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TLA is a popular temporal logic for writing stuttering-invariant specifications of digital systems.
However, TLA lacks higher-order features useful for specifying modern software written in higher-
order programming languages. We use categorical techniques to recast a real-time semantics for TLA
in terms of the actions of a group of time dilations, or “stutters,” and an extension by a monoid incor-
porating delays, or “falters.” Via the geometric morphism of the associated presheaf topoi induced
by the inclusion of stutters into falters, we construct the first model of a higher-order TLA.D

1 Introduction

The Temporal Logic of Actions (TLA) is a temporal logic commonly used for specifying digital computer
systems [[11} [13]]. TLA formulae are linear temporal properties invariant under “stuttering.” Stuttering
invariant specifications written as TLA formulae are easily composed, using nothing more than conjunc-
tion, with no implicit assumptions about synchronization. Stuttering invariance also leads to a simple
but powerful notion of “refinement,” that is, showing that a detailed specification implements an abstract
one.

In [11]] Lamport presents TLA as a first-order logic, but, in specifications, higher-order features are
often desirable. For example, one would often like to prove a rule of inference that works over all proposi-
tions or all predicates. Lamport must introduce special syntax (e.g., for fairness) where in a higher-order
context these language features could be replaced with simple functions on propositions. Moreover,
programmers today often work in higher-order programming languages and the powerful abstraction
features in these languages (e.g., a generalized “map” function) are not easily expressed in TLA specifi-
cations.

As a step towards the goal of defining a higher-order TLA, we present a model in which it could be
interpreted. In standard linear temporal logics, which do not feature stuttering invariance, higher-order
features can be modeled in the so-called “Topos of Trees” (i.e., presheaves over @) [3, [15]. Another
impressive line of work on “Temporal Types” takes a topos theoretic approach based on translation
invariant sheaves (using the additive structure of R) [16]. Unfortunately, these models cannot capture
TLA’s stuttering invariance.

Our categorical model of higher-order TLA meets several desiderata, motivated by the observations
above:
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Figure 1: Syntax and Syntactic Sugar of TLA

1. it should provide a model of higher-order classical S4 (TLA is a special case of this modal logic);
2. it should have a “temporal” interpretation which accounts for stuttering invariance;

3. it should correspond with an equivalent notion of validity, in the first-order subset, to the standard
semantics of TLA.

We believe our model to be the first that is suitable for a higher-order TLA. It is constructed as fol-
lows. First, we switch perspective, from the standard discrete-time semantics of TLA to an alternative
real-time semantics found in the literature [9] and reviewed in Section [2| Then, recalling that models
for higher-order modal logic can be generated by geometric morphisms between topoi (Section [3), we
construct our model by recasting the real-valued semantics by way of such a geometric morphism (Sec-
tion ). Our key insight was to consider stutterings as a group, leading to a generalization of stuttering,
which we call “faltering.”

2 The Temporal Logic of Action

Like Pnueli’s Linear Temporal Logic (LTL) [[14]], TLA adopts the perspective of linear time: formulae
classify sets of (linear) infinite traces of a system evolving through time. Also like LTL, TLA has tempo-
ral modalities “always” (O) and “eventually” (). However, unlike LTL, TLA has no “next” (o) modality.
Instead, TLA has a notion of “actions” that describe instantaneous changes in the system state, but which
also allow “stuttering steps” in which the trace evolves in time but the state remains unchanged. Thus,
unlike LTL, TLA formulae are always “stuttering invariant,” that is, they cannot differentiate traces by
how long they stutter.

Syntactically, TLA has two classes of formulae (Figure [I): actions, which denote instantaneous
changes to the system state, and temporal formulae, which are predicates on traces.

Actions are normal first-order logic formulae except in the handling of terms. Variables appearing
in terms can be “rigid” (written in italics), indicating that they do not change over time, or “flexible”
(written in bold face), indicating that they may. Flexible variables may appear primed (x’) or unprimed
(x) denoting the variable’s value in the next or current state, respectively.

Temporal formulae are comprised of the usual propositional connectives and temporal quantifiers,
along with a special operator O[A],, where A is an action and v is a function on the system state). In-
tuitively, the formula O[A], means “it is always the case that either the action A happens or v does not
change.” TLA is also equipped with ordinary (first-order) quantifiers over rigid variables Vx.P as well as
“temporal” quantifiers over flexible variables Vx.P.

