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We extend the open games framework for compositional game theory to encompass also mixed strate-

gies, making essential use of the discrete probability distribution monad. We show that the resulting

games form a symmetric monoidal category, which can be used to compose probabilistic games

in parallel and sequentially. We also consider morphisms between games, and show that intuitive

constructions give rise to functors and adjunctions between pure and probabilistic open games.

1 Introduction

The research project of open games aims to re-develop the foundations of economic game theory using

compositionality and category theory [6], building on e.g. the work of Escardó and Oliva [1]. A com-

positional framework was proposed by Ghani et al. [3], which included operators from which to build

games from smaller component games, and solution concepts such as pure Nash equilibria. However

many games that can be found even early on in an undergraduate textbook on game theory (such as e.g.

Leyton-Brown and Shoham [10]) fail to contain any equilibria, unless probabilistic (so-called mixed)

strategies are allowed. In contrast, already Nash [11] proves that mixed strategy Nash equilibria always

exist for games with a finite number of players and strategies.

In this work, we extend the framework of open games also to mixed strategies. We use the discrete

probability distribution monad on Set (a baby version of the Giry monad [5]) to incorporate probability

distributions. However simply moving to the Kleisli category for this monad is not sufficient for our

purposes, as that would fail to capture mixed strategies without also demanding e.g. probabilistic play

functions. Instead, we make sure to enrich the framework of open games with measured use of the

distribution monad in the appropriate places. In particular, we construct a “relational Kleisli lifting”, a

variant of the relational lifting for set functors (cf. e.g. Kupke, Kurz and Venema [9]), that turns predicates

with non-probabilistic parameters into predicates with mixed parameters in a non-trivial way.

2 Compositional Game Theory with Pure Strategies

We briefly recall the definition of non-probabilistic, “pure” open games as introduced by Hedges [6] for

modelling economic game theory with deterministic agents.

Definition 1. Let X , Y , R and S be sets. A pure open game G = (ΣG ,PG ,CG ,EG ) : (X ,S) −→ (Y,R)
consists of:
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• a set ΣG , called the set of strategy profiles of G ,

• a function PG : ΣG ×X →Y , called the play function of G ,

• a function CG : ΣG ×X ×R → S, called the coutility function of G , and

• a function EG : X × (Y → R)→P(ΣG ), called the equilibrium function of G . �

As these games are open, they have an interface for interacting with other games. This consists of a set

X representing the state/history of the game, a set Y of possible moves, a set R of possible outcomes,

and a set S of possible outcomes to feed back to the environment. Open games also have a strategy set

ΣG from which we wish to determine the optimal strategy. The play function PG produces a move based

on the state and strategy. The coutility function CG then determines which outcome is returned to the

environment based on the state, strategy and outcome, and the equilibrium function EG determines which

strategies are optimal given the state and utility function. See Example 4 on the next page for an example.

The game given there is probabilistic, but as we will see, most of the structure is shared between pure

and probabilistic games.

The following fundamental theorem of pure open games allows parallel and sequential composition:

Theorem 2 (Ghani et al. [3]) The collection of pairs (X ,S) of sets X and S, with pure open games G :

(X ,S)−→ (Y,R) as morphisms, forms a symmetric monoidal category GPure.

To be precise, in order to satisfy the category axioms on the nose, one needs to quotient by the equivalence

relation induced by isomorphism of strategies. We simplify presentation here and in what follows by

dealing with representatives directly.

3 Probabilistic Open Games

Our aim is to extend the framework of compositional game theory to also encompass mixed strategies,

i.e. games where players’ strategies are probability distributions over pure strategies. For a set X , write

D(X) for the set of discrete probability distributions on X , i.e. D(X) is the collection of functions ω :

X → [0,1] with ∑x∈X ω(x) = 1 whose support supp(ω) = {x ∈ X | ω(x) 6= 0} is finite. It is well known

that D : Set → Set is a monad (see e.g. Jacobs [8] for an overview of probability monads in different

categories), and we will make essential use of this structure in the following. The unit of the monad

η : X → DX maps elements to point distributions, and the multiplication µ : D2X → DX “flattens” a

distribution of distributions. Furthermore, D is a commutative strong monad, meaning that there is a

double strength natural transformation ℓ : DA×DB →D(A×B) given by forming the independent joint

distribution. Algebras of D are convex sets, which we think of as sets R equipped with the operation

of taking expected values E : D(R) → R. We do not expect all sets involved in a game to support this

operation — e.g. the set of moves is typically discrete — but we do expect (and need) the sets of possible

outcomes for the games and its environment to do so.

