
John Baez and Bob Coecke (Eds.): Applied Category Theory 2019

EPTCS 323, 2020, pp. 15–23, doi:10.4204/EPTCS.323.2

c© V. Zamdzhiev

This work is licensed under the

Creative Commons Attribution License.

Reflecting Algebraically Compact Functors

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

A compact T -algebra is an initial T -algebra whose inverse is a final T -coalgebra. Functors with this

property are said to be algebraically compact. This is a very strong property used in programming

semantics which allows one to interpret recursive datatypes involving mixed-variance functors, such

as function space. The construction of compact algebras is usually done in categories with a zero

object where some form of a limit-colimit coincidence exists. In this paper we consider a more

abstract approach and show how one can construct compact algebras in categories which have neither

a zero object, nor a (standard) limit-colimit coincidence by reflecting the compact algebras from

categories which have both. In doing so, we provide a constructive description of a large class

of algebraically compact functors (satisfying a compositionality principle) and show our methods

compare quite favorably to other approaches from the literature.

1 Introduction

Inductive datatypes for programming languages can be used to represent important data structures such

as lists, trees, natural numbers and many others. When providing a denotational interpretation for such

languages, type expressions correspond to functors and one has to be able to construct their initial alge-

bras in order to model inductive datatypes [9]. If the admissible datatype expressions allow only pairing

and sum types, then the functors induced by these expressions are all polynomial functors, i.e., functors

constructed using only coproducts and (tensor) product connectives, and the required initial algebra may

usually be constructed using Adámek’s celebrated theorem [2].

However, if one also allows function types as part of the admissible datatype expressions, then we talk

about recursive datatypes and their denotational interpretation requires additional structure. A solution

advocated by Freyd [8] and Fiore and Plotkin [6] is based on algebraically compact functors, i.e., functors

F which have an initial F-algebra whose inverse is a final F-coalgebra. F-algebras with this property are

called compact within this paper.

The celebrated limit-colimit coincidence theorem [17] and other similar theorems are usually used

for the construction of compact algebras with starting point a zero object of the category where the

language is interpreted. However, if one is interested in semantics for mixed linear/non-linear lambda

calculi, then it becomes necessary to also solve recursive domain equations within categories that do not

have a zero object.

In this paper, we demonstrate how one can construct compact algebras in categories which do not

have a zero object and we do so without (explicitly) assuming the existence of any limits or colimits

whatsoever. Our methods are based on enriched category theory and we show how this allows us to reflect

compact algebras from categories with strong algebraic compactness properties into categories without

such properties. The results which we present are also compositional and this allows us to provide

constructive descriptions of large classes of algebraically compact functors using formal grammars.

http://dx.doi.org/10.4204/EPTCS.323.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

16 Reflecting Algebraically Compact Functors

2 A Reflection Theorem for Algebraically Compact Functors

In this section we show how initial algebras, final coalgebras and compact algebras may be reflected.

Definition 1. Given an endofunctor T : C→ C, a T -algebra is a pair (A,a), where A is an object of C

and TA
a
−→ A is a morphism of C. A T -algebra morphism f : (A,a)→ (B,b) is a morphism f : A→ B of

C, such that the following diagram:

TA A

T B B

a

b

fT f

commutes. The dual notion is called a T -coalgebra.

Obviously, T -(co)algebras form a category. A T -(co)algebra is initial (final) if it is initial (final) in

that category.

Definition 2. An endofunctor T : C→ C is (1) algebraically complete if it has an initial T -algebra (2)

algebraically cocomplete if it has a final T -coalgebra and (3) algebraically compact if it has an initial

T -algebra T Ω
ω
−→Ω, such that T Ω

ω−1

←−−Ω is a final T -coalgebra.

Next, we recall a lemma first observed by Peter Freyd.

Lemma 3 ([8, pp. 100]). Let C and D be categories and F : C → D and G : D → C functors. If

GFΩ
ω
−→Ω is an initial GF-algebra, then FGFΩ

Fω
−−→ FΩ is an initial FG-algebra.

By dualising the above lemma, we obtain the next one.

