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Motivated by the concept of degeneracy in biology [3], we establish a first connection between the
Multiplicity Principle [4, 5] and mathematical statistics. Specifically, we exhibit two families of tests
that satisfy this principle to achieve the detection of a signal in noise.

1 Introduction

In [3], Edelman & Gally pointed out degeneracy as the fundamental property allowing for living systems
to evolve through natural selection towards more complexity in fluctuating environments. Degeneracy is
defined [3] as “ . . . the ability of elements that are structurally different to perform the same function or
yield the same output”. Degeneracy is a crucial feature of immune systems and neural networks, at all
organization levels.

The Multiplicity Principle (MP) [4, 5], introduced by Ehresmann & Vanbremeersch, is a mathemat-
ical formalization of degeneracy in Categorical terms. The consequences of this principle, as treated in
[4, 5], underpin Edelman & Gally’s conjecture according to which “complexity and degeneracy go hand
in hand” [3].

Another property of many biological and social systems is their resilience: (i) they can perform
in degraded mode, with some performance loss, but without collapsing; (ii) they can recover their ini-
tial performance level when nominal conditions are satisfied again; (iii) they can perform corrections
and auto-adaption so as to maintain essential tasks for their survival. In addition, resilience of social
or biological systems is achieved via agents with different skills. For instance, cells are simply reac-
tive organisms, whereas social agents have some cognitive properties. Thence the idea that resilience
may derive from fundamental properties satisfied by agents, interactions and organizations. Could this
fundamental property be a possible consequence of degeneracy [5, Section 3.1, p. 15]?

The notion of resilience remains, however, somewhat elusive, mathematically speaking. In contrast,
the notion of robustness has a long history and track record in mathematical statistics [6]. By and large,
a statistical method is robust if its performance is not unduly altered in case of outliers or fluctuations
around the model for which it is designed. Can we fathom the links between resilience and robustness?
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As an attempt to embrace the questions raised above from a comprehensive outlook, the original
question addressed in this work is the possible connection between MP and robustness to account for
emergence of resilience in complex systems. As a first step in our study aimed at casting the notions of
robustness, resilience and degeneracy within the same theoretical framework based on the MP, we here-
after establish that statistical tests do satisfy the MP. The task to perform by the tests is the fundamental
problem of detecting a signal in noise. However, to ease the reading of a paper at the interface between
category theory and mathematical statistics, we consider a simplified version of this problem.

The paper is organized as follows. We begin by specifying notation and notions in mathematical
statistics. In Section 2, we state the MP in categorical words on the basis of [4] and consider the particular
case of preorders, which will be sufficient at the present time to establish that statistical tests satisfy the
MP for detecting signals in noise. In Section 3, we set out the statistical detection problem. We will then
introduce, in Section 4, a preorder that makes it possible to exhibit two types of "structurally different"
tests, namely, the Neyman-Pearson tests (Section 5) and the RDT tests (Section 6). Section 7 concludes
the paper by establishing that these two types of tests achieve the MP for the detection problem under
consideration. For space considerations, we limit proofs to the minimum making it possible to follow
the approach without too much undue effort.

Summary of main results

Because this paper lies at the interface between different mathematical specialties, the present section
summarizes its contents in straight text. To begin with, the MP is a property that a category may satisfy
when it involves structurally different diagrams sharing the same cocones. To state our main results, it
will not be necessary to consider the general MP though. In fact, the particular case of preordered sets
will suffice, in which case the MP reduces to Proposition 1.

Second, in statistical hypothesis testing, a hypothesis can be seen as a predicate, of which we can
aim at determining the truth value by using statistical decisions. There exist many optimality criteria to
devise a decision to test a given hypothesis. In non-Bayesian approaches, which will be our focus below,
such criteria are specified through the notions of size and power.

The size is the least upper bound for the probability of rejecting the hypothesis when this one is
actually true. We generally want this size to remain below a certain value called level, because the
hypothesis to test mostly represents the standard situation. For instance, planes in the sky are rare events,
after all, and the standard hypothesis is "there is no plane", which represents the nominal situation. A too
large level may result in an intolerable cluttering of a radar screen.

We do not want to be bothered by too many alarms. In contrast, when the hypothesis is false, we want
to reject it with the highest possible confidence. The probability that a decision rejects the hypothesis
when this one is actually false is called the power of the decision. For a given testing problem, we thus
look for decisions with maximal power within the set of those decisions that have a size less than or equal
to a a specified level. This defines a preorder. A maximal element in this preorder is said to be optimal.

Different hypotheses to test may thus require different criteria, specified through different notions of
size and different notions of power. This is what we exploit below to exhibit two sets of "structurally
different" decisions that satisfy the MP.