Definition 3. Let X , Y be sets, and R, S be D-algebras. A probabilistic open game G =(ΣG ,PG ,CG ,EG ) :

(X ,S)−→ (Y,R) consists of:

• a set ΣG , called the set of strategy profiles of G ,

• a function PG : ΣG ×X →Y , called the play function of G ,

• a function CG : ΣG ×X ×R → S, called the coutility function of G , and

• a function EG : X × (Y → R)→P(D(ΣG )), called the equilibrium function of G . �
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In other words, a probabilistic open game consists of the same data as a pure open game, except that

the equilibrium function records which mixed strategies are “optimal”, instead of just being concerned

with pure strategies. Overall, this matches how we usually think of games with mixed strategies: the

moves and outcomes of the game stays the same, only the strategies can be probabilistic. The D-algebra

structure of R and S is not needed for this basic definition, but will be used to compose games.

H T

H −1,1 1,−1

T 1,−1 −1,1

Figure 1: Utility k of the Matching Pennies game.

Example 4. The Matching Pennies game involves two players trying to win pennies from each other.

Each player puts forward one side of a penny, heads or tails. If the faces match then the first player wins

the second player’s penny, and if they do not match, the second player instead wins the first player’s

penny. This is summarised in Figure 1. We can represent Matching Pennies as a state-free open game

MP : (1,R×R)−→ ({H,T}×{H,T},R×R)

with utility and coutility taken from R×R, and moves Y ×Y where Y = {H,T} — each player either

plays heads or tails. A pure strategy is simply a move (i.e. the strategy set for the game is ΣM P =Y ×Y ),

hence both the play and coutility functions PM P and CM P are particularly simple, given by PM P(c) = c

and CM P(c,r) = r respectively. The equilibrium EM P : (Y ×Y → R×R)→P(D(ΣM P )) is defined

by φ ∈ EM P k if and only if

φ1 ∈ argmax
φ ′

1∈DY

(E[D(λy .E[D(π1k(y ,−))φ2])φ
′
1])

and φ2 ∈ argmax
φ ′

2∈DY

(E[D(λy′.E[D(π2k(−,y′))φ1])φ
′
2])

where φi =D(πi)φ are the marginals of φ . We see that both players are trying to maximise their expected

payoff, assuming their opponent probabilistically plays according to their fixed strategy. •◦

4 Probabilistic Open Games Form a Symmetric Monoidal Category

Just like pure open games, probabilistic open games support a wide range of operations: they can be

composed in parallel, composed sequentially, conditioned, iterated, and much more. Here we focus on

parallel and sequential composition, and prove that these operations make the collection of pairs of sets

with probabilistic open games as morphisms a symmetric monoidal category.

4.1 Parallel composition of probabilistic open games

The parallel composition represents two games played simultaneously. Its definition makes crucial use

of the fact that the category of D-algebras has all limits, since it employs products of D-algebras R×R′

and S×S′.

Definition 5. Let G : (X ,S) −→ (Y,R) and G ′ : (X ′,S′) −→ (Y ′,R′) be probabilistic open games. We

define the parallel composition probabilistic open game G ⊗G ′ : (X ×X ′,S×S′)−→ (Y ×Y ′,R×R′) as

follows:
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• the strategy set is ΣG⊗G ′ = ΣG ×ΣG ′ ;

• the play function is defined by PG⊗G ′((σ ,σ ′),(x,x′)) = (PG (σ ,x),PG ′(σ ′,x′));

• the coutility function is defined by CG⊗G ′((σ ,σ ′),(x,x′),(r,r′)) = (CG (σ ,x,r),CG ′(σ ′,x′,r′));

• the equilibrium function EG⊗G ′ : (X ×X ′)× (Y ×Y ′ → R×R′)→P(D(ΣG ×ΣG ′)) is defined by