Lemma 4. Let C and D be categories and F : C→ D and G : D→ C functors. If GFΩ
ω
←− Ω is a final

GF-coalgebra, then FGFΩ
Fω
←−− FΩ is a final FG-coalgebra.

By using the two lemmas above, the next theorem follows immediately.

Theorem 5. Let C and D be categories and F : C→D and G : D→C functors. Then FG is algebraically

complete/cocomplete/compact iff GF is algebraically complete/cocomplete/compact, respectively.

In order to avoid cumbersome repetition, all subsequent results are stated for algebraic compactness.

However, all results presented in this section and the next one (excluding Non-Example 29) also hold

true when all instances of "algebraic compactness" are replaced with "algebraic completeness" or with

"algebraic cocompleteness".

Assumption 6. Throughout the rest of the paper we assume we are given an arbitrary cartesian closed

category V(1,×,→) which we will use as the base of enrichment. V-categories are written using capital

calligraphic letters (C ,D , . . .) and their underlying categories using a corresponding bold capital letter

(C,D, . . .). V-functors are also written with calligraphic letters (F ,G : C → D) and their underlying

functors using a corresponding capital letter F,G : C→ D.

Definition 7. A V-endofunctor T : C → C is algebraically compact if its underlying endofunctor T :

C→ C is algebraically compact.

Definition 8 ([6, Definition 5.3]). A V-category C is V-algebraically compact if every V-endofunctor

T : C → C is algebraically compact.

V. Zamdzhiev 17

In particular, a Set-algebraically compact category is a locally small category C, such that every

endofunctor T : C→ C is algebraically compact. In this case we simply say C is algebraically compact.

Example 9. Let λ be a cardinal and let Hilb≤1
λ

be the category whose objects are the Hilbert spaces

with dimension at most λ and whose morphisms are the linear maps of norm at most 1. Then Hilb≤1
λ

is

algebraically compact [3, Theorem 3.2].

For the next (very important) example, recall that a complete partial order (cpo) is a poset such that

every increasing chain has a supremum. A cpo is pointed if it has a least element. A monotone map

f : X → Y between two cpo’s is Scott-continuous if it preserves suprema. If, in addition, X and Y are

pointed and f preserves the least element of X , then we say that f is strict. We denote with CPO the

category of cpo’s and Scott-continuous functions and we denote with CPO⊥! the category of pointed

cpo’s and strict Scott-continuous functions. The category CPO is cartesian closed, CPO⊥! is symmetric

monoidal closed (when equipped with the smash product and strict function space) and both categories

are complete and cocomplete [1]. We will see both categories as CPO-categories when equipped with

the standard pointwise order on functions.

Therefore, a CPO-category (CPO⊥!-category) is simply a category whose homsets have the addi-

tional structure of a (pointed) cpo and for which composition is a (strict) Scott-continuous operation in

both arguments. A CPO-functor (CPO⊥!-functor) then is simply a functor whose action on hom-cpo’s is

a (strict) Scott-continuous function. The notion of a CPO-natural transformation coincides with that of

CPO⊥!-natural transformation which also coincides with the ordinary notion. Because of these reasons,

it is standard in the programming semantics literature to use the same notation for CPO(⊥!)-enriched

categorical notions and their ordinary underlying counterparts. We do the same in this paper.

Example 10. The category CPO⊥! is CPO-algebraically compact [5, Corollary 7.2.4].

Next, we show how to reflect algebraically compact V-functors.

Definition 11. We shall say that a V-endofunctor T : C → C has a V-algebraically compact factorisa-

tion if there exists a V-algebraically compact category D and V-functors F : C →D and G : D → C

such that T ∼= G ◦F .

Theorem 12. If a V-endofunctor T : C → C has a V-algebraically compact factorisation, then it is

algebraically compact.

Proof. Taking D ,F ,G as in Definition 11, we get a V-endofunctor F ◦G : D → D . Since D is V-

algebraically compact, then its underlying endofunctor F ◦G : D→ D is algebraically compact. Theo-

rem 5 shows that G◦F : C→C is algebraically compact. Algebraic compactness is preserved by natural

isomorphisms and therefore T ∼= G◦F is also algebraically compact.