To carry out this construction, we consider the detection of a signal in independent standard gaussian
noise, a classical problem in many applications. This is an hypothesis testing problem for which there
exists an optimality criterion where the size is the so-called probability of false alarm and the power is
the so-called probability of detection. This criterion has a solution, the Neyman-Pearson (NP) decision,
which is thus the maximal element of a certain preorder. We can consider a second class of decisions,
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namely, the RDT decisions. These decisions are aimed at detecting deviations of a signal with respect to
a known deterministic model in presence of independent standard gaussian noise. This problem is rota-
tionally invariant and the RDT decisions are optimal with respect to a specific criterion defined through
suitable notions of size and power. They are maximal elements of another preordered set. Although
not dedicated to signal detection, these decisions can be used as surrogates to NP decisions to detect a
signal. It turns out that the family of RDT decisions and that of NP decisions satisfy the MP as stated in
Theorem 4. This is because the more data we have, the closer to perfection both decisions are.

Notation

Random variables. Given two measurable spaces E and F , M (E ,F ) denotes the set of all measurable
functions defined on E and valued in F . The two σ -algebra involved are omitted in the notation because,
in the sequel, they will always be obvious from the context. In particular, we will throughout consider
a probability space (Ω,B,P) and systematically endow R with the Borel σ -algebra, which will not be
recalled. Therefore, M (Ω,R) designates the set of all real random variables and M (Ω,Rn) is the set of
n-dimensional real random vectors.

Given q ∈ [0,∞[, B∞(q) is the set of all real random variables ∆ ∈M (Ω,R) such that |∆|
∞
6 q.

As usual, we write X ∼ N (0,1) to mean that X ∈M (Ω,R) is standard normal. Given a sequence
(Xn)n∈N ∈M (Ω,R)N of real random variables, we write X1,X2, . . .

iid∼ N (0,1) to mean that X1,X2, . . .
are independent and identically distributed with common distribution N (0,1).

Decisions et Observations. Throughout, M
(
{0,1}×Ω,

{
0,1
})

designates the set of all measurable
functions D :

{
0,1
}
×Ω→

{
0,1
}

. Any element of M
(
{0,1}×Ω,

{
0,1
})

is called a decision for ob-
vious reasons given below. If D ∈M

(
{0,1}×Ω,

{
0,1
})

then, for any ε ∈
{

0,1
}

, D(ε) denotes the
Bernoulli-distributed random variable D(ε) : Ω→

{
0,1
}

defined for any given ω ∈ Ω by D(ε)(ω) =
D(ε,ω). An n-dimensional test is hereafter any measurable function f : Rn→{0,1} and M (Rn,{0,1})
stands for the set of all n-dimensional tests. A measurable function X : {0,1}×Ω→ Rn is hereafter
called an observation and M ({0,1}×Ω,Rn) denotes the set of all these observations. Given a test f ∈
M (Rn,{0,1}) and X ∈M ({0,1}×Ω,Rn), D= f (X) is trivially a decision: D∈M

(
{0,1}×Ω,

{
0,1
})

.
If X ∈M ({0,1}×Ω,Rn) then, for any ε ∈ {0,1}, X(ε) = X(ε, ·) ∈M (Ω,Rn) is defined for every
ω ∈Ω by X(ε)(ω) = X(ε,ω).

Empirical means. We define the empirical mean of a given sequence y = (yn)n∈N of real values as
the sequence (〈y〉n)n∈N of real values such that, ∀n ∈ N,〈y〉n := 1

n ∑
n
i=1 yi. By extension, the empiri-

cal mean of a sequence Y = (Yn)n∈N of random variables where each Yn ∈M (Ω,R) is the sequence
(〈Y 〉n)n∈N of random variables where, for each n ∈ N, 〈Y 〉n ∈M (Ω,R) is defined by 〈Y 〉n := 1

n ∑
n
i=1Yi.

Therefore, for any ω ∈Ω, 〈Y 〉n(ω) := 〈Y (ω)〉n with Y (ω) = (Yn(ω))n∈N. If Y = (Yn)n∈N is a sequence
of observations (∀n ∈ N, Yn ∈M ({0,1}×Ω,R)), we define the empirical mean of Y as the sequence
(〈Y 〉n)n∈N of observations such that, for ε ∈ {0,1}, 〈Y 〉n ∈M ({0,1}×Ω,R) with 〈Y 〉n(ε) = 〈Y (ε)〉n
and Y (ε) = (Yn(ε))n∈N.

Preordered sets. Given a preordered set (E,�) and A⊂ E, the set of maximal elements of A is denoted
by max(A,(E,�)), the set of upper bounds of A is denoted by upper(A,(E,�)) and the set of least upper
bounds of A in (E,�) is denoted by sup(A,(E,�)).
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2 Multiplicity Principle

2.1 General case

The multiplicity principle (MP) comes from [4]. It proposes a categorical approach to the biological
degeneracy principle, which ensures a kind of flexible redundancy. Roughly, MP, in a category C ,
ensures the existence of structurally non isomorphic diagrams with same colimit. A formal definition
relies on the notion of a cluster between diagrams in a category C .

