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Lenses may be characterised as objects in the category of algebras over a monad, however they

are often understood instead as morphisms, which propagate updates between systems. Working

internally to a category with pullbacks, we define lenses as simultaneously functors and cofunctors

between categories. We show that lenses may be canonically represented as a particular commuting

triangle of functors, and unify the classical state-based lenses with both c-lenses and d-lenses in this

framework. This new treatment of lenses leads to considerable simplifications that are important in

applications, including a clear interpretation of lens composition.

1 Introduction

Lenses form a mathematical structure that aims to capture the fundamental aspects of certain synchro-

nisations between pairs of systems. The central goal of such synchronisation is to coherently propagate

updates in one system to updates in another, and vice versa. The precise nature of the synchronisation

process depends closely on the type of system being studied, and thus many different kinds of lenses

have been defined to characterise various applications and examples.

Although a relatively recent subject for detailed abstract study, lenses are an impressive example

of applied category theory, playing major roles in database view updating, in Haskell programs of many

kinds, and in diverse examples of Systems Interoperations, Data Sharing, and Model-Driven Engineering.

Thus, further clarifying the category-theoretic status and systematising the use of lenses, as this paper

aims to do, is an important part of applied category theory.

Lenses were originally introduced [8] to provide a solution to the view-update problem [3]. In treat-

ments of the view-update problem systems are generally modelled as a set of states, where it is possible

to update from one state of the system to any other, and the only information retained about this update

are its initial and final states. Thus a system may be understood as a codiscrete category on its set of

states A with set of updates A×A given by a pair of initial and final states.

Lenses have long been recognised to be some kind of morphism between systems. An obvious notion

of morphism between systems is simply a function f : A → B between their sets of states. Since systems

may be modelled as codiscrete categories, there is also an induced function f × f : A × A → B × B

between the sets of updates of these systems. The map f : A → B is called the Get function and provides

the first component of a lens between the systems A and B, often called the source and view.

The second component of a lens is called the Put function p : A×B → A whose role is less obvious.

The set A×B may be interpreted as the set of anchored view updates via the induced function f ×1B : A×
B → B×B which produces a view update whose initial state is given by the Get function. The induced

function 〈π0, p〉 : A×B → A×A may be regarded as the Put function, propagating every anchored view
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update to a source update, illustrated in the diagram below.

A a p(a,b)

B f a b

f ...
...

Frequently the Get and Put functions of a lens are required to satisfy three additional axioms, called

the lens laws, which ensure the synchronisation of updates between systems is well-behaved.

A×B A

B

p

π1

f

A A×B

A

〈1A, f 〉

1A

p

A×B×B A×B

A×B A

π0,2

p×1B

p

p

In order from left to right: the Put-Get law ensures that the systems A and B are indeed synchronised

under the Get and Put functions; the Get-Put law ensures that anchored view updates which are identities

are preserved by the Put function; the Put-Put law ensures that composite anchored view updates are

preserved under the Put function.

In summary, a state-based lens [8], denoted ( f , p) : A ⇋ B, consists of a Get function f : A → B

and a Put function p : A×B → A satisfying the lens laws. Early mathematical work [14] characterised

state-based lenses as algebras for a well-known monad,

Set�B −→ Set�B

f : A → B 7−→ π1 : A×B → B

which may be generalised to any category with finite products. It was later shown that lenses are also

coalgebras for a comonad [9] and may be defined inside any cartesian closed category. While these

works took the first steps towards internalisation of lenses, they characterised lenses as objects in the

category of Eilenberg-Moore (co)algebras, rather than morphisms between sets, and did not account for

composition of lenses.

A significant shortcoming of state-based lenses in many applications is they only describe synchro-

nisation between systems as a set of states, or codiscrete categories, ignoring the information on how

states are updated. This motivated the independent development of both c-lenses [15] and d-lenses [7]

between systems modelled as arbitrary categories. Making use of comma categories instead of products,

c-lenses were defined as algebras for a classical KZ-monad [18], and may be also understood as split

Grothendieck opfibrations. In contrast d-lenses were shown [12] to be more general, as split opfibra-

tions without the usual universal property, and could only be characterised as algebras for a semi-monad

satisfying an additional axiom.