Using the two examples above, we easily get two corollaries.

Corollary 13. Any endofunctor T : Set→ Set which factors through Hilb≤1
λ

is algebraically compact.

Corollary 14. Any CPO-endofunctor T : CPO→ CPO which factors through CPO⊥! via a pair of

CPO-functors, is algebraically compact. Thus the lifting functor (−)⊥ : CPO→ CPO (given by freely

adding a least element) is algebraically compact.

Note that (ordinary) algebraically compact functors are not closed under composition. However,

using the additional structure we have introduced, we can prove the following compositionality result.

Proposition 15. Let H : C → C be a V-endofunctor and T : C → C be a V-endofunctor with a V-

algebraically compact factorisation. Then H ◦T also has a V-algebraically compact factorisation and

is thus algebraically compact.

Proof. If T ∼= G ◦F , then H ◦T ∼= (H ◦G)◦F .

18 Reflecting Algebraically Compact Functors

3 Constructive Classes of Algebraically Compact Functors

Assumption 16. Throughout the rest of the section, we assume we are given the following data. A V-

category C , a V-algebraically compact category D together with V-functors F : C →D and G : D→C

and a V-endofunctor T ∼= G ◦F .

Consider the following grammar:

A,B ::= T X |H (A1, . . . ,An) (1)

where X is simply a type variable, n ranges over the natural numbers (including zero) and H ranges

over V-functors H : C n→ C . Every such type expression induces a V-endofunctor JX ⊢ AK : C → C ,

defined by:

JX ⊢ T XK = T

JX ⊢H (A1, . . . ,An)K = H ◦ 〈JX ⊢ A1K, . . . ,JX ⊢ AnK〉

Remark 17. Since the base of enrichment V is cartesian, tuples of V-functors, as above, are also V-

functors and the above assignment is well-defined. Also, V-algebraically compact categories have been

studied only for cartesian V. Because of these two reasons, Assumption 6 cannot be relaxed to a sym-

metric monoidal closed V.

Theorem 18. Any functor JX ⊢ AK : C → C factors through F and is therefore algebraically compact.

Proof. By induction. For the base case we have T ∼= G ◦F . The step case is given by

JX ⊢H (A1, . . . ,An)K = H ◦ 〈JX ⊢ A1K, . . . ,JX ⊢ AnK〉
∼= H ◦ 〈G1 ◦F , . . . ,Gn ◦F 〉

= H ◦ 〈G1, . . . ,Gn〉 ◦F ,

for some V-functors Gi : D → C .

Example 19. The V-functor T is algebraically compact.

Example 20. Any constant functor Kc : C→C is, of course, algebraically compact. This is captured by

our theorem, because Kc is the underlying functor of the constant c V-endofunctor Kc : C → C , which

may be constructed using our grammar.

Example 21. If B1 : C ×C → C and B2 : C ×C → C are two V-bifunctors, and E : C → C is

a V-endofunctor, then the endofunctors E ◦T and B1 ◦ 〈T ,T 〉 and B2 ◦ 〈E ◦T ,B1 ◦ 〈T ,T 〉〉 are

algebraically compact (among many other combinations).

3.1 Special Case: Models of Mixed Linear/Non-linear Lambda Calculi

As a special case, our development can be applied to models of mixed linear/non-linear lambda calculi

with recursive types, as we shall now explain.

In a CPO-category, an embedding-projection pair is a pair of morphisms (e, p), such that e◦ p ≤ id

and p◦ e = id. The morphism e is called an embedding and the morphism p a projection. An e-initial

object is an initial object 0, such that every initial map with it as source is an embedding.

Definition 22. A model of the linear/nonlinear fixpoint calculus (LNL-FPC) [12] is given by the follow-

ing data:

V. Zamdzhiev 19

1. A CPO-symmetric monoidal closed category D with finite CPO-coproducts, such that D has an

e-initial object and all ω-colimits over embeddings;

2. A CPO-symmetric monoidal adjunction CPO D
F

⊢

G
.

In the above situation, the category D is necessarily CPO-algebraically compact, so it is an ideal

setting for constructing compact algebras of CPO-functors. We will now show that the monad T of this

adjunction also induces a large class of algebraically compact functors on CPO (which is not CPO-

algebraically compact). But first, two examples of the above situation.