Definition 1 (Cluster). Let D : D → C and E : E → C be two (small) diagrams. A cluster G : D→ E is
a maximal set G = { f : D(d)→ E(e) | d ∈D ,e ∈ E , f ∈ C } such that:

(i) for all d ∈D there exist e ∈ E and g : D(d)→ E(e) such that g ∈ G
(ii) let G(d) be the subset of G consisting of arrows g : D(d)→ E(e) associated to the same d; then

G(d) is included in a connected component of the comma-category (D(d) | E)
(iii) if g : D(d)→ E(e) ∈ G(d) and ε : e→ e′ ∈ E , then E(ε)◦g ∈ G(d)
(iv) if δ : d′→ d ∈D and g : D(d)→ E(e) ∈ G(d), then g◦D(δ ) ∈ G(d′)

For instance, a connected cone from c to D can be seen as a cluster from the constant functor ∆(c) to
D; and any cocone from E to c is a cluster E→ ∆(c).

Remark 1. Adjacent clusters can be composed: a cluster G : D→ E0 and a cluster G0 : E0 → E can
be composed to a cluster G0 ◦G. We can then consider a category of clusters of C , whose objects are
the (small) diagrams D → C , and an arrow D→ E is a cluster. This category is isomorphic to the free
cocompletion of C [4].

A cluster G : D→ E defines a functor ΩG : Cocones(E)→Cocones(D) mapping a cocone α to the
cocone α ◦G (composite of α , seen as a cluster, and G, which is a cluster).

Definition 2 (Multiplicity principle (MP)). A category C satisfies the multiplicity principle (MP) if there
exist two diagrams D : D → C and E : E → C such that:

(i) Cocones(D)∼= Cocones(E);
(ii) There is no cluster G : D→ E nor G : E→ D such that ΩG is an isomorphism.

D and E having the same cocones translates the property of both systems to accomplish the same
function. The absence of clusters between D and E that define an isomorphism, reflects the structural
difference between D and E, which is key to robustness and adaptability: if the system described by E
fails, then D may replace it.

2.2 Application to preorders

The main purpose of this paper is to find a meaningful instance of the MP in some preorder. In the
following, we do not distinguish between a preorder and its associated category.

Proposition 1 (MP in a preorder). Let (E,6) be a preorder. If there are two disjoint subsets A,B ⊂ E
such that the following conditions hold, then E verifies the MP:

(i) A and B have the same sets of upper bounds
(ii) There is an a ∈ A with no upper bounds in B

(iii) There is a b ∈ B with no upper bounds in A
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Proof. Condition (i) ensures that A and B have isomorphic categories of cocones. Conditions (ii) and
(iii) respectively ensure that there is no cluster iA→ iB nor iB→ iA where iA : A ↪→ E and iB : B ↪→ E are
the inclusion functors.

Albeit trivial, the following lemma will be helpful.

Lemma 1. Given a preordered set (E,�), if A and B are two subsets of E such that A×B ∩ �= /0 and
sup(A,(E,�)) = sup(B,(E,�)), then E satisfies the MP.

3 Statistical detection of a signal in noise

3.1 Problem statement

Let ε ∈ {0,1} be the unknown indicator value on whether a certain physical phenomenon has occurred
(ε = 1) or not (ε = 0). We aim at determining this value. It is desirable to resort to something more
evolved than tossing a coin to estimate ε . However, whatever D, the decision is erroneous for any ω ∈Ω

such that D(ε,ω) 6= ε . We thus have two distinct cases.

False alarm probability: If ε = 0 and D(0,ω) = 1, we commit a false alarm or error of the 1st kind,
since we have erroneously decided that the phenomenon has occurred while nothing actually happened.
We thus define the false alarm probability (aka size, aka error probability of the 1st kind) of D as:

PFA [D]
def
= P

[
D(0) = 1

]
(1)

Detection probability: If ε = 1 and D(1,ω) = 0, we commit an error of the 2nd kind, also called missed
detection since, in this case, we have missed the occurrence of the phenomenon. As often in the literature
on the topic, we prefer to use the probability of correctly detecting the phenomenon and we define the
detection probability as:

PDET [D]
def
= P

[
D(1) = 1

]
(2)

3.2 Decision with level γ ∈ (0,1) and oracles

Among all possible decisions, the omniscient oracle D∗ ∈M
(
{0,1}×Ω,

{
0,1
})

is defined for any pair
(ε,ω) ∈

{
0,1
}
×Ω by setting D∗(ε,ω) = ε . Its probability of false alarm is 0 and its probability of

detection is 1: PFA [D∗] = 0 et PDET [D∗] = 1. This omniscient oracle has no practical interest since
it knows ε . That’s not really fair! Since it is not possible in practice to guarantee a null false alarm
probability, we focus on decisions whose false alarm probabilities are upper-bounded by a real number
γ ∈ (0,1) called level. We state the following definition.

Definition 3 (Level). Given γ ∈]0,1[, we say that D ∈M
(
{0,1}×Ω,

{
0,1
})

has level γ if PFA [D]6 γ .
The set of all decisions with level γ ∈]0,1[ is denoted by Decγ .