Later work [13] showed that the category of state-based lenses (as morphisms) is a full subcategory

of the category of d-lenses (which also contains a subcategory of c-lenses). Despite this unification of

category-based lenses, composition was still defined in an ad hoc fashion, and there was no mathematical

explanation as to why lenses characterised as algebras should be understood as morphisms.

Summary of Paper

The contribution of this paper may be summarised as follows:
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• Generalise the theory of lenses to be internal to any category E with pullbacks.

• Define an internal lens as an internal functor and an internal cofunctor, which provide the appro-

priate notion of Get and Put, respectively.

• Characterise internal lenses as diagrams of internal functors, using the span representation of an

internal cofunctor.

• Show there is a well-defined category Lens(E ) whose objects are internal categories and whose

morphisms are internal lenses.

• Demonstrate state-based lenses, c-lenses, and d-lenses as examples of internal lenses.

2 Background

This section provides a brief review of the relevant internal category theory required for the paper, most

of which can be found in standard references such as [4, 16, 17]. Throughout we work internal to a

category E with pullbacks, with the main examples being E = Set,Cat.

The idea is that a system may be defined as an internal category with an object of states and an

object of updates. An internal functor will later be interpreted as the Get component of an internal lens,

while internal discrete opfibrations will also be central in defining the Put component of an internal lens.

Codiscrete categories and arrow categories are presented as examples and will later be used to define

internal versions of state-based lenses and c-lenses.

Definition 1. An internal category A consists of an object of objects A0 and an object of morphisms A1

together with a span,

A1

A0 A0

d1 d0 (1)

where d1 : A1 → A0 is the domain map and d0 : A1 → A0 is the codomain map, and the pullbacks,

A2

A1 A1

A0

d2 d0

d1d0

y

A3

A2 A2

A1

d3 d0

d2d0

y

(2)

where A2 is the object of composable pairs and A3 is the object of composable triples, as well as an iden-

tity map i0 : A0 → A1 and composition map d1 : A2 → A1 satisfying the following commutative diagrams:

A0 A1

A1 A0

i0

i0

1A0 d1

d0

A1 A2 A1

A0 A1 A0

d1

d2 d0

d1 d0

d1 d0

A1 A2

A2 A1

i1

i0

1A1 d1

d1

A3 A2

A2 A1

d2

d1

d1

d1

(3)

The morphisms i0, i1 : A1 → A2 and d1,d2 : A3 → A2 appearing in (3) are defined using the universal

property of the pullback A2.
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Example 2. A small category is an internal category in Set. Thus a small category consists of a set of

objects and a set of morphisms, together with functions specifying the domain, codomain, identity, and

composition.

Example 3. A (small) double category is an internal category in Cat, the category of small categories

and functors. Thus a double category consists of a category of objects and a category of morphisms,

together with functors specifying the domain, codomain, identity, and composition.

Example 4. Assume E has finite limits. A codiscrete category on an object A ∈ E is an internal category

whose object of objects is A and whose object of morphisms is the product A×A, with domain and

codomain maps given by the left and right projections:

A×A

A A

π0 π1

The identity map is given by the diagonal 〈1A,1A〉 : A → A×A, the object of composable pairs is given

by the product A×A×A, and the composition map is given by the following universal morphism:

A×A×A

A A×A A

π0 π2π0,2

π0 π1

Example 5. Let A be an internal category. The arrow category ΦA has an object of objects A1 and an

object of morphisms A11 := A2 ×A1
A2 defined by the pullback,

A11

A2 A2

A1 A1 A1

π0 π1

d2 d1 d1 d0

y

with domain map d2π0 : A11 → A1 and codomain map d0π1 : A11 → A1. The pullback A11 may be un-

derstood as the object of commutative squares in A. The identity and composition maps require tedious

notation to define precisely, however we note they are induced from the diagrams (3).

Definition 6. Let A and B be internal categories. An internal functor f : A → B consists of morphisms,

f0 : A0 −→ B0 f1 : A1 −→ B1

satisfying the following commutative diagrams:

A0 A1 A0

B0 B1 B0

f0

d1 d0

f1 f0

d1 d0

A0 A1

B0 B1

i0

f0 f1

i0

A2 A1

B2 B1

d1

f2 f1

d1

(4)

The morphism f2 : A2 → B2 appearing in (4) is defined using the universal property of the pullback B2.
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Remark. Given an internal category A, the identity functor consists of a pair of morphisms:

1A0
: A0 −→ A0 1A1

: A1 −→ A1

Given internal functors f : A → B and g : B →C, their composite functor g◦ f : A →C consists of a pair

of morphisms:

g0 f0 : A0 −→C0 g1 f1 : A1 −→C1

Composition of internal functors is both unital and associative, as it is induced by composition of mor-

phisms in E .