Example 23. The adjunction CPO CPO⊥!

(−)⊥

⊢

U
, where the left adjoint is given by domain-

theoretic lifting and the right adjoint is the forgetful functor, has the required structure. The induced

monad T : CPO→CPO is called lifting (see Corollary 14). This adjunction is in fact a computationally

adequate model of LNL-FPC [12].

Example 24. Let M be a small CPO⊥!-symmetric monoidal category and let M̂ = [Mop
,CPO⊥!] be the

indicated CPO⊥!-functor category. There exists an adjunction CPO⊥! M̂

−⊚ I

⊢

M̂(I,−)

, where the left

adjoint is the CPO⊥!-copower with the tensor unit I and the right adjoint is the representable functor

(see [4, §6]). Composing the two adjunctions CPO CPO⊥!

(−)⊥

⊢

U
M̂

−⊚ I

⊢

M̂(I,−)

yields a LNL-

FPC model. By making suitable choices for M, this data also becomes a model of Proto-Quipper-M, a

quantum programming language [16] and also a model of ECLNL, a programming language for string

diagrams [10, 11].

Since D is CPO-algebraically compact, we can now construct a large class of algebraically compact

functors via Theorem 18. For instance, such a subclass is given by the following corollary.

Corollary 25. Any endofunctor on CPO constructed using constants, T , × and +, and such that all

occurrences of the functorial variable in its definition are surrounded by T , is algebraically compact.

Remark 26. To make this more precise, one should specify a formal grammar like (1) to indicate the

admissible functorial expressions, but it should be clear that (1) can be easily specialised to handle this.

Next, let us consider some example endofunctors on CPO.

Example 27. The endofunctor H(X) = T X +T X is algebraically compact. Indeed, observe that H =
+◦ 〈T,T 〉= JX ⊢ T X +T XK.

Example 28. The endofunctor H(X) = T X +T (T X ×TX) is algebraically compact. To see it, observe

that H =+◦ 〈T,T ◦×◦〈T,T 〉〉= JX ⊢ T X +T(T X×T X)K.

Non-Example 29. The endofunctor H(X) = X ×TX is not algebraically compact (its initial algebra is

∅×T∅ = ∅
id
−→ ∅). Our results do not apply to it, because the left occurrence of X does not have T

applied to it. For the same reason, the identity functor Id(X) = X is also not algebraically compact and

not covered by our development.

20 Reflecting Algebraically Compact Functors

4 Algebraically Compact Mixed-Variance Functors

As mentioned in the introduction, algebraic compactness allows us to model recursive datatypes which

include mixed-variance functors such as function space. In this section we show that our methods are

also compatible with recursive datatypes.

Consider a mixed-variance bifunctor H : Cop×C→ C. Since H is not an endofunctor, then clearly

we cannot talk about H-algebras or H-coalgebras. A more appropriate notion is that of a H-dialgebra,

which we will not introduce here, because of a lack of space and because the category of H-dialgebras

is isomorphic to the category of
`

H-algebras [7, §4], where

`

H = 〈Hop ◦ 〈Π2,Π1〉,H〉 : Cop×C→ Cop×C.

Because of this, it is standard to model recursive datatypes as endofunctors
`

H : Cop×C→ Cop×C [6].

If a category D is V-algebraically complete, then Dop is V-algebraically cocomplete and vice versa.

Thus, V-algebraic compactness is a self-dual notion. Unlike the previous sections, the results presented

here do not hold for algebraically complete or cocomplete functors and categories.

If a category D is V-algebraically compact in a parameterised sense, then so is Dop×D . We omit

the details of parameterised algebraic compactness, but the interested reader may consult [6]. We point

out that the notions of CPO-algebraic compactness and parameterised CPO-algebraic compactness co-

incide [5, Corollary 7.2.5] and we shall consider such a CPO-example to illustrate our methods. But

we emphasise that our methods can be adapted to the general setting of a parameterised V-algebraically

compact category D .