EG⊗G ′ (x1,x2) k = { ℓ(φ1,φ2) | φ1 ∈ EG x1 E[D(π1 ◦ k)◦ ℓ(η−,D(PG ′(−,x2))φ2)]∧

φ2 ∈ EG ′ x2 E[D(π2 ◦ k)◦ ℓ(D(PG (−,x1)φ1),η−)] } �

The definition of the strategy set, play function and coutility function coincides with the definition

of parallel composition for pure open games, as expected. The equilibrium function of the parallel game

is more complicated because of the probabilities involved — note that this makes essential use of the

D-algebra structure on R. Basically, each player is trying to find an equilibrium for the utility function

which computes the expected utility for the original utility function k : Y ×Y ′ → R×R′, assuming the

other player plays probabilistically using their fixed strategy. Note that even though EG⊗G ′ (x1,x2) k is

a predicate on D(ΣG ×ΣG ′), and not on D(ΣG )×D(ΣG ′), only strategies that arise independently from

strategies in ΣG and ΣG ′ are in the equilibrium. Game-theoretically, this makes sense, as the players are

not expected to cooperate, and mathematically, this is crucial for parallel composition to be associative.

Example 6. In Example 4 we showed that the Matching Pennies game can be represented as a open

game. We now show that we can build this game as the parallel composition of two identical component

“player” games MP i : (1,R) −→ ({H,T},R). Strategies are moves ΣM P i
= Y = {H,T} and the play

function is given as the identity on strategies. The coutility is given as the second projection returning

the utility. Finally the equilibrium function EM P i
: (Y → R)→P(D(ΣM P i

)) is given by

φ ∈ EM Pi
k if φ ∈ argmax(E[D(k)(−)])

i.e. a mixed strategy is optimal if it maximises the expected payoff. The parallel composition of MP1

and MP2 produces the Matching Pennies game described in Example 4

MP1 ⊗MP2
∼= MP .

The equilibrium function for the composed game states that φ ∈ EM P1⊗M P2
k if

φ1 ∈ EM P1
(λy .E[D(π1 ◦ k)ℓ(η(y) ,φ2)])

and φ2 ∈ EM P2
(λy′.E[D(π2 ◦ k)ℓ(φ1,η(y′))])

where φi = D(πi)φ are the marginals of φ .

To show that our definition gives the expected results from economic game theory, we now solve

this game, i.e. we compute a more concrete description of EM P k for the utility function from Figure 1.

As Matching Pennies is a symmetric game we focus on the first player’s equilibrium. Expanding the

definition of EM P1
, the condition says

φ1 ∈ argmax
φ ′

1∈DΣ

(E[D(λy.E[D(π1 ◦ k)ℓ(η(y),φ2)])φ
′
1])

The vigilant reader might have noticed that the equilibrium condition here is not syntactically the

same as the one given in Example 4, but because of the point distributions η(y) involved, it is not hard
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to see that the expressions are equal. Reducing the terms down and instantiating the utility function from

Figure 1, we reach

φ1 ∈ argmax
φ ′

1∈DΣ

(∑
r∈R

r ∑
{y∈Y |φ2(y)−φ2(ȳ)=r}

φ ′
1(y))

As there are only two pure strategies, we can consider both possibilities for φ2 in terms of φ2(H) only:

φ2(H)−φ2(T ) = φ2(H)− (1−φ2(H)) φ2(T )−φ2(H) = (1−φ2(H))−φ2(H)

= 2φ2(H)−1 = 1−2φ2(H)

Rearranging and substituting into the formula, we arrive at the condition

φ1 ∈ argmax
φ ′

((2φ2(H)−1)(2φ ′(H)−1))

and since the game is symmetric we similarly obtain for the second player

φ2 ∈ argmax
φ ′′

((2φ1(H)−1)(1−2φ ′′(H)))

leaving three cases to consider:

if φ2(H) = 1/2 ⇒ φ1(H) ∈ [0,1] φ1(H) = 1/2 ⇒ φ2(H) ∈ [0,1]

φ2(H)< 1/2 ⇒ φ1(H) = 0 φ1(H)< 1/2 ⇒ φ2(H) = 1

φ2(H)> 1/2 ⇒ φ1(H) = 1 φ1(H)> 1/2 ⇒ φ2(H) = 0

The only point of stability lies at φ1(H) = φ2(H) = 1/2, since if one player deviates from this strategy

the other will return the favour. Hence the only equilibrium is for both players to play both strategies

with 50% probability, indeed the standard solution. •◦

In order to prove associativity of parallel composition, we use a “determinisation” construction that

turns probabilistic games into pure games, reminiscent of the abstract categorical formulation of au-

tomata determinisation presented e.g. in Silva et al. [12]. This way, we can reuse part of the proof that

parallel composition is associative for pure games [3].