Lamport’s semantics for TLA (Figure2)) interprets temporal formulae using a discrete model of time.
Traces are modeled as functions from natural numbers to a “state,” where states are assignments of values
for each flexible variable.
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[4(6,0,0) = 6(x)
[x](6,0,0") = o (x)
[x](6,0,0") =o' (x)
[f(Er,....En)](6,0,0") = Z(f)([E:](8,0,0"),....[E1](6,0,0"))
0,0,0' EAINA; iff (0,0,0" =A;) and (6,0,0" = A))
0,0,0 =—-A iff 0,0,0" A
0,0,0' EE| =E; iff [E1](0,0,0") = [E2](0,0,0")
0,0,0" = Vx.A iff for everyve 2 (0Wx—v),0,0' EA
0,0,0' ER(E1,...,E,) iff Z(R)([E:1](6,0,0"),...,[E.](0,0,0"))
0,p =P AP, iff ,p =P and 6,p = P,
0.p =P iff 0,p b P
0,p =0P iff foreveryn e N 6,pn,...] =P

0,p = O[A]x,. . xn> iff foreach n € N either 0,p[n],pln+1] A
or Vi€ [1,m].p[n](xi) = pln+1](x;)
0,p =Vx.P iff foreveryve 2 (0 Wx—v),p =P
0,p = Vx.P iff for every d € I and p’ ~ p,0,p' W (x — d) = P

Figure 2: Discrete Time Semantics of TLA

Lamport’s semantics are unusual in the handling of the flexible quantifier (V). Naively, flexible quan-
tification would be

0,p |=Vx.P iff foreveryd € 2N,
0,p0(x—d) =P
Definition 1 (Discrete Stuttering Equivalence). Given any set S, two behaviors p1, p> are said to be

stuttering equivalent if there exists monotone surjections ¢, ¢, : N — N such that ¢ p1 = ¢;p>

Unfortunately, in this semantics, the definition of flexible quantification must explicitly “bake in”
stuttering invariance (see the semantics of V in Figure [2) and this makes flexible quantification behave
quite differently from the ordinary semantics of modal logic.

Proposition 1 (Stuttering Equivalence of TLA). For any P,0,p,p’ such that p ~ p’

0.p = Piff 6,0’ =P
Kaminski and Yariv [9] proposed an alternative semantics for TLA based on a continuous notion of
time. In this setting traces are interpreted as “non-Zeno” functions from the non-negative real numbers.

Definition 2 (Non-Zeno function). A non-Zeno function over a set S is a function f from non-negative
real numbers to S such that

1. foreveryt € R> there exists a positive € such that for all t’ wheret <t' <t+¢€ we have f(t) = f(t')
and
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next(t,S) = 0 when V¢ € R>¢,Vx € S,7(0)(x) = 7(r)(x)
next(t,S) = sup{r | V0 <k < r,Vx € S,7(0)(x) = 7(k)(x)} otherwise
0,7 =R O[Aly,,..x, iff r=00r0,7(0),7(r) =A
where r = next (7, {x;|0 <i<n})
0,T=RTI AT, iff 0,7 =r 71 and 0,7 =p T»

0,7t =r T iff 0,7 AR T

0,7 =r Vx.T iff for every v € 2 we have (0,x —v),T=r T

0,7 =R VX.T iff for every v € 2R we have 0, (x — (7(r),x — v(r))) Er T
0,7 = OT iff for every k € R>g such that 6, t[k..] =R T

Figure 3: Continuous-time Semantics of TLA

2. there is no bounded increasing sequence to,ty,t, ... such that forall i, f(t;) # f(tiy1).

These two conditions ensure that a non-Zeno function does not change too quickly: the first condition
guarantees that each state is held for positive time, while the second ensures that only a finite number of
states are visited in any finite length of time. We (ab)use the notation S R™ to refer to the set of non-Zeno
functions over S.

Stuttering invariance of a set of such non-Zeno functions is modeled as closure under pre-composition
by homeomorphisms on R>q (with the standard topology). The alternative continuous semantics (Figure
B) yields exactly the same notion of truth as Lamport’s original semantics, while avoiding the need to
“bake in” stuttering invariance in its definitions.