Let us assume we are given an LNL-FPC model CPO D
F

⊢

G
as in Subsection 3.1 with

T = G ◦F . In this situation, the category Dop×D is also CPO-algebraically compact and we can thus

reuse Theorem 12 and Proposition 15, where we choose the CPO-algebraically compact factorisation

T op×T = (Gop×G)◦ (Fop×F).

Consider the following grammar:

A,B ::= c | T X | HA | A+B | A×B | A→ B, (2)

where c ranges over the objects of CPO and H ranges over CPO-endofunctors on CPO. Every such type

expression induces a CPO-endofunctor JX ⊢ AK : CPOop×CPO→ CPOop×CPO, defined by:

JX ⊢ T XK = T op×T

JX ⊢ cK = K(c,c)

JX ⊢ HAK= (Hop×H)◦ JX ⊢ AK

JX ⊢ A+BK= (+◦ 〈Π2JX ⊢ AK,Π2JX ⊢ BK〉)`

JX ⊢ A×BK= (×◦〈Π2JX ⊢ AK,Π2JX ⊢ BK〉)`

JX ⊢ A→ BK = ([−→−]◦ 〈Π1JX ⊢ AK,Π2JX ⊢ BK〉)` ,

where K(c,c) is the constant (c,c) endofunctor on CPOop×CPO and [−→−] : CPOop×CPO→ CPO

is the internal-hom.

V. Zamdzhiev 21

Remark 30. The last three cases in the above assignment are essentially the same as the standard

interpretation of types within FPC [6, Definition 6.2].

Theorem 31. Every functor JX ⊢ AK : CPOop×CPO→ CPOop×CPO factors through Fop×F and is

therefore algebraically compact.

Proof. Simple proof by induction. The first three cases are obvious. For the last three cases, simply use

the fact that (H ◦ (Fop×F))` =
`

H ◦ (Fop×F), which can be proved after recognising that (−)op is a

covariant operation with respect to functor composition.

Example 32. Consider the functor H(X ,Y) = [T X → TY] : CPOop×CPO→ CPO. Then the functor
`

H : CPOop×CPO→ CPOop×CPO is algebraically compact, because:

`

H = ([−→−]◦ (T op×T))` = ([−→−]◦ 〈Π1,Π2〉 ◦ (T
op×T))`

= ([−→−]◦ 〈Π1 ◦ (T
op×T),Π2 ◦ (T

op×T)〉)`

= JX ⊢ T X → T XK.

Non-Example 33. Consider the internal-hom functor [−→−] : CPOop×CPO→CPO. Then [−
`

→−]
is not algebraically compact, because its initial algebra is given by

(
[−

`

→−](1,∅) = ([∅→ 1], [1→∅]) = (1,∅)
)

id
−→ (1,∅),

which is not its final coalgebra. Our results do not apply to [−
`

→−], because T does not occur anywhere

in its definition.

5 Comparison with Limit-Colimit Coincidence Results

The focus in this paper is to study algebraically compact endofunctors on categories which do not nec-

essarily have a zero object. In [3] Michael Barr considers this situation and he presents a more general

version of the standard limit-colimit coincidence theorem [17]. The increased generality allows him

to establish the existence of algebraically compact endofunctors on categories that do not have a zero

object. In this section, we will compare his results about CPO-categories with ours.

Theorem 34 ([3, Theorem 5.4]). Let C be a CPO-category with initial object ∅ and terminal object

1. Assume further C has colimits of initial sequences of CPO-endofunctors. Then the class of CPO-

endofunctors for which there is a morphism l : 1→ H∅ such that
(

H1−→ 1
l
−→ H∅

Hh
−→ H1

)
≤ idH1,

where h : ∅→ 1 is the unique arrow, is algebraically compact.

First, a necessary condition in the above situation.

Proposition 35. In the situation of Theorem 34, the hom-cpo C(H1,H1) is pointed.

Proof. Let ⊥ =
(

H1−→ 1
l
−→ H∅

Hh
−→ H1

)
. Let f : H1→ H1 be an arbitrary morphism. Then

⊥ = ⊥ ◦ f ≤ id◦ f = f .