Definition 7. Given a probabilistic game G : (X ,S) −→ (Y,R) with strategy set Σ, we define its deter-

minisation pure game ∆(G ) : (X ,S)−→ (DY,DR) with strategy set DΣ and

• play function P∆(G )(φ ,x) = D(PG (−,x))φ ;

• coutility function C∆(G )(φ ,x,ψ) = E[D(CG (−,x,−))ℓ(φ ,ψ)]; and

• equilibrium function φ ∈ E∆(G ) x k if and only if φ ∈ EG x (E◦ k ◦η). �

Using the naturality of η , and that E : D(R)→ R is a D-algebra, it is easy to see the following way

to go between the equilibria of G and ∆(G):

Lemma 8 Let k : Y → R. Then φ ∈ E∆(G ) x D(k) if and only if φ ∈ EG xk.

In general, it is not the case that the determinisation of a parallel composition is a parallel composition

of determinisations — for instance, the type of moves do not even match up, since in general D(Y ×Y ′) 6∼=
DY ×DY ′. To obtain even a lax monoidal map ∆(G )⊗∆(G ′) → ∆(G ⊗G ′), we need to restrict to

utility functions that respect the D-algebra structure, which for instance Kleisli extensions do. This is

formulated in the following lemma.
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Lemma 9 Let G : (X ,S) −→ (Y,R) and G ′ : (X ′,S′) −→ (Y ′,R′) be probabilistic open games. For all

φ ∈ DΣG ×DΣG ′ , x ∈ X ×X ′, and k : Y ×Y ′ → D(R×R′), we have

ℓ(φ) ∈ E∆(G⊗G ′) x k# iff φ ∈ E∆(G )⊗∆(G ′) x(〈D(π1),D(π2)〉 ◦ k# ◦ ℓ)

where k# = µ ◦D(k) : D(Y ×Y ′)→ D(R×R′) is the Kleisli extension of k.

We use this lemma to prove the associativity of parallel composition of probabilistic games using the

corresponding associativity for pure games.

Theorem 10 Let G : (X ,S)−→ (Y,R), G ′ : (X ′,S′)−→ (Y ′,R′) and G ′′ : (X ′′,S′′)−→ (Y ′′,R′′) be prob-

abilistic open games. We have G ⊗ (G ′⊗G ′′) = (G ⊗G ′)⊗G ′′, up to canonical isomorphisms A× (A′×
A′′)∼= (A×A′)×A′′ of the underlying sets involved.

4.2 Sequential composition of probabilistic open games

Another fundamental operation to modularly build games is sequential composition. Intuitively, in the

sequential composition G #H of open games G and H , we first play G , followed by H . This means

the moves of G are the states of H , and pure strategies of G #H are pairs of pure strategies for G and

H . A mixed strategy φ of the composed game G # H is an equilibrium if the marginal distributions are

equilibria in G (relative to the payoff function for G that we obtain by feeding H ’s coutility back) and

H (relative to the given payoff function of G #H ), respectively. In order to state the latter, we first need

to define a “Kleisli predicate lifting” of EH (−,k) : Y →P(D(ΣH )), since we only get a mixed state in

D(Y ) as a result of probabilistically playing the first game using the first mixed strategy.

Definition 11. Let R : X → P(D(Y )). We define D
#
(R) : D(X) → P(D(Y )) by D

#
(R) = P(µY ) ◦

λD(Y ) ◦D(R), where λ : DP→PD is the transformation given by

λX(α) = {φ ∈ DX |
(

∃ρ ∈ D(∈⊆ X ×PX)
)(

D(π1)ρ = φ and D(π2)ρ = α
)

} . �

Concretely, for α = ∑i pixi ∈ D(X), we have

D
#
(R)(α) = {µ(∑

i
∑

j

qi, jψi, j) | ∑
j

qi, j = pi and ψi, j ∈ R(xi)}

where ∑i piφi is the distribution on Y assigning probability ∑i piφi(y) to y ∈Y . By the abstract definition,

we immediately have that D
#
(R ◦ f ) = D

#
(R) ◦D( f ) since D is a functor. We now use this lifting to

define the sequential composition of two probabilistic games.