This continuous semantics clarifies many aspects of TLA. It explains stuttering invariance as invari-
ance under time dilation. Furthermore, it presents rigid and flexible variables uniformly, allowing them to
be viewed as coming from two different types. Categorically, this means rigid and flexible quantification
should correspond to quantification over different objects.

3 Semantics of Higher-order Logic

Higher-order Logic (HOL) (see [2l]) combines a (possibly intuitionistic) logic with the simply-typed
A-calculus. It may be viewed as an extension to multi-sorted first-order logic that adds features for
quantifying over function types and propositions.

Modal variants of higher-order logic are usually formed simply by adding additional modal operators
exactly as one would in a propositional logic.

There are many semantics for higher-order logic. In the “standard” semantics, types are interpreted as
sets, function types are interpreted as the set of all functions between their constituents, and propositions
are interpreted as booleans. This model is incomplete, however.

A more general class of model is found in topoi.

Definition 3. A topos is a cartesion closed category & possesing all finite limits and a subobject classifier,
i.e. an object Q and a monic arrow true : 1 — Q such that ¥ monic m : S — B 3'¢,, : B — Q such that
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In the naive topos semantics, types (also, contexts) are interpreted as objects, terms are interpreted as
morphisms, function types are interpreted by way of the inner hom, and the proposition type is interpreted
as the subobject classifier.

However, this topos semantics is still too strong—it justifies additional laws which are not derivable
from the natural deduction rules in Figure d] In particular, the topos semantics imposes upon higher-order
logic the additional property of extensionality of entailment (see [4] 5.3.7)

I'tPQ:0c — Prop I'x:0|0,Pxt Qx I'x:0|0,0x+ Px
l—‘|®|_P:c7—>PropQ

A class of categorical models for higher-order logic with more examples is obtained by weakening
the structure involved in the subobject classifier.

Definition 4 (Hyperdoctrine). Let P : C°? — HeyAlg be a functor from a cartesion closed C into the
category of Heyting algbras such that:

1. VX,Y : ObjC there are monotone 3% V% : Hompyeord(P(X x Y),P(Y)) such that for  : X xY — Y
the projection 3 4 P(nt) 4§ and satisfying the Beck-Chevalley condition

P(X x v') 0 p(x s y)

VY =Y v}y(l v;;l commutes as does the similar 3% diagram;
!/
PY' o PY
2. (Forget- P): C°? — Set is representable.

Hyperdoctrines provide a setting for a sound and complete semantics for HOL by modeling contexts
using the underlying cartesian closed category structure, with the Heyting algebra of propositions over
those contexts given by the functor, and the quantifiers induced by the adjointsE] Moreover, by replacing
the category of Heyting algebras with the category of Boolean algebras, we gain a notion of “classical
hyperdoctrine,” which provides a sound and complete semantics for classical higher-order logic. Finally,
using an even stronger category of “modal algebras” yields a model of S4 modal higher-order logic.

Definition 5. A modal algebra is a pair (A,O) : Obj(MAIg) where A is a Heyting algebra and O is a left
exact comonad on A.

A modal algebra morphism f : (A,0) — (B,0') is a morphism of the underlying Heyting algebras
which commutes with the modalities in the sense that -0 =0’ f.

Definition 6 (Modal Hyperdoctrine). Let P : C°? — MAIg be a functor from a small cartesian closed
category C into the category of Modal algbras MAlg otherwise satisfying the axioms of a hyperdoctrine.

The hyperdoctrine semantics fully generalizes the topos semantics, as every topos 7 induces a (intu-
itionistic) hyperdoctrine
(T,Homg(—,Q)). €))

2Completeness, as is often the case, holds for the class of models by constructing an appropriate syntactic object initial in
the category of hyperdoctrines as in [10].



166 Topos Semantics for a Higher-order Temporal Logic of Actions

However, these are not the only hyperdoctrines of interest. Specifically, the only fact about € in
equation [T| required for the resulting structure to be a (intuitionistic) hyperdoctrine is that it forms an
internal complete Heyting algebra in 7'.