We can easily prove the existence of an infinite number of elements in Decγ that all have a detection
probability equal to 1. Whence the following definition.

Definition 4. Given γ ∈ (0,1), an oracle with level γ is any decision D ∈ Decγ such that PDET [D] = 1.
The set of all the oracles with level γ is denoted by Oγ .

Oracles with level γ have no practical interest either since they require prior knowledge of ε! There-
fore, we restrict our attention to decisions in Decγ that "approximate" at best the oracles with level γ ,
without prior knowledge of ε , of course. To this end, we must preorder decisions.
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Lemma-Definition 1 (Total preorder (Decγ , � )). For any given γ ∈ (0,1) and any pair (D,D′)∈Decγ×
Decγ , we define a preorder (Decγ , � ) by setting:

D� D′ if PDET [D]6 PDET

[
D′
]
. (3)

We write D∼= D′ if D� D′ and D′ � D.

3.3 Observations

In practice, observations help us decide whether the phenomenon has occurred or not. By collecting
a certain number of them, we can expect to make a decision. Hereafter, observations are assumed to
be elements of M ({0,1}×Ω,R) and corrupted versions of ε . We suppose that we have a sequence
(Yn)n∈N of such random variables. As a first standard model, we could assume that, for any n ∈ N and
any (ε,ω) ∈ {0,1}×Ω, Yn(ε,ω) = ε +Xn(ω) with X1,X2, . . . ,Xn, . . .

iid∼ N (0,1). In this additive model,
Xn models noise on the nth observation. We could make this model more complicated and realistic by
considering random vectors instead of variables. However, with respect to our purpose, the significant
improvement we can bring to the model is elsewhere. Indeed, we have assumed above that the signal,
regardless of noise, is ε . However, from a practical point of view, it is more realistic to assume that
the nth observation Yn captures ε in presence of some interference ∆n, independent of Xn. In practice,
the probability distribution of ∆n will hardly be known and, as a means to compensate for this lack of
knowledge, we assume the existence of a uniform bound on the amplitude of all possible interferences.
Therefore, we assume that, for all (ε,ω) ∈ {0,1}×Ω, Yn(ε,ω) = ε +Xn(ω)+∆n(ω) and the existence
of q ∈ [0,∞) such that ∆n ∈B∞(q). After all, this model is standard in time series analysis: ε plays the
role of a trend, ∆n is the seasonal variation and Xn is the measurement noise.

For each q ∈ [0,∞), Seqq henceforth designates the set of all the sequences:

Y = (Yn)n∈N ∈M
(
{0,1}×Ω,

{
0,1
})N

such that, ∀n ∈ N and ∀(ε,ω) ∈ {0,1}×Ω, Yn(ε,ω) = ε +∆n(ω) +Xn(ω), where ∆n ∈ B∞(q) and
Xn ∼ N (0,1) are independant. Therefore, for all n ∈ N and all ε ∈ {0,1}, Yn(ε) = ε +∆n +Xn, with
X1,X2, . . . ,Xn, . . .

iid∼ N (0,1).

4 Selectivity, landscapes of tests and preordering

For any sequence Y = (Yn)n∈N ∈M
(
{0,1}×Ω,

{
0,1
})

, we henceforth set:

YYYn =
(
Y1,Y2, . . . ,Yn

)
(4)

In other words, YYYn is the truncated version of the original sequence Y at the nth term.

Definition 5 (Selectivity of a test). Given any n ∈N and any test f ∈M (Rn,{0,1}), the selectivity of f
at given level γ ∈ (0,1) is defined as the set:

Selγ ( f ) :=
{

q ∈ [0,1/2) : ∀Y ∈ Seqq, f (YYYn) ∈ Decγ

}
The relevance of the interval [0,1/2) in the definition above will pop up in Section 6.2.
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Definition 6 (Landscapes of tests). Given any n ∈ N and any test f ∈M (Rn,{0,1}), the landscape of
f at given level γ ∈ (0,1) is the subset of Decγ defined by:

Lndγ ( f ) :=
⋃

q∈Selγ ( f )

{
f (YYYn) : Y ∈ Seqq

}
(5)

The total landscape covered by all the tests f ∈M (Rn,{0,1}) is defined by setting:

Lndscpγ :=
⋃

n∈N

{
Lndγ ( f ) : f ∈M (Rn,{0,1})

}
(6)

This notion of landscape makes it possible to compare tests via the following preorder. The proofs
that the following definition is consistent and that the next lemma holds true are left to the reader.

Definition 7 (Preorder (2Decγ , �∗ )). Given any level γ ∈ (0,1), we define the preorder (2Decγ , �∗ ) via
the following three properties:

(P1) ∀n ∈ N, ∀( f ,g) ∈M (Rn,{0,1})×M (Rn,{0,1}), Lndγ ( f ) �∗ Lndγ (g) if:

Selγ ( f ) = Selγ (g) and ∀q ∈ Selγ ( f ) ,∀Y ∈ Seqq, f (YYYn) � g(YYYn)

(P2) ∀(L,L′) ∈
(

Lndscpγ ∪2Oγ

)
×2Oγ , L�∗ L′

(P3) ∀L ∈ 2Decγ \
(

Lndscpγ ∪2Oγ

)
, L �∗ L

Lemma 2. ∀(L,L′) ∈
(

Lndscpγ ∪2Oγ

)
×
(

Lndscpγ ∪2Oγ

)
, L�∗ L′⇒ L×L′ ⊂ � .