Definition 12. Let G : (X ,S) −→ (Y,R) and H : (Y,R) −→ (Z,T ) be probabilistic open games. We

define the sequential composition probabilistic open game G #H : (X ,S)−→ (Z,T) as follows:

• the strategy set is ΣG #H = ΣG ×ΣH ;

• the play function is defined by PG #H ((σ1,σ2),x) = PH (σ2,PG (σ1,x));

• the coutility function is defined by CG #H ((σ1,σ2),x, t) =CG (σ1,x,CH (σ2,PG (σ1,x), t));

• the equilibrium function EG #H : X × (Z → T )→P(D(ΣG ×ΣH )) is defined by

EG #H xk = { ℓ(φ1,φ2) | φ1 ∈ EG x (λy.E[D(λσ .CH (σ ,y,k(PH (σ ,y))))φ2])∧

φ2 ∈ D
#
(EH (−,k))(D(PG (−,x))φ1)} �
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Firm 1

Firm 2

(0,0)

σ
NE

(0,5)σE
σ

NE

Firm 2

(5,0)

σ
NE

(-10,-10)σE

σE

Figure 2: Market Entry game: firms 1 and 2 decide whether to enter (σE ) or not enter (σNE ) the market.

To see that this definition is meaningful game-theoretically, we model the well-known Market Entry

game (Stackelberg [13]) using our framework.

Example 13. The market entry game models two competing firms wishing to enter a new market. If

they both enter, the competition between them would be expensive. The situation is depicted in Figure 2.

Firm 1 enters first, firm 2 then observes the move made and responds. If one firm enters alone they will

reap the rewards, but if both enter they will both suffer. Of course if neither enters then nothing happens.

We expect the only subgame perfect equilibrium to be where the first firm enters, and the second firm

reverses the first firm’s decision.

We model this as a sequential composition G1 #G2 of two probabilistic open games. The first game

G1 : (1,R×R) −→ ({σE ,σNE},R×R) has strategy set Σ1 = Y = {σE ,σNE} the set of moves, and the

obvious play and coutility functions. Its equilibria are

E1 (k : Y → R×R) = argmax
φ∈DΣ1

{E[D(π1 ◦ k)(φ)]}

The second game G2 : ({σE ,σNE},R×R)−→ (Y ×Y,R×R) arises as a “subgame conditioned” game [4,

Def. 5] in order to allow the strategies Σ2 = Y → Σ1 to depend on the move made in G1. The play and

coutility functions are given by P2(g,x) = (x,g(x)) and C2(g,x,r) = r. The equilibrium function insists

on subgame perfect strategies:

ψ ∈ E2 y(k : Y ×Y → R×R) iff
(

∀y′ ∈ Y
)

D(eval(−,y′))ψ ∈ argmax
ψ ′∈DΣ1

{E[D(π2 ◦ k(y′,−))(ψ ′)]}

where eval : (A → B)×A → B is function evaluation.

The sequential composition G1 #G2 : (1,R×R)−→ (Y ×Y,R×R) has as strategies pairs of strategies

from each round ΣG1#G2
= Σ1 ×Σ2. For mixed strategies φ ∈ DΣ1 and ψ ∈ DΣ2, we have ℓ(φ ,ψ) ∈

EG1#G2
(k : Y ×Y → R×R) if and only if

φ ∈ E1 (λy.E[D(λ f .k(y, f (y)))ψ ]) and

ψ ∈ D
#
(E2(−,k))φ = D(E2(σE ,k)) = D(E2(σNE ,k))

where the second condition has been simplified since E2(y,k) is independent of y. For the utility function

k from Figure 2, we further see that in fact E2(σE ,k) = E2(σNE ,k) = {1 · swap} where swap : Y → Y is

the function which swaps σE and σNE . Hence for ℓ(φ ,ψ) ∈ EG1#G2
k we must have ψ = 1 · swap which

in turns forces φ = 1 ·σE — the expected (non-mixed) subgame perfect equilibria. Reflecting on the

argument, we see that our reasoning is an instance of backward induction (see e.g. Leyton-Brown and

Shoham [10, §4.4]). It is interesting, but currently not clear to us, what the D
#
(−) construction does in

general when the second game has not been conditioned to respond to the moves of the first game. •◦
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It is important to note that the distributive law λ : DP→PD used in Definition 11 is not a distribu-

tive law between monads, because no such law exists (Zwart and Marsden [14]). In particular, λ does

not preserve the monad structure of D , for instance λX ◦ηPX 6= ηP
DX . It is however a distributive law

between functors (even of a functor over the monad P, and also over Pop, although we do not make use

of this fact), which will be important for us for proving associativity of sequential composition.