Given any topos & and internal complete Heyting algebra H in &, there is a natural way of equipping
Homs (—, H) with a Heyting algebra structure so that (&, Homg(—, H)) forms a hyperdoctrine.

If H is an internal complete boolean or modal algebra in T, then the resulting hyperdoctrine will be
classical or modal, respectively [1].

In this topos-theoretic setting, we can apply a simple recipe for constructing a topos together with
internal complete modal algebras. Recall

fe
—
Definition 7. Let &, .% be topoi. A geometric morphism f: & — % is an adjunction & T . F such

f*
that the left adjoint f*, known as the inverse image, preserves finite limits. If every object X : Obj(&) is a

subquotient of an object of the inverse image f*, so that there exists Y : Obj(.F) and diagram f*(Y) «
S — X, then f is localic.

Geometric morphisms are a source of internal complete Heyting algebras.

Proposition 2. Let f: & — % a geometric morphism. Then f,(Qs) is a complete Heyting algebra internal
to F.

Geometric morphisms are also a source of adjoint pairs of maps of complete Heyting algebras.

Lemma 1 ([8] C1.3). In any topos &, the subobject classifier Qg is the initial complete Heyting algebra
object. That is, for all complete Heyting algebras H internal to &, there is a unique map of complete
Heyting algebras i : Qg — H. Moreover, the right adjoint of 7T is the classifying map of the top element
Tyg:1—H.

This adjoint pair of maps defines a useful comonad.

Lemma 2 ([1l]). Given a complete Heyting algebra H internal to topos &, let i - T the canonical adjunc-
tioni: Qg < H: 1. The composite io T is an S4 modality on H.

If we have two topoi, & and .%, and a geometric morphism f: & — .% then the image of the subobject
classifier of & in .% is an internal complete modal algebra in .%.

An illustrative example is given by a topos-theoretic view of Kripke semantics. Let K be a preorder,
interpreted as a collection of “possible worlds,” together with an accessibility relation. By |K| we mean
the discrete category with the same underlying objects as K.

The inclusion |K| — K induces a geometric morphism f : Psh(|K|) — Psh(K).

Lemma 3 ([[7]], prop. 3.1). Let f: D — C be a functor of small categories. If T is faithful, then the induced
geometric morphism Psh(D) — Psh(C) is localic.

Thus we obtain a modal hyperdoctrine on (Psh(K),Hompg, k) (—, f+(2pg(x))))- In particular, as |K]|
is a groupoid, & = Psh(|K|) is a Boolean topos, so f, (Q.) is not only a complete Heyting algebra internal
to .# = Psh(K), it is an internal Boolean algebra! The resulting logic is classical, even though Psh(K) is
very much not a boolean topos in general (it is, instead, a Kripke model of an intuitionistic logic). The
internal logic of this modal hyperdoctrine is, in the first-order fragment, exactly what we would get from
the Kripke semantics over K. And thus we have a simple presentation of a higher-order version of that
semantics.
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4 The Model

Now we are ready to construct a candidate model for a Higher-order TLA.

Why not simply use the topos-theoretic Kripke semantics, described in Section 3] applied to the dis-
crete semantics? This approach will fail because TLA’s discrete semantics is not an ordinary Kripke se-
mantics, since flexible quantification is not ordinary Kripke quantification (see Section[2). Even the con-
tinuous semantics is not adequately captured in the ordinary, preorder-based, Kripke view since Kripke
does not account for stuttering.

We must build a model that includes stuttering invariance from the get go. Pre-orders are inade-
quate to this task. Luckily, the geometric morphism construction described in Section [3]is not specific to
Kripke’s inclusion of a discrete set into a preorder. Any faithful functor between small categories whose
domain is a groupoid induces a model of classical higher-order modal logic.

Our model is enabled by the following elementry observation: in the continuous semantics, stuttering
invariance is precisely closure under the action the group of stutters.

Definition 8 (Stutter). A stutter is a continuous function R>y — R with continuous inverse.

By . we denote the group of stutters

& =({f:Rx0 = Rxo | fis astutter},- idr.,)

We will adopt the convention of viewing any monoid G as the category BG with one object and
one monoid’s worth of morphisms. This way the category of G-sets and G-set morphisms for a group G
(more generally, for any monoid) is just Psh(BG).