Definition 7. Let Cat(E ) be the category whose objects are internal categories and whose morphisms

are internal functors.

Example 8. The category of sets and functions Set has pullbacks, thus we obtain the familiar example

Cat = Cat(Set) of small categories and functors between them.

Example 9. The category Cat has pullbacks, so we obtain the category Dbl = Cat(Cat) of double

categories and double functors between them.

Remark. The category Cat(E ) has all pullbacks. Given internal functors f : A → B and g : C → B, their

pullback is the category A×B C constructed from the pullbacks,

A0 ×B0
C0

A0 C0

B0

f0
g0

y

A1 ×B1
C1

A1 C1

B1

f1
g1

y

which define the object of objects and object of morphisms, respectively. The rest of the structure is

defined using the universal property of the pullback. Therefore internal double categories may be defined

as categories internal to Cat(E ).

Example 10. An internal discrete opfibration is an internal functor f : A → B such that the following

diagram is a pullback:

A1

A0 B1

B0

d1 f1

f0 d1

Note the identity functor is a discrete opfibration, and the composite of discrete opfibrations is a discrete

opfibration, by the Pullback Pasting Lemma.

Definition 11. Let DOpf(E ) be the category whose objects are internal categories and whose morphisms

are discrete opfibrations.

3 Internal cofunctors

This section introduces the notion of an internal cofunctor and proves a useful representation of internal

cofunctors as certain spans of internal functors. Since their introduction [1, 10] there has been almost
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no work on cofunctors, apart from the recent reference [2]. To avoid confusion, we explicitly note that a

cofunctor is not a contravariant functor.

The idea of a cofunctor is to generalise discrete opfibrations, providing a way to lift certain mor-

phisms while preserving identities and composition. Cofunctors are dual to functors in the sense that

they lift morphisms in the opposite direction to the object assignment, while functors push-forward mor-

phisms in the same direction. In the context of synchronisation, a cofunctor will later be interpreted as

the Put component of an internal lens which lifts anchored view updates in the pullback Λ1 := A0×B0
B1

to source updates in A1.

Definition 12. Let A and B be internal categories. An internal cofunctor ϕ : B 9 A consists of mor-

phisms,

ϕ0 : A0 −→ B0 ϕ1 : Λ1 −→ A1 p0 : Λ1 −→ A0

together with the pullbacks,

Λ1

A0 B1

B0

d1 ϕ1

ϕ0 d1

y

Λ2

Λ1 B2

B1

d2 ϕ2

ϕ1 d2

y

(5)

such that the following diagrams commute:

Λ1 A0

B1 B0

p0

ϕ1
ϕ0

d0

A0 Λ1 A0

A0 A1 A0

1A0

d1 p0

ϕ1 1A0

d1 d0

A0 Λ1

A0 A1

i0

1A0
ϕ1

i0

Λ2 Λ1

A2 A1

d1

ϕ2 ϕ1

d1

(6)

Remark. The pullback projections in (5) will play different roles which prompt different notational con-

ventions. The projection d1 : Λ1 → A0 should be understood as the domain map for an internal category

with object of morphisms Λ1 which will be defined in Proposition 17. The projection ϕ1 : Λ1 → B1

should be understood as morphism assignment for a discrete opfibration ϕ which will be defined in

Theorem 18. The projections d2 and ϕ2 for Λ2 may be understood similarly.

Notation. The commutative diagrams (6) include morphisms defined using the universal property of the

pullback via the diagrams below:

A0

B0

Λ1

A0 B1

B0

1A0

ϕ0

i0

i0d1 ϕ1

ϕ0 d1

y

Λ2

Λ1 B2

Λ1

A0 B1

B0

d2 ϕ2

d1

d1 d1d1 ϕ1

ϕ0 d1

y

Λ2

Λ1 B2

Λ1

A0 B1

B0

d2 ϕ2

p0

p0 d0d1 ϕ1

ϕ0 d1

y

Λ2

Λ1 Λ1

A2

A1 A1

A0

d2 p0

ϕ2

ϕ1 ϕ1d2 d0

d0 d1

y
(7)

Remark. Strictly speaking, the morphism p0 : Λ1 → A0 is not required for the definition of a cofunctor.