Fact 14 The transformation λ : DP→PD is is a distributive law between functors, i.e. it is natural.

For a proof see Kupke, Kurz and Venema [9]. Using the naturality of λ , we can show that if R : X →

PDY and f : DY → DY ′, then P( f )◦D
#
(R) = D

#
(P( f )◦R). This, with f being a marginal D(π), is

one of the key steps to prove associativity of composition.

Theorem 15 Let G : (X ,S)−→ (X ′,S′), G ′ : (X ′,S′)−→ (X ′′,S′′) and G ′′ : (X ′′,S′′)−→ (Y,R) be proba-

bilistic open games. We have G # (G ′ #G ′′) = (G #G′) #G ′′, up to the canonical isomorphism ΣG × (ΣG ′ ×
ΣG ′′)∼= (ΣG ×ΣG ′)×ΣG ′′ of strategy sets.

4.3 A symmetric monoidal category

We have now assembled most of pieces needed to show that probabilistic open games are the morphisms

of a monoidal category: missing are unit and identity games.

For each set X and D-algebra S, we define a probabilistic open game I D (X ,S) : (X ,S) −→ (X ,S)
with strategy set ΣI D (X ,S)

= 1, play function PI D (X ,S)
(σ ,x) = x, coutility function CI D (X ,S)

(σ ,x,s) = s,

and equilibrium function EI D (X ,S)
xk = 1, i.e. every (trivial) strategy is an equilibrium.

Lemma 16 There is a category GProb, where objects are pairs (X ,S) of a set X and a D-algebra S, and

morphisms are probabilistic open games. Composition is given by sequential composition G ◦H =
H #G , and the identity on (X ,S) is I D (X ,S).

Similarly, we define a trivial game I : (1,1) −→ (1,1) with strategy set ΣI = 1, the only possible

play and coutility functions, and equilibrium function EI xk = 1, i.e. every strategy is again an equilib-

rium.

Lemma 17 The game I is the unit for parallel composition. Furthermore, the operation which maps

(X ,S) and (X ′,S′) to (X ×X ′,S× S′), and games G and G ′ to G ⊗G ′, defines a bifunctor ⊗ : GProb×
GProb → GProb.

Observing that GProb also has a symmetry (inherited from Set× (D-Alg)op), we have now proved

the following:

Theorem 18 The collection of pairs (X ,S) of a set X and a D-algebra S, with probabilistic open games

G : (X ,S)−→ (Y,R) as morphisms, forms a symmetric monoidal category GProb.

5 Relating pure and probabilistic games

We now construct a category where probabilistic open games are the objects, by defining a notion of

morphism between games. In light of Theorem 18, these morphisms are 2-cells in a monoidal double

category of games (cf. Hedges [7]). The construction works similarly for pure games. We then use the

resulting categorical structure to relate pure and probabilistic games in the form of an adjunction between

the categories.

As noticed by Ghani et al. [3], the definition of pure open games can be given more compactly

by employing the language of lenses [2]. A lens (v,u) : (X ,S) → (Y,R) between pairs of sets (X ,S)
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and (Y,R) is given by a two functions v : X → Y (“view”) and u : X ×R → S (“update”). Hence the

play and coutility functions of a game G : (X ,S) −→ (Y,R) can equivalently be described as a family

of lenses (PG (σ ,−),CG (σ ,−,−)) : (X ,S) → (Y,R) indexed by strategies σ ∈ ΣG . Further, the data

involved in the equilibrium function can be described by a “global element” lens (1,1) → (X ,S) and

a “global co-element” lens (Y,R) → (1,1). As a result, most reasoning about open games can be done

diagrammatically using that lenses also compose: given (v,u) : (X ,S)→ (Y ′,R′) and (v′,u′) : (Y ′,R′)→
(Y,R), we can construct a lens (X ,S)→ (Y,R) by (v′ ◦ v : X →Y,(x,y) 7→ u(x,u′(v(x),y)) : X ×Y → R).