Non-Zeno functions over a set form a .¥’-set where the action of .% is pre-composition. Stuttering
invariant subsets of that set are then, exactly, sub .#-sets. As such, the category of .7-sets (Psh(B.7))
seems to be closely connected to our problem. Since . is a group, B. is a groupoid, and the presheaf
topos Psh(B.) is boolean. Therefore, it is a tempting target for the semantics of a higher-order TLA. We
already know this will not work on its own though, as a topos is not enough to interpret the modalities.
The most important modality for our purposes is 0. A behavior (viewed as a non-Zeno function) is always
a member of some set of behaviors if, given any initial delay in which the behavior is not observed, the
remainder is in that set. Thus, while stuttering invariance has to do with closure under dilation of time by
bi-continuous functions, O has to do with the translation of time.

To that end, we introduce a generalization of stutters, which we call “falters,” which can include
translation as well as dilation.

Definition 9. A falter is a monotone function f : R>o — R>q such that the function x — f(x) — f(0) is a
stutter.

By % we denote the monoid of falters (under function composition,).

There is a natural morphism of monoids 1 : ./ — .% given by inclusion, inducing a faithful functor
1:BS — B.#. As mentioned in Section 3] such a faithful functor induces a localic geometric morphism
on the associated presheaf categories 1* - 1, : Psh(B.%) <= Psh(B.Z). Our proposed model for a higher-
order TLA is the hyperdoctrine induced by this geometric morphism.

We will now elaborate some details of this model. We consider .#-sets to be “temporal types” as
these are the types about which we can talk in our model. The type of flexible variables over some base
set are computed according to the functor

Flex : Set — Psh(B.%)
Flex(S) = ({f : R>0 — S| f non zeno},-)
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While the type of rigid variables over a base set is computed according to the functor

Rigid : Set — Psh(B.%#)
Rigid(S) = (S, ((_,x) — x))

There is a natural inclusion morphism from Rigid — Flex, which is (for every set) monic. However,
Rigid(S) is not the only subobject of Flex(S). Any stuttering- and translation-closed subset of behaviors
will be interpretable as a temporal set. Of course, these are not the only temporal types: the inner hom
between types of flexible variables, for instance, corresponds to temporal processes rather than flexible
variables over functions of the underlying sets.

In Section [3] we reviewed the fact that a modal hyperdoctrine may be represented by applying the
direct image part of the geometric morphism to the subobject classifier in Psh(B.%). As .7 is a group, it
has only two ideals, @ and .. Thus, Qpg, o) is the set 2 with the trivial .’-action.

As presheaf categories have all (co)limits, the direct image part of the geometric morphism may
be computed as a right Kan extension. As our categories B. and B.%# have singleton objects, this can

be computed pointwise. Given F : Set®” we compute lim (o 71 B 5 Set) , which amounts to
—

equalizing away the stutter action [, » F(les) m— [1#zF(ey) —— [LyxzF(ey) .

On Psh(B.7)’s subobject classifier, this is

Prop £ 1,.(Qpgu(e.))
=({p:F =2|Vse S, feF p(f)=p(f )}
, (fp) = (= p(f- 1)
= (2 (Rx0), (f,0) —im ™' (£)(0))

Consequently (and pleasingly), in our model, a proposition corresponds to the set of times when that
proposition is true.

All the usual connectives coming from the boolean algebra structure are computed pointwise. All
that remains is to compute the modal structure. The subobject classifier in Psh(B.%#) is the collection of
falter ideals

Qpypr) =S F|VielVfeF. i fel},

but these are just all upward-closed subsets of R>g, so sth(Bg (Z:(R>0), (n,0) — im~ ' (n)(0)).
As subobject classifier in Psh(B.%), Qpgi(#) i initial in complete Heyting algebras internal to F, S0
the obvious equivariant inclusion i : Qpg27) — L(Qpw(B.»)) is essentially unique. The right adjoint
70 L(Qpmp.r)) — Qpen7), Which classifies 1 — 1,(Qpgyp.#)), is, then, the upward closure 1 (-
—): Z(R) = Z;(R). The adjunction O := iq o T : End(1,Qpg, »)) provides a left exact comonad on
the complete internal Heyting algebra 1,(Qpg.7))-

The resulting modal structure is quite natural — it reduces to ensuring that a proposition holds at all
future times

O(—) : Prop —pg,g.#) Prop
O(S) ={reRxo | ¥/ > 1,/ € §}.