Instead the two commutative diagrams in (6) which contain it may be replaced with the commutative
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diagram:

Λ1 A1 A0

B1 B0

ϕ1

ϕ1 d0

ϕ0

d0

(8)

Example 13. An internal cofunctor with ϕ1 : Λ1
∼= A1 is a discrete opfibration.

Example 14. An internal cofunctor between monoids, as categories with one object, is a monoid homo-

morphism.

Example 15. An internal cofunctor with ϕ0 = 1A0
is an identity-on-objects functor.

Remark. Given an internal category A, the identity cofunctor consists of morphisms:

1A0
: A0 −→ A0 1A1

: A1 −→ A1 d0 : A1 −→ A0

Given internal cofunctors ϕ : B 9 A and γ : C 9 B, consisting of triples (ϕ0,ϕ1, p0) and (γ0,γ1,q0)
respectively, their composite cofunctor ϕ ◦ γ : C → A consists of the morphism,

γ0ϕ0 : A0 −→C0

together with the pullback A0 ×C0
C1 and the morphisms,

ϕ1〈π0,γ1(ϕ0 ×1C1
)〉 : A0 ×C0

C1 −→ A1 p0〈π0,γ1(ϕ0 ×1C1
)〉 : A0 ×C0

C1 −→ A0 (9)

where the universal morphisms are defined via the following commutative diagram:

A0 ×C0
C1 Ω1 C1

Λ1 B1

A1

A0 B0 C0

〈π0,γ1(ϕ0×1C1
)〉

ϕ0×1C1

y
γ1

γ1

d1

d1

ϕ1

ϕ1

d1 d1

d1

ϕ0 γ0

(10)

Composition of cofunctors is both unital and associative, however we omit the diagram-chasing required

for the proof.

Definition 16. Let Cof(E ) be the category whose objects are internal categories and whose morphisms

are internal cofunctors.

Proposition 17. If ϕ : B 9 A is an internal cofunctor, then there exists an internal category Λ with

object of objects A0 and object of morphisms Λ1, together with domain map d1 : Λ1 → A0, codomain

map p0 : Λ1 → A0, identity map i0 : A0 → Λ1, and composition map d1 : Λ2 → Λ1.
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Proof. We give a partial proof and show the first pair of diagrams in (3) are satisfied. Using the relevant

diagrams from Definition 1 and Definition 12 we have the following commutative diagram:

A0

A1

A0 Λ1 A0

1A0
i0

i0

1A0

d0

ϕ1

d1
p0

This shows that the identity map i : A0 → Λ1 is well-defined.

To show that Λ2 is well-defined as the the pullback of the domain and codomain maps (left-most

square below) we use the Pullback Pasting Lemma, noting that the outer rectangles below are equal:

Λ2 Λ1 B1

Λ1 A0 B0

d2

p0

d1

ϕ1

y

d1

p0 ϕ0

=

Λ2 B2 B1

Λ1 B1 B0

d2

ϕ2

y y

d0

d2 d1

ϕ1 d0

Again using the relevant diagrams from Definition 1 and Definition 12 we have the following com-

mutative diagram:

Λ1 Λ2 Λ1

A2 A1

A1 A0

A0 Λ1 A0

d1

d2 p0

d1

ϕ2 ϕ1

p0d1

d0

d0

d0

d1
p0

ϕ1

This shows that the composition map d1 : Λ2 → Λ1 is well-defined.

Remark. Proposition 17 may be understood as showing that a cofunctor induces a category whose objects

are source states and whose morphisms are anchored view updates. The internal category Λ is shown in

Theorem 18 to mediate between the source and the view, and reduces the complexity of Definition 12 to

a simple statement concerning internal categories and functors.