With this material, we can state our first result that will prove useful in applications to statistical
decisions below.

Theorem 1 (Approximation of oracles in (2Decγ ,�∗ )). Given γ ∈ (0,1), if a set Xγ and a family of tests(
fξ ,n
)

ξ∈Xγ ,n∈N
satisfy:

(i) ∀(ξ ,n) ∈ Xγ ×N, fξ ,n ∈M (Rn,{0,1});

(ii) ∃Qγ ⊂ [0,∞), ∀(ξ ,n) ∈ Xγ ×N, Selγ
(

fξ ,n
)
= Qγ ;

(iii) ∀(ξ ,q) ∈ Xγ ×Qγ , ∀Y ∈ Seqq, lim
n→∞

PDET

[
fξ ,n (YYYn)

]
= 1;

then, by setting Lndscp′γ =
{

Lndγ

(
fξ ,n
)

: n ∈ N,ξ ∈ Xγ

}
, we have:

2Oγ = upper
(

Lndscp′γ ,
(
2Decγ , �∗

))
= sup

(
Lndscp′γ ,

(
2Decγ , �∗

))
(7)

Proof. For any (ξ ,n) ∈ Xγ ×N and any L ∈ 2Oγ , (P2) in Definition 7 straightforwardly implies that
Lndγ

(
fξ ,n
)
�∗ L. As a consequence:

2Oγ ⊂ upper
(

Lndscpγ
′ ,
(
2Decγ , �∗

))
(8)

To prove the converse inclusion, consider some L ∈ upper
(

Lndscpγ
′ ,
(
2Decγ , �∗

))
. We thus have

∀(ξ ,n) ∈ N×Xγ , Lndγ

(
fξ ,n
)
�∗ L. According to Lemma 2, we have ∀(ξ ,n) ∈ Xγ ×N, Lndγ

(
fξ ,n
)
×

L⊂ � . Therefore, ∀(ξ ,n)∈N×Xγ , ∀q∈ Selγ
(

fξ ,n
)
, ∀Y ∈ Seqq and ∀D∈L, fξ ,n (YYYn) � L. It follows

from the definition of � and assumption (ii) above that:

∀(ξ ,n) ∈ N×Xγ ,∀q ∈Qγ ,∀Y ∈ Seqq,∀D ∈ L,PDET

[
fξ ,n (YYYn)

]
6 PDET [D]
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We derive from assumption (iii) that PDET [D] = 1 and thus that D∈Oγ . It follows that L∈ 2Oγ . We obtain

that upper
(

Lndscpγ
′ ,
(
2Decγ , �∗

))
⊂ 2Oγ and therefore, from (8), 2Oγ = upper

(
Lndscpγ

′ ,
(
2Decγ , �∗

))
.

The second equality in (7) is straightforward since the elements of 2Oγ are isomorphic in the sense of
�∗ .

For later use, given J ⊂ [0,∞), n ∈ N and F⊂M (Rn,{0,1}), we hereafter set:

LndscpsJ
γ (F) :=

{
Lndγ ( f ) ∈ Lndscpγ : f ∈ F , Selγ ( f ) = J

}
(9)

5 The Neyman-Pearson (NP) solution

When n spans N, the Neyman-Pearson (NP) Lemma makes it possible to pinpoint a maximal element
in each (Lndscps{0}γ (F), � ) with F= M (Rn,{0,1}). These maximal elements are hereafter called NP
decisions. Specifically, we have the following result.

Lemma 3 (Maximality of the NP decisions). For any γ ∈ (0,1) and any n ∈ N,

Lndγ

(
f NP(γ)
n

)
= max

(
Lndscps{0}γ (M (Rn,{0,1})) , �∗

)
(10)

where f NP(γ)
n ∈M (Rn,{0,1}) is the n-dimensional NP test with size γ defined by:

∀(y1,y2, . . . ,yn) ∈ Rn, f NP(γ)
n (y1,y2, . . . ,yn) =

{
1 if ∑

n
i=1 yi >

√
nΦ−1(1− γ)

0 otherwise
(11)

and satisfies, ∀Y ∈ Seq0, 
PFA

[
f NP(γ)
n (YYYn)

]
= γ

PDET

[
f NP(γ)
n (YYYn)

]
= 1−Φ

(
Φ−1(1− γ)−

√
n
)

Proof. A direct application of the Neyman-Pearson Lemma [8, Theorem 3.2.1, page 60], followed by
some standard algebra to obtain PDET

[
f NP(γ)
n (YYYn)

]
.

The next result states that it suffices to increase the number of observations to approximate oracles
with level γ by NP decisions.