There is an identity-on-objects functor ι(−,−) : Set× Setop → Lens that maps a pair of functions

( f : X →Y ,g : R → S) to a lens ι( f ,g) : (X ,S)→ (Y,R) with f as first component and g◦π2 : X ×R → S

as second component.

Definition 19. Let G : (X ,S)−→ (Y,R) and G ′ : (X ′,S′)−→ (Y ′,R′) be pure (probabilistic) open games.

A morphism of pure (probabilistic) games G → G ′ consists of functions

( fP : X → X ′, fC : S′ → S) (gP : Y →Y ′,gC : R′ → R)

and h : ΣG → ΣG′ , such that the following diagram of lenses commutes for each σ ∈ ΣG

(X ,S)
ι( fP, fC)

//

(PG (σ),CG (σ))

��

(X ′,S′)

(P
G ′ (h(σ)),C

G ′ (h(σ)))

��

(Y,R)
ι(gP,gC)

// (Y ′,R′)

and, for every x ∈ X and k : Y ′ → R′, we have that σ ∈ EG x(gC ◦ k ◦gp) implies

• h(σ) ∈ EG ′ ( fP(x))k for pure games,

• D(h)(σ) ∈ EG ′ ( fP(x))k for probabilistic games.

We write GameProb and GamePure for the categories of probabilistic and pure open games, respectively,

where the morphisms are defined as above. �

This is a generalisation of the definition of morphism of state-free games used in our paper on iterated

open games [4], but different from the notion of morphism employed by Hedges [7], which fails to make

the determinisation operation ∆ from Definition 7 a functor. As there are currently a number of viable

notions of morphisms of games (even of lenses), we consider this empirical evidence important for what

an appropriate notion of morphism for games ought to be. For the rest of this section, let Game′Pure be

the category GamePure, except that utility and coutility sets are additionally endowed with D-algebra

structure.

Proposition 20 A variant of determinisation ∆′ mapping a probabilistic game G : (X ,S)−→ (Y,R) to a

pure game ∆′(G ) : (DX ,DS)−→ (DY,DR) (using the double strength ℓ, and D
#
(−)), still with strategy

set Σ∆′(G ) = D(ΣG ), extends to a functor ∆′ : GameProb → Game′Pure.

Determinisation ∆ itself is a functor if restricted to games whose coutility preserves the D-algebra struc-

ture in a certain sense. One might hope that one of these functors might have a left or a right adjoint, but

this is too much to ask, since it would imply in turn that D has both a left and a right adjoint. However,

we show that the canonical way to embed a pure game as a probabilistic game has a right adjoint.
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Theorem 21 Let Θ : Game′Pure → GameProb be the functor that acts as the identity on the strategy set

and the lens structure, with EΘ(G ) xk = {η(σ) | σ ∈ EG xk }. Then

GameProb Game′Pure
Ψ

22

Θ
rr

⊥

where Ψ : GameProb → Game′Pure similarly acts as the identity on the strategy set and the lens structure,

with EΨ(H ) xk = {σ | η(σ) ∈ EH xk }.

6 Conclusions and Future Work

We have presented a framework for compositional game theory which encompasses also mixed strategies,

and shown that it is closed under parallel and sequential composition, and shown that it can adequately

model common games such as Matching Pennies (where mixed strategies are crucial) and the Market

Entry Game. We also defined a notion of morphism between games, and showed that it gives rise to a

category of games that we that can be useful for reasoning, e.g. by employing adjunctions between pure

and probabilistic games.

Several challenges remain. While we have accurately captured mixed strategy Nash equilibria — a

fundamental solution concept in game theory — it remains to be seen if this framework can exploit the

non-independent distributions that arise naturally in it to capture also correlated equilibria or perhaps

even evolutionary stable strategies. Finally, we remark that most of our proofs do not use any particular

properties of the commutative monad D . We think this can be used to uniformly model other “effectful”

game-theoretic phenomena such as e.g. quitting games using the exceptions monad.
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