22 Reflecting Algebraically Compact Functors

We may now see that Barr’s theorem does not behave well when dealing with constant functors or

with functors involving coproducts.

Example 36. Consider the constant functor K2 : CPO→ CPO where 2 is any two point cpo equipped

with the discrete order. As we explained in Example 20, our development captures the fact that K2 is

algebraically compact. However, Barr’s theorem does not show this, because CPO(2,2) is not pointed.

Example 37. Consider the functor H(X) = X⊥+X⊥ : CPO→CPO where (−)⊥ is given by lifting. Our

development showed in Example 27 that this functor is algebraically compact. However, Barr’s theorem

does not show this, because CPO(1⊥+1⊥,1⊥+1⊥) is not pointed.

A natural question to ask is whether there exists an algebraically compact functor described by The-

orem 34, but not captured by the methods presented here. We leave this for future work.

We also provided a compositionality result (Proposition 15) which then allowed us to present a

constructive description of large classes of algebraically compact functors (Section 3). So far this has

not been done with Barr’s results.

6 Related Work

The solution of recursive domain equations is based on the construction of initial algebras [2, 9] and

on the construction of compact algebras when mixed-variance functors are involved [5, 6, 7, 8]. The

limit-colimit coincidence theorem [17] for CPO-enriched categories with sufficient structure is perhaps

the most common way of constructing such compact algebras. In this paper we have focused on the

construction of compact algebras within categories with little structure that does not admit utilising the

above mentioned approaches. Our motivation for doing this is to consider denotational interpretations of

mixed linear/non-linear recursive types.

Another approach for modelling mixed linear/non-linear recursive types is described in [12, 13]

where the authors interpret non-linear types within a carefully constructed subcategory of CPO. That

method works only for CPO-categories whereas the techniques presented here work for arbitrary V-

categories. Also, the set of type expressions that can be interpreted with the methods from [12, 13] is

incomparable with the one presented here (neither is a subset of the other). However, the main idea in [12,

13] is to reflect the initial algebra structure from certain (sub)categories and not necessarily the compact

algebra structure. This method has found further applications in constructing denotational models for

quantum programming [14, 15] and for affine type systems [18].

7 Conclusion

We established new results about algebraically compact functors without relying on limits, colimits or

their coincidence. We arrived at these results in a more abstract way by observing that any enriched

endofunctor is algebraically compact, provided that it factors through a category which is algebraically

compact in an enriched sense. This then allowed us to establish large classes of algebraically compact

functors which also admit a constructive description. Our results are compositional and nicely comple-

ment other existing approaches in the literature which do rely on a limit-colimit coincidence.

Acknowledgements. The author wishes to thank the anonymous reviewers for their feedback and he

gratefully acknowledges financial support from the French projects ANR-17-CE25-0009 SoftQPro and

PIA-GDN/Quantex.

V. Zamdzhiev 23

References

[1] S. Abramsky & A. Jung (1994): Domain Theory. Handbook of Logic in Computer Science (Vol. 3), pp.

1–168. Available at http://dl.acm.org/citation.cfm?id=218742.218744.

[2] Jiří Adámek (1974): Free algebras and automata realizations in the language of categories. Commentationes

Mathematicae Universitatis Carolinae 15(4), pp. 589–602.

[3] M. Barr (1992): Algebraically compact functors. Journal of Pure and Applied Algebra 82(3), pp. 211 – 231,

doi:10.1016/0022-4049(92)90169-G.

[4] F. Borceux (1994): Handbook of Categorical Algebra 2: Categories and Structures. Cambridge University

Press, doi:10.1017/CBO9780511525865.

[5] M. P. Fiore (1994): Axiomatic domain theory in categories of partial maps. Ph.D. thesis, University of

Edinburgh, UK.

[6] Marcelo Fiore & Gordon Plotkin (1994): An Axiomatization of Computationally Adequate Domain Theoretic

Models of FPC. In: LICS, doi:10.1109/LICS.1994.316083.

[7] P. Freyd (1990): Recursive types reduced to inductive types. In: LICS 1990, pp. 498–507,

doi:10.1109/LICS.1990.113772.