Theorem 2 (Approximation of oracles with level γ by NP decisions in (2Decγ ,�∗ )).

Setting LndNP(γ) :=
{

Lndγ

(
f NP(γ)
n

)
: n ∈ N

}
for any γ ∈ (0,1), we have:

2Oγ = upper
(

LndNP(γ) ,
(
2Decγ , �∗

))
= sup

(
LndNP(γ) ,

(
2Decγ , �∗

))
Proof. Given γ ∈ (0,1), set Xγ = {0} and, ∀n ∈ N, f0,n = f NP(γ)

n . According to Lemma 3:

lim
n→∞

PDET

[
f NP(γ)
n (YYYn)

]
= 1

Thence the result as a consequence of Theorem 1.
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6 The RDT solution

6.1 An elementary RDT problem

Problem statement. The RDT theoretical framework is exposed in full details in [9, 10]. To ease
the reading of the present paper, we directly focus on the particular RDT problem that can be used in
connection with the detection problem at stake.

In this respect, suppose that Z = Θ+W ∈M (Ω,Rn), where Θ and W are independent elements of
M (Ω,Rn). In the sequel, we assume that W ∼N (0,In), In being the n×n identity matrix, and consider
the mean testing problem of deciding on whether |〈Θ〉n(ω)|6 τ (null hypothesis H0) or |〈Θ〉n(ω)|> τ

(alternative hypothesis H1), when we are given Z(ω) = Θ(ω) +W (ω), for ω ∈ Ω. The idea is that
Θ oscillates uncontrollably around 0 and that only sufficient large deviations of the norm should be
detected. This is a particular Block-RDT problem, following the terminology and definition given in
[10]. This problem is summarized by dropping ω , as usual, and writing:

Observation:Z = Θ+W ∈M (Ω,Rn) with
{

Θ ∈M (Ω,Rn),W ∼ N (0,IN),
Θ and W are independent,

H0 : |〈Θ〉n|6 τ,
H1 : |〈Θ〉n|> τ.

(12)

Standard likelihood theory [8, 1, 2] does not make it possible to solve this problem. Fortunately, this
problem can be solved as follows via the Random Distortion Testing (RDT) framework.

Size and power of tests for mean testing. We seek tests with guaranteed size and optimal power, in the
sense specified below.

Definition 8 (Size for the mean testing problem). The size of f ∈M (Rn,{0,1}) for testing the empirical
mean of the signals Θ ∈M (Ω,Rn) such that P

[
|〈Θ〉n|6 τ

]
6= 0, given Z = Θ+W ∈M (Ω,Rn) with W

independent of Θ, is defined by:

α
[n]( f ) = sup

Θ∈M (Ω,Rn) :P [ |〈Θ〉n|6τ ]6=0
P
[

f (Z) = 1
∣∣ |〈Θ〉n|6 τ

]
(13)

We say that f ∈M (Rn,{0,1}) has level (resp. size) γ if α [n]( f )6 γ (resp. α [n]( f ) = γ). The class of all
the tests with level γ is denoted by Tests[n]γ :

Tests[n]γ =
{

f ∈M (Rn,{0,1}) : α
[n]( f )6 γ

}
Definition 9 (Power for the mean testing problem). The power of f ∈M (Rn,{0,1}) for testing the em-
pirical mean of Θ∈M (Ω,Rn) such that P

[
|〈Θ〉n|> τ

]
6= 0 when we are given Z = Θ+W ∈M (Ω,Rn),

with W independent of Θ, is defined by:

β
[n]
Θ
( f ) = P

[
f (Z) = 1

∣∣ |〈Θ〉n|> τ
]

(14)

The RDT solution. With the same notation as above, we can easily construct a preorder
(

Tests[n]γ , ��
)

by setting:

∀( f , f ′) ∈ Tests[n]γ ×Tests[n]γ ,

f �� f ′ if ∀ Θ ∈M (Ω,Rn),P
[
|〈Θ〉n|> τ

]
6= 0⇒ β

[n]
Θ
( f )6 β

[n]
Θ
( f ′)
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No maximal element exists in
(

Tests[n]γ , ��
)

. However, we can exhibit C[n]
γ ⊂ Tests[n]γ whose elements

satisfy suitable invariance properties with respect to the mean testing problem and prove the existence of
a maximal element in

(
C
[n]
γ , ��

)
.

Set S =
{

id,−id
}

where id is the identity of R. Endowed with the usual composition law ◦ of
functions, (S ,◦) is a group. Let A be the group action that associates to each given s ∈ S the map
As : Rn → Rn defined for every x = (x1,x2, . . . ,xn) ∈ Rn by As(x) = (s(x1),s(x2), . . . ,s(xn)). Readily,
the mean testing problem is invariant under the action of A in that As(Z) = As(Θ)+W ′ where W ′ =
(W ′1,W

′
2, . . . ,W

′
n) ∼ N (0,In) is independent of As(Θ). Therefore, As(Z) satisfies the same hypotheses

as Z. We also have |〈As(Θ)〉n| = |〈Θ〉n|. Hence, the mean testing problem remains unchanged by
substituting As(Θ) for Θ and W ′ for W . It is thus natural to seek A -invariant tests, that is, tests f ∈
M (Rn,{0,1}) such that f (As(x)) = f (x) for any s ∈S and any x ∈ Rn.

