(ϕ) is the constraint that maps all elements of BP to true if all behaviors

p ∈ BP satisfy ϕ , and maps all elements to false otherwise; thus this modality detects whether ϕ is
always satisfied, and hence necessary.

More generally, the usual semantics of the “it is possible that” and “it is necessary that” modalities
♦ and � take place in a Kripke frame (W,A), where W is a set, known as the set of worlds, and A is
a binary relation on W known as the accessibility relation. The predicate then ♦(ϕ)(w) holds if ϕ(w′)
for some w′ such that wAw′, and �(ϕ)(w) holds if ϕ(w′) for all w′ such that wAw′ [Kri63]. If A is an
equivalence relation, then we may equivalently describe A by an epi W �W/A. In this case, we have
♦= ♦W/A

W ♦W
W/A and �=�W/A

W �W
W/A as modalities on PropW .

4 Outlook and Conclusion

We have presented a logic that describes how constraints—restrictions on behavior—are passed from
one part of a system to another. While we have presented this from a set theoretic point of view, we
have taken care to use arguments that are valid in any topos (with the noted exception of Proposition
17, which only holds in boolean toposes). As a consequence, our logic retains its character as a logic of
constraint passing across a wide variety of semantics. One possibly valuable notion of semantics is one
that captures a notion of time.

Indeed, behavior is best conceived as occurring over time, though of course the question of what
time is remains an issue. One can imagine that a system has, for any interval or “window” of time, a set
of possible behaviors, and that each such behavior can be cropped or “clipped” to any smaller window
of time. This is the perspective of temporal type theory [SS18]. While that work uses topos theory in a
significant way, the main idea is easy enough.

Whether we speak of a bicycle, an ecosystem, or anything else that could be said to exist in time, it
is possible to consider the set of behaviors of that thing over an interval of time, say over the ten-minute
window (0,10). Above we often discussed an idea which can be generalized to any system S that exists
in time. Namely, we can consider different parts of time as parts of S. Given any behavior s over the
10-minute window, we can clip it to the first minute s

∣∣
(0,1); this gives a function S(0,10)→ S(0,1), which

is often called restriction, though we will continue to call it clipping. Let’s assume that every possible
behavior at (0,1) extends to some behavior over the whole interval—i.e. that the universe doesn’t just end
under certain conditions on (0,1)-behavior—at which point we have declared that the clipping function
is surjective, and hence gives a part in the sense of section Definition 2. We call it a temporal part.

What then does it mean to pass constraints between temporal parts? The idea begins to take on a
control-theoretic flavor: behavioral constraints at one time window may allow or ensure constraints at
other time windows. A mother could say “doing this now ensures no dessert tonight”. The child could
ask “does our position on the road now allow me to play with Rutherford this afternoon?” A control
system could attempt to solve the problem “what values of parameter P can I choose, 5 seconds from
now, that both allow current conditions and ensure that in 10 minutes we will achieve our target?”

In any case, as mentioned in the introduction, our original goal was to understand what makes a thing
a thing, e.g. what gives things like bricks the quality of being cohesive (not two bricks) and closed (not
the left half of a brick). We believe that a good logic of constraint passing between parts is essential for
that, but perhaps not sufficient. The question of what additional structures need to be added or considered
in order construct a viable notion of thing, remains future work.
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