[8] P. Freyd (1991): Algebraically complete categories. In: Category Theory: Proceedings of the International

Conference held in Como, Italy, doi:10.1007/BFb0084215.

[9] Daniel J Lehmann & Michael B Smyth (1981): Algebraic specification of data types: A synthetic approach.

Mathematical Systems Theory, doi:10.1007/BF01752392.

[10] Bert Lindenhovius, Michael Mislove & Vladimir Zamdzhiev (2018): Enriching a Linear/Non-linear

Lambda Calculus: A Programming Language for String Diagrams. In: LICS 2018, ACM,

doi:10.1145/3209108.3209196.

[11] Bert Lindenhovius, Michael Mislove & Vladimir Zamdzhiev (2020): Se-

mantics for a Lambda Calculus for String Diagrams. Available at

https://homepages.loria.fr/VZamdzhiev/papers/lambda-calculus-string-diagrams.pdf.

Preprint.

[12] Bert Lindenhovius, Michael W. Mislove & Vladimir Zamdzhiev (2019): Mixed linear and non-linear recur-

sive types. Proc. ACM Program. Lang. 3(ICFP), pp. 111:1–111:29, doi:10.1145/3341715.

[13] Bert Lindenhovius, Michael W. Mislove & Vladimir Zamdzhiev (2020): LNL-FPC: The Linear/Non-linear

Fixpoint Calculus. Available at http://arxiv.org/abs/1906.09503. Preprint.

[14] Romain Péchoux, Simon Perdrix, Mathys Rennela & Vladimir Zamdzhiev

(2020): Quantum Programming with Inductive Datatypes. Available at

https://homepages.loria.fr/VZamdzhiev/papers/qpl-inductive.pdf. Preprint.

[15] Romain Péchoux, Simon Perdrix, Mathys Rennela & Vladimir Zamdzhiev (2020): Quantum Programming

with Inductive Datatypes: Causality and Affine Type Theory. In Jean Goubault-Larrecq & Barbara König,

editors: Foundations of Software Science and Computation Structures - 23rd International Conference, FOS-

SACS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Lecture Notes in Computer Science 12077, Springer,

pp. 562–581, doi:10.1007/978-3-030-45231-5_29.

[16] Francisco Rios & Peter Selinger (2017): A categorical model for a quantum circuit description language. In:

QPL 2017, pp. 164–178, doi:10.4204/EPTCS.266.11.

[17] M.B. Smyth & G.D. Plotkin (1982): The Category-theoretic Solution of Recursive Domain Equations. Siam

J. Comput., doi:10.1137/0211062.

[18] Vladimir Zamdzhiev (2020): Semantics for first-order affine inductive data types via slice

categories. In: Coalgebraic Methods in Computer Science, to appear. Available at

https://arxiv.org/abs/2001.06905.

http://dl.acm.org/citation.cfm?id=218742.218744
http://dx.doi.org/10.1016/0022-4049(92)90169-G
http://dx.doi.org/10.1017/CBO9780511525865
http://dx.doi.org/10.1109/LICS.1994.316083
http://dx.doi.org/10.1109/LICS.1990.113772
http://dx.doi.org/10.1007/BFb0084215
http://dx.doi.org/10.1007/BF01752392
http://dx.doi.org/10.1145/3209108.3209196
https://homepages.loria.fr/VZamdzhiev/papers/lambda-calculus-string-diagrams.pdf
http://dx.doi.org/10.1145/3341715
http://arxiv.org/abs/1906.09503
https://homepages.loria.fr/VZamdzhiev/papers/qpl-inductive.pdf
http://dx.doi.org/10.1007/978-3-030-45231-5_29
http://dx.doi.org/10.4204/EPTCS.266.11
http://dx.doi.org/10.1137/0211062
https://arxiv.org/abs/2001.06905

	1 Introduction
	2 A Reflection Theorem for Algebraically Compact Functors
	3 Constructive Classes of Algebraically Compact Functors
	3.1 Special Case: Models of Mixed Linear/Non-linear Lambda Calculi

	4 Algebraically Compact Mixed-Variance Functors
	5 Comparison with Limit-Colimit Coincidence Results
	6 Related Work
	7 Conclusion