On the other hand, since we can reduce the noise variance by averaging observations, we con-
sider A -invariant integrator tests, that is, A -invariant tests f ∈M (Rn,{0,1}) for which exists f ∈
M
(
R1,{0,1}

)
, henceforth called the reduced form of f , such that f (xxx) = f (〈xxx〉n) for any xxx ∈ Rn. Re-

duced forms of A -invariant integrator tests are also A -invariant: ∀x ∈ R, ∀s ∈A , f (s(x)) = f (x). We
thus define C

[n]
γ ⊂ Tests[n]γ as the class of all A -invariant integrator tests with level γ . We thus have

f ∈ C
[n]
γ if:

[Size]: α [n]( f )6 γ;

[A -invariance]: ∀(s,x) ∈S ×Rn, f (As(x)) = f (x);

[Integration]: ∃ f ∈M
(
R1,{0,1}

)
, ∀x ∈ Rn, f (x) = f (〈x〉n).

The following result derives from the foregoing and [9, 10].

Proposition 2 (Maximal element of
(
C
[n]
γ , ��

)
). For any γ ∈ (0,1) and any n ∈ N,{

f RDT(γ,τ)
n

}
= max

(
C
[n]
γ , ��

)
(15)

where f RDT(γ,τ)
n ∈M (Rn,{0,1}) is defined by setting

∀(y1,y2, . . . ,yn) ∈ Rn, f RDT(γ,τ)
n (y1,y2, . . . ,yn) =

{
1 if |∑n

i=1 yi|6
√

nλγ(τ
√

n)

0 otherwise

and λγ(τ
√

n) is the unique solution in x to the equation

2−Φ(x− τ
√

n)−Φ(x+ τ
√

n) = γ

where Φ is the cumulative distribution function (cdf) of the N (0,1) law.

RDT and NP tests are structurally different because dedicated to two different testing problems and
optimal with respect to two different criteria. This structural difference will be enhanced by coming back
to our initial detection problem.

6.2 Application to Detection

Consider again the problem of estimating ε ∈ {0,1}, when we have a sequence Y ∈ Seqq of observations
such that:
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∀n ∈ N,∀(ε,ω) ∈
{

0,1
}
×Ω,Yn(ε,ω) = ε +∆n(ω)+Xn(ω) (16)

where X1,X2, . . .
iid∼ N (0,1) and ∀n ∈ N, ∆n ∈B∞(q) with q ∈ [0,∞). The empirical mean of Y satisfies:

∀n ∈ N,〈Y〉n(ε) = 〈Y(ε)〉n = ε + 〈∆〉n + 〈X〉n. We thus have |〈∆〉n|6 q (a-s). Set Θn = ε +∆n for every
n ∈ N. In the sequel, we assume q < 1/2 because, in this case, we straightforwardly verify that{

ε = 0 ⇔ |〈Θ〉n|6 q
ε = 1 ⇔ |〈Θ〉n|> 1−q

(17)

Therefore, when q ∈ [0,1/2), deciding on whether ε is zero or not when we are given YYYn(ω) amounts to
testing whether |〈Θ〉n(ω)|6 τ or not for τ ∈ [q,1−q]. We thus can use the decision f RDT(γ,τ)

n (YYYn), where
f RDT(γ,τ)
n is given by Proposition 2.

We can calculate the false alarm probability (1) of f RDT(γ,τ)
n (YYYn) where YYYn is defined by (4). The

theoretical results in [9] yield that ∀τ ∈ [q,1−q],PFA

[
f RDT(γ,τ)
n (YYYn)

]
6 γ. In the sequel, for the sake of

simplifying notation, we assume that both τ and q are in [0,1/2). In this case, we have:

∀τ ∈ [0,1/2) ,


Selγ

(
f RDT(γ,τ)
n

)
= [0,τ]

Lndγ

(
f RDT(γ,τ)
n

)
=

⋃
q∈[0,τ]

{
f RDT(γ,τ)
n (YYYn) : Y ∈ Seqq

} (18)

We can then state the following lemma, which is the counterpart to Lemma 3.

Theorem 3 (Maximality of RDT decisions). For any γ ∈ (0,1), any n ∈ N and any 0 6 q 6 τ < 1/2,
Lndγ

(
f RDT(γ,τ)
n

)
= max

(
Lndscps[0,τ]γ

(
C
[n]
γ

)
, �∗

)
.