As such, our categorical model is precisely a higher order generalization of the continuous-time seman-
tics presented in Section [2]
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Theorem 1. The modal hyperdoctrine (Psh(B.%),Hom(—,1.(Qp.#))) admits a sound interpretation of
higher-order classical S4. Moreover, restricting to the first-order fragment, this model corresponds to the
model of the Temporal Logic of Actions in Figure B|and agrees for validity with the standard semantics

(Figure[2)).

5 Conclusion

We have found a categorical setting in which to model a higher-order version of TLA, providing a way
of assigning meaning to statements in this logic. This a first step towards a useful higher-order temporal
logic for digital systems. In particular, the model we have described will allow us to formulate proof
rules and verify that they are sound with respect to our model. We imagine that other models for such a
proof theory may also be of interest.

Our model construction started by switching from the discrete-time semantics for TLA that was
originally formulated by Lamport to a real-time semantics. This was essential, since stuttering invariance
does not correspond to closure under a group action in the discrete case. In Lamport’s semantics, stut-
tering forms a monoid (at best) rather than a group, and closure under the action of that monoid fails to
fully account for stuttering invariance. Nonetheless, a categorical semantics of higher-order TLA based
on discrete-time stuttering invariance remains an intriguing challenge.

We plan to continue our work on a higher-order TLA, with the goal of using it as the basis of a proof
assistant and toolchain for practical engineering purposes. Yet significant challenges remain, such as
developing the required syntax, proof theory, and so on. Moreover, it remains to be seen how extending
TLA with higher-order features can be put into useful practice. A potential use case would be to specify
a variant of PlusCal [[12]], a programming language that translates to TLA, then extending it with handy
higher-order features such as closures or objects.

Our goal in this paper was to find a model satisfying our desiderata. It remains to state what, exactly,
“higher-order TLA” is and to specify its class of models. In the present paper we focused on giving an
account of the temporal types, neglecting the underlying non-temporal sets. A detailed and generalized
account of the categorical properties of TLA’s action lifting construction will necessarily be needed in
future work. All that said, the particular form of the model we found is intriguing. Because the underlying
category of our hyperdoctrine is a topos, and not just cartesion closed, it has all finite limits. As such, it
is a promising setting for developing an account of specification composition using pullbacks [3} 6.
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A Rules of Higher-order logic

T,SecTypes::=...|T —S|Prop M,N,0€Terms :=...|x|A(x:T).M|MN|(=)|Vr
M=N=%(=)MN -MEM= 1
V(x:T).M2Yr(A(x:T).M) MAN £Y(p:Prop).(M = N=p)=p
1L 2V(p:Prop).p MVN 2Y(p:Prop).(M=p)= (N=p)=p

T 2V(p:Prop).p=p 3(x:T).M2VY(p:Prop).(V(x:T).M = p)=p

'M=N:T TFM=N TFN=0O (x:T)el

I'EN=M:T I'EM=0 I'bx=x:T
I'tEMy=M:S—T I'ENI=N,: S I''x:TFM=N:S
I'EMyNi =M, N;: T F'FAx:T)M=A(x:T)N:T—S

Lx:TE-M=M:S I'EN=N:T T'x:TEFMx=Nx:S§
I'E(A(x:T).M)N=MI[N/x]:S 'FkM=N:T—S

I'-(=)=(=):Prop— Prop— Prop T'FVy=Vr:(T — Prop) — Prop

rerwf TI'FM=M:Prop Mec® ' 0Fwf
'oFwf 'l O,MF wf ' ®F M true

['|®F M true I'FM=N:Prop T |®FM =N true I'®FMtrue I |®,MHF N true
['|®F N true ['| ®F N true 'e-rM=N

I'| ®F V7 M true I'EN=N:T TTEM=M:T — Prop 'erwt Tx:T|O®FM xtrue

['|®FM N true I'|®F VY7 M true

Figure 4: Intuitionistic Higher-order Logic
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