Theorem 18. If ϕ : B 9 A is an internal cofunctor, then there is an internal discrete opfibration ϕ : Λ →
B consisting of the morphisms,

ϕ0 : A0 −→ B0 ϕ1 : Λ1 −→ B1

and an identity-on-objects internal functor ϕ : Λ → A consisting of morphisms:

1A0
: A0 −→ A0 ϕ1 : Λ1 −→ A1

Thus every internal cofunctor ϕ : B 9 A may be represented as a span of internal functors:

Λ

B A

ϕ ϕ
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Proof. To show that ϕ : Λ → B is a well-defined internal discrete opfibration, we note from (5), (6), and

(7) that the following diagrams commute:

A0 Λ1 A0

B0 B1 B0

ϕ0

d1 p0

ϕ1

x
ϕ0

d1 d0

A0 Λ1

B0 B1

ϕ0

i0

ϕ1

i0

Λ2 Λ1

B2 B1

ϕ2

d1

ϕ1

d1

To show that ϕ : Λ → A is a well-defined identity-on-objects internal functor, we again note from (5),

(6), and (7) that the following diagrams commute:

A0 Λ1 A0

A0 A1 A0

1A0

d1 p0

ϕ1 1A0

d1 d0

A0 Λ1

A0 A1

1A0

i0

ϕ1

i0

Λ2 Λ1

A2 A1

ϕ2

d1

ϕ1

d1

Thus every internal cofunctor may be represented as a span of internal functors, with left-leg an internal

discrete opfibration, and right-leg an identity-on-objects internal functor.

4 Internal Lenses

In this section we define an internal lens to consist of an internal Get functor and an internal Put cofunctor

satisfying a simple axiom akin to the Put-Get law. An immediate corollary of Theorem 18 is that every

internal lens may be understood as a particular commuting triangle (13) of internal functors. We also

construct a category whose objects are internal categories and whose morphisms are internal lenses. The

section concludes with a unification of discrete opfibrations, state-based lenses, c-lenses, and d-lenses in

this internal framework, based upon results in [5].

Definition 19. An internal lens ( f ,ϕ) : A ⇋ B consists of an internal functor f : A → B comprised of

morphisms,

f0 : A0 −→ B0 f1 : A1 −→ B1

and an internal cofunctor ϕ : B 9 A comprised of morphisms,

ϕ0 : A0 −→ B0 ϕ1 : Λ1 −→ A1 p0 : Λ1 −→ A0

such that ϕ0 = f0 and the following diagram commutes:

Λ1

A1 Λ1

ϕ1
1Λ1

〈d1, f1〉

(11)

Remark. Alternatively, the commutative diagram (11) for an internal lens may be replaced with the

requirement that the following diagram commutes:

Λ1

A1 B1

ϕ1 ϕ1

f1

(12)
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In either case, this axiom for an internal lens ensures that the functor and cofunctor parts interact as

expected. Explicitly it states that lifting a morphism by the cofunctor then pushing-forward by the functor

should return the original morphism.

Corollary 20. Every internal lens ( f ,ϕ) : A ⇋B may be represented as a commuting triangle of internal

functors,

Λ

A B

ϕ ϕ

f

(13)

where ϕ : Λ → B is an internal discrete opfibration, and ϕ : Λ → A is an identity-on-objects internal

functor.

Corollary 21. Given a pair of internal lenses ( f ,ϕ) : A ⇋ B and (g,γ) : B ⇋C, their composite internal

lens may be computed via the composition of the respective functor and cofunctor parts, and has a simple

representation using the pullback of internal functors:

Λ×B Ω

Λ Ω

A B C

y

ϕ ϕ γ γ

f g

(14)

Definition 22. Let Lens(E ) be the category whose objects are internal categories and whose morphisms

are internal lenses. Composition of internal lenses is determined by composition of the corresponding

functor and cofunctor parts.

Example 23. Every discrete opfibration is both an internal functor and an internal cofunctor, hence also

an internal lens. Therefore DOpf(E ) is a wide subcategory of Lens(E ).

Example 24. If E = Set, then the category Lens(Set) is the category of d-lenses [7]. The Get of a d-lens

A ⇋ B is given by a functor f : A → B, while the Put of a d-lens is given by a cofunctor ϕ : B 9 A.

In particular, the function ϕ1 : Λ1 →A1 takes each pair (a,u : f a→ b)∈Λ1 to a morphism ϕ(a,u) : a→
p(a,u) ∈ A, as illustrated in the diagram below.

A a p(a,u)

B f a b

f ϕ ...

ϕ(a,u)

...
u

(15)

The Put-Get law is satisfied by (11), which corresponds in the above diagram to the morphism ϕ(a,u)
being a genuine lift of u : f a → b with respect to the functor acting on morphisms. The Get-Put and Put-

Put laws are satisfied as ϕ : Λ → A is a functor, which respects identities and composition by definition.

Example 25. Every state-based lens (see [8]) consisting of Get function f : A → B and Put function

p : A×B → A induces a lens in Lens(Set).
Let Â and B̂ be the small codiscrete categories induced by the sets A and B, respectively, and let

f : Â → B̂ be the canonical functor,

A A×A A

B B×B B

f

π0 π1

f× f f

π0 π1
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induced by the Get function. Let Λ be the category with domain and codomain maps described by the

span:

A×B

A A

π0 p

The category Λ is well-defined by the lens laws. The functor ϕ : Λ → B̂ is induced using the Put-Get

law,

A A×B A

B B×B B

f
x

π0 p

f×1B f

π0 π1

while the functor ϕ : Λ → Â is induced for free:

A A×B A

A A×A A

1A

π0 p

〈π0,p〉 1A

π0 π1

This example may be instantiated internal to any category E with finite limits.

Example 26. Given a pair of state-based lenses ( f , p) : A ⇋ B and (g,q) : B ⇋ C, their composite is

a lens whose Get function is given by g f : A → C and whose Put function may be computed from the

formula (9):

p〈π0,q( f ×1C)〉 : A×C −→ A

Example 27. Every c-lens (also known as a split opfibration, see [15]) consisting of a Get functor

f : A → B and Put functor p : f ↓ B → A induces a lens in Lens(Cat).

Let B be the double category of squares, whose category of objects is B and whose category of

morphisms is the arrow category ΦB, together with domain and codomain functors l,r : ΦB → B given

by,

B1 B11 B1

B0 B1 B0

d1

d2π0 d0π1

d2π1 d1

d1 d0

B1 B11 B1

B0 B1 B0

d0

d2π0 d0π1

d0π0 d0

d1 d0

using the same notation from the diagram in Example 5; define A similarly. Construct the functor

Φ f : ΦA → ΦB between the arrow categories,

A1 A11 A1

B1 B11 B1

f1

d2π0 d0π1

f2× f2 f1

d2π0 d0π1

induced by the Get functor, which forms a canonical double functor f : A → B.
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Let Λ be the double category with domain and codomain functors described by the span:

f ↓ B

A A

l p

Note that the comma category f ↓ B may defined as the pullback,

f ↓ B ΦB B

A B

l

r

l

r

f

y

where l : f ↓ B → A and r : f ↓ B → B are the usual comma category projections. The double category

Λ is well-defined by the c-lens laws, and we may show with further reasoning that there exist unique

double functors ϕ : Λ → A and ϕ : Λ → B.

5 Conclusion and Future Work

In this paper it was shown that lenses may be defined internal to any category E with pullbacks, providing

a significantly generalised yet minimal framework to understand the notion of synchronisation between

systems. It was demonstrated that the enigmatic Put of a lens may be understood as a cofunctor, which

has a simple description as a span of a discrete opfibration and an identity-on-objects functor. The

surprising characterisation of a lens as a functor/cofunctor pair both promotes the prevailing attitude of

lenses as morphisms between categories, and yields a straightforward definition for composition in the

category Lens(E ), which fits within a diagram of forgetful functors.

Cof(E )op

DOpf(E ) Lens(E ) E

Cat(E )

The success of internal lenses in unifying the known examples of state-based lenses, c-lenses, and d-

lenses promotes the effectiveness of this perspective for use in applications such programming, databases,

and Model-Driven Engineering, and also anticipates many future mathematical developments. Current

work in progress indicates that Lens(E ) may be enhanced to a 2-category through incorporating natural

transformations between lenses, while consideration of spans in Lens(E ) leads towards a clarified un-

derstanding of symmetric lenses; both ideas which have been shown to be important in applications and

the literature [6, 11]. In future work we will investigate examples of lenses internal to a diverse range of

categories, as well as taking steps towards a theory of lenses between enriched categories.
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