Proof. It results from Definition 6 that Lndγ ( f ) :=
{

f (YYYn) : Y ∈ Seqq,q ∈ [0,τ]
}

. According to (9),
we also have:

Lndscps[0,τ]γ

(
C
[n]
γ

)
=
{

Lndγ ( f ) ∈ Lndscpγ : f ∈ C
[n]
γ , Selγ ( f ) = [0,τ]

}
Given q ∈ [0,τ] and Y ∈ Seqq, set:

Z = YYYn = (Y1,Y2, . . . ,Yn) (see (4))
W = (X1,X2, . . . ,Xn)∼ N (0,In)
Θ = (1+∆1,1+∆2, . . . ,1+∆n)

We basically have Z = Θ+W . Consider now the mean testing problem (12) with Θ, W and Z defined as
above. For any f ∈M (Rn,{0,1}), it follows from Eqs. (16) , (17), (2) and (13) that:

β
[n]
Θ
( f ) = PDET [ f (YYYn)] (19)

Suppose now that f ∈ C[n]
γ with Selγ ( f ) = [0,τ]. We derive from Proposition 2, (19) and its application to

f RDT(γ,τ)
n , that PDET [ f (YYYn)]6 PDET

[
f RDT(γ,τ)
n (YYYn)

]
. Since q 6 τ < 1/2 implies that q∈ Selγ ( f ) and since

Selγ ( f ) = Selγ
(

f RDT(γ,τ)
n

)
= [0,τ], we can rewrite the foregoing equality as f (YYYn) � f RDT(γ,τ)

n (YYYn). This

holding true for any q ∈ Selγ ( f ), any Y ∈ Seqq and since f and f RDT(γ,n)
q have same selectivity [0,τ], we

derive from the foregoing and Definition 7 that Lndγ ( f ) �∗ Lndγ

(
f RDT(γ,τ)
n

)
.
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We now prove that the oracles with level γ are approximated by RDT decisions.

Lemma 4 (Approximation of oracles with γ by RDT decisions in (2Decγ , �∗ )).

Setting LndRDT(γ,τ) :=
{

Lndγ

(
f RDT(γ,τ)
n

)
: n ∈ N

}
for any given γ ∈ (0,1), we have:

2Oγ = upper
(

LndRDT(γ,τ) ,
(
2Decγ , �∗

))
= sup

(
LndRDT(γ,τ) ,

(
2Decγ , �∗

))
Proof. Given γ ∈ (0,1), it follows from (2) and [9, Theorem 2] that:

∀(q,τ) ∈ [0,1/2)× [0,1/2),∀n ∈ N,PDET

[
f RDT(γ,τ)
n (YYYn)

]
> Q1/2

(
(1−q)

√
n,λγ(τ

√
n)
)

Since τ < 1− q, [7, Eq. (3) and Lemma B.2] induce that lim
n→∞

PDET

[
f RDT(γ,τ)
n (YYYn)

]
= 1. The set

LndRDT(γ,τ) ⊂ Lndscpγ thus satisfies Theorem 1 conditions with Xγ = {τ} and ∀n ∈ N, fn,τ = f RDT(γ,τ)
n .

7 Multiplicity Principle in (2Decγ , �∗ )

To state the MP in (2Decγ , �∗ ), we need the following lemma.

Lemma 5 (Selectivity of NP tests). ∀n ∈ N, Selγ
(

f NP(γ)
n

)
= {0}

Proof. A consequence of [9, Section B, p. 6.].

We have now all the material to state the main result.

Theorem 4 (Multiplicity Principle in (2Decγ , �∗ )). For any given τ ∈ (0,1/2), the MP is satisfied in
(2Decγ , �∗ ) by the pair

(
LndNP(γ),LndRDT(γ,τ)

)
.

Proof. According to Theorems 2 and 3, the subsets LndNP(γ) and LndRDT(γ,τ) of 2Decγ are such that

sup
(

LndNP(γ) ,
(
2Decγ , �∗

))
= sup

(
LndRDT(γ,τ) ,

(
2Decγ , �∗

))
= 2Oγ

In addition, (18) and Lemma 5 imply that LndNP(γ)×LndRDT(γ,τ)∩ �∗ = /0. The conclusion follows
from Lemma 1.

8 Conclusions and Perspectives

In this paper, via the framework provided by the Multiple Principle (MP), which is motivated by the
concept of degeneracy in biology, and by introducing the notions of test landscapes and selectivity, we
have established that this principle is satisfied when we consider the standard NP tests and the RDT tests
applied to a detection problem. One interest of this result is that it opens prospects on the construction
of Memory Evolutive Systems [4, 5] via tests.

More elaborated statistical decision problems should be considered beyond this preliminary work.
Sequential tests are particularly appealing because they collect information till they can decide with
guaranteed performance bounds. On the one hand, the Sequential Probability Ratio Test (SPRT) estab-
lished in [11] is proved to be optimal; on the other hand, in [7], we have exhibited non-optimal tests with
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performance guarantees in presence of interferences. In the same way as NP and RDT tests satisfy PM,
we conjecture that these two types of sequential tests satisfy MP as well.

From a pratical point of view, such results open new prospects for the design of networks of sensors,
where combining different types of sensors and tests satisfying the MP could bring resilience to the
overall